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KESAN-KESAN SEL INDUK MESENKIMA JELI WHARTON MANUSIA KE 

ATAS FUNGSI IN VITRO SEL-SEL JANTUNG KLONOGENIK TIKUS YANG TUA 

ABSTRAK 

Kajian menunjukkan bahawa fungsi-fungsi sel stem yang tua bertambah baik selepas 

terdedah kepada persekitaran sistemik yang muda in vivo. Memandangkan penyakit jantung 

biasanya mempengaruhi pesakit-pesakit yang telah berumur, kebolehupayaan sel-sel 

mesenkima (MSC) dari jeli Wharton manusia dalam mempertingkatkan fungsi-fungsi sel 

kardiak c-kit (CCs) in vitro masih tidak jelas. Tujuan penyelidikan ini adalah untuk mengaji 

kesan-kesan MSCs terhadap fungsi-fungsi CCs yang tua. CCs diasingkan daripada jantung 

tikus C57/BL6N yang berumur 1- dan 18-bulan, dikultur bersama MSCs melalui sentuhan sel-

sel, atau dipisahkan dengan penggunaan Transwell. Stemness, kinetik pertumbuhan, panjang 

telomer relatif dan aktiviti telomerase CCs yang tua dinilai berbanding dengan CCs yang muda 

(yCCs) serta CCs yang tua (aCCs) tanpa pengkulturan bersama MSCs. Bagi menguji 

keberkesanan matriks ekstra sel daripada MSCs, CCs dikultur atas matriks ekstra sel MSCs 

yang telah dirawat dalam media kardiogenik. Ujian penentuan pertumbuhan dan tekanan 

oksidatif dilaksanakan bagi penilaian kesan matriks esktra sel MSCs ke atas CCs. Semua 

maklumat dianalisa dengan ANOVA. aCCs primari menunjukkan kadar klonogenik yang 

lebih rendah berbandingkan yCCs (9.5 ± 2.9% vs. 21.2 ± 4.4%; p < 0.05). Selepas 

pertumbuhan klonogenik, hanya sel dengan CD90PosCD140aPosCD166Neg diperolehi daripada 

aCCs, di mana ia berbeza dengan phenotype daripada yCCs (CD90NegCD140aNegCD166Pos) 

dengan menggunakan flow cytometri. aCCs klonogenik mempunyai panjang telomer relatif 

yang setara dengan yCCs. Namun demikian, ekspresi gen Gata4, Nkx2.5 dan Sox2 aCCs 

klonogenic adalah rendah, dengan kadar perubahan 2.4, 3767.0, 4.9 masing-masing. Selain itu, 

keupayaan aCCs klonogenik untuk membentuk sfera adalah rendah (4 ± 1 vs. 64 ± 19 spheres; 

p < 0.05) dan gagal berbeza secara spontan kepada sel-sel jantung dan endotelium. 

Pengkulturan dengan MSCs melalui sentuhan sel meningkatkan kadar penghijrahan aCCs 



xvi 

sebanyak 54.6 ± 4.4%, berbandingkan pengkulturan aCC dalam Transwell (42.9±2.6%) dan 

tanpa MSCs (44.7 ± 2.5%, p < 0.05). Pengkulturan sel melalui sentuhan sel dan Transwell 

menambahbaikkan pertumbuhan sel-sel yang tua sebanyak 15.0% dan 16.4% dengan 

menggunakan carboxyfluorescein succinimidyl eater (CFSE) selama 3 hari (p < 0.05). 

Maklumat-maklumat ini mencadangkan bahawa MSCs dapat mempertingkatkan kinetik 

pertumbuhan aCCs. Keberkesanan pembezaan CCs kepada sel-sel jantung dan endotelium 

tidak ketara dalam kesemua kumpulan. Namun, pengkulturan aCCs ke atas matriks ekstra sel 

MSCs meningkatkan daya tahan aCCs kepada tekanan oksidatif berbandingkan kontrol, dinilai 

berdasarkan ujian penentuan sel-sel yang hidup setelah rawatan hidrogen peroxida (26.3 ± 0.8% 

vs. 24.4 ± 0.4%; p < 0.05). Jantung yang berusia mempunyai sekumpulan CCs yang 

mengekalkan kepanjangan telomer dan boleh diasingkan berdasarkan keupayaan 

pembaharuan. Namun, CCs ini tidak dapat berfungsi seperti CCs yang muda. Pertumbuhan 

kinetic dan pembezaan CCs tua dapat dipertingkatkan sedikit setelah dikultur bersama MSCs 

melalui sentuhan sel-sel. 
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EFFECTS OF HUMAN WHARTON’S JELLY MESENCHYMAL STEM 

CELLS ON IN VITRO FUNCTIONS OF AGED MOUSE CLONOGENIC CARDIAC 

CELLS 

ABSTRACT 

Exposure of aged stem cells to young systemic environment has shown to improve 

their functions in vivo. While heart disease commonly affects elderly patients, it is unclear if 

biologically young Wharton’s jelly-derived mesenchymal stem cells (MSCs) can improve the 

functions of aged cardiac c-kit cells (CCs) in vitro. This study examined the effects of MSCs 

on the functions of aged CCs. CCs were isolated from 1- and 18-month-old C57BL/6N mice 

and were co-cultured with human MSCs with direct cell-cell contact or separated with a 

Transwell insert. Stemness, growth kinetics, relative telomere length and telomerase activity 

of the aged CCs were evaluated in comparison with both young (yCCs) and aged CCs (aCCs) 

without MSC co-culture. To test the effects of extracellular matrices (ECM) produced from 

MSCs, CCs were cultured on ECM-derived from MSCs treated with cardiogenic medium. 

Proliferation and oxidative stress assays were performed to evaluate the effect of MSC-derived 

ECM on CCs. All data were analysed using ANOVA. The primary aCCs showed significantly 

lower clonogenicity compared to yCCs (9.5 ± 2.9% vs. 21.2 ± 4.4%; p < 0.05). Following 

clonogenic expansion, only CD90PosCD140aPosCD166Neg cells were expanded in the aCCs, 

which were different from the phenotype of yCCs (CD90NegCD140aNegCD166Pos) as assessed 

by flow cytometry. Clonogenic aCCs showed comparable telomere length to yCCs. However, 

these cells showed lower Gata4, Nkx2.5 and Sox2 gene expressions, with changes of 2.4, 

3767.0, 4.9 folds, respectively. These cells presented a lower sphere formation capability (4 ± 

1 vs. 64 ± 19 spheres; p < 0.05) and did not spontaneously differentiate into cardiomyocyte 

and endothelial lineage. Direct co-culture of both cells increased aCC migration which 

repopulated 54.6 ± 4.4% of the gap area as compared to aCCs with MSCs in Transwell (42.9 

± 2.6%) and aCCs without MSCs (44.7 ± 2.5%, p < 0.05). Both direct and Transwell co-culture 
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improved proliferation in aCCs by 15.0% and 16.4%, respectively as traced using 

carboxyfluorescein succinimidyl ester (CFSE) for 3 days (p < 0.05). These data suggest that 

MSCs can improve the growth kinetics of aCCs. No difference was observed across all groups 

regarding their differentiation capability to form cardiomyocyte, endothelial and smooth 

muscle cells. However, ECM-derived from MSC conferred aCCs with enhanced resistance to 

oxidative stress as compared to control, measured based on viability post-H2O2 treatment (26.3 

± 0.8% vs. 24.4 ± 0.4%; p < 0.05). CCs retained long telomere length are present in aged heart 

and can be obtained based on their self-renewing capability. However, these cells are 

functionally compromised. The growth kinetics and cardiac differentiation of these cells are 

minimally enhanced by MSCs, and this requires cell-cell contact. 
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CHAPTER 1  

 

INTRODUCTION 

The heart has been known as post mitotic organ for decades. This dogma has been 

changed as a group of cardiac stem cells can be found in the adult heart (Beltrami et al., 2003). 

These cells have been isolated from rat (Beltrami et al., 2003), mouse (Smith et al., 2014), 

swine (Ellison et al., 2011), and human (Bearzi et al., 2007, He et al., 2011). Studies showed 

that cardiac stem cells expressing c-kit can regenerate infarcted hearts in animal models 

(Beltrami et al., 2003, Hong et al., 2014, Kazakov et al., 2015), protect surviving 

cardiomyocytes from apoptosis (Kawaguchi et al., 2010, Ellison et al., 2011), promote 

angiogenesis and myogenesis (Di Siena et al., 2016). The beneficial effect of c-kit has been 

further expanded to first human clinical trial, which showed improvement in left ventricular 

ejection fraction (LVEF) and decreased in scar tissues (Bolli et al., 2011, Chugh et al., 2012). 

Nonetheless, ageing reduced the number of c-kit cardiac stem cells in patients (Hu et 

al., 2014) and caused shortening in telomere length over time (Ellison et al., 2013). These cells 

acquired senescent phenotype and their functions were impaired (Lewis-McDougall et al., 

2019). Since autologous stem cell transplantation is preferred, the efficacy of cardiac stem 

cells in heart regeneration from patients of old age group has been a concern. This prompted 

us to investigate if cardiac c-kit cells (CCs) could be isolated from aged mouse heart. If they 

do, were they similar in their phenotypes and functions? All these will be covered in Chapter 

4.  

Recent studies showed the synergistic effect of bone marrow mesenchymal stem cell 

(BMSCs) on c-kit cardiac stem cells. BMSCs were able to engraft and differentiate to 

cardiomyocytes, recruit resident c-kit cardiac stem cells to the infarct region and stimulate 

cardiomyocyte cell cycling (Hatzistergos et al., 2010). Administration of combined BMSCs 

and c-kit cardiac stem cells showed improvement in heart function in swine (Williams et al., 

2012, Karantalis et al., 2015) and rat model (Bao et al., 2017). However, the function of 
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BMSCs have been shown to deteriorate with age (Stolzing et al., 2008). Hence, combination 

stem cell therapy using BMSCs may not be ideal if the c-kit cardiac stem cells were also 

isolated from elderly patients. 

Study showed that by exposing aged mice to young microenvironment, the aged mice 

regain youthful characteristics (Conboy et al., 2005). Wharton’s Jelly MSCs represent the 

youngest adult stem cells, and lack of ethical issues (Stolzing et al., 2008, Fong et al., 2011, 

Scheers et al., 2013). Therefore, this study aimed to evaluate the effect of this biologically 

young human Wharton’s Jelly mesenchymal stem cells (MSCs) on the function of aCCs, 

which will be covered in Chapter 4 and 5. The first chapter is dedicated to provide information 

on CCs, its contribution in stem cell therapy, and how these scientific evidences guided the 

design and rationale behind this study. The results of this study will bring in new ideas and 

future research in establishing critical role of c-kit CCs in cardiac regenerative therapy among 

elderly patients. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Cardiovascular Disease Is the Number One Killer Disease Worldwide 

Cardiovascular disease remains the number one killer disease worldwide, accounting 

for one-third of total death (WHO, 2016). The mortality rate reached 17.9 million of deaths in 

2015 (Roth et al., 2017), and is predicted to exceed 23.6 million by the year of 2030 in United 

States (Benjamin et al., 2018). The increase in prevalence of the disease will be a burden to 

the economy as a result of increase expenditure in medical treatment, of which is estimated to 

reach $749 billion in 2035 from $204.8 billion in 2014 (Benjamin et al., 2018). Furthermore, 

the prevalence of cardiovascular disease increases with age in both males and females 

according to National Health and Nutrition Examination Survey 2011-2014 (Figure 2.1) 

(Benjamin et al., 2018).  

In Malaysia, the estimated age standardised death rates in the year of 2012 declined 

by 22.6% and 19.1% for male and female, respectively. This is mainly due to the improvement 

in medical facilities and health awareness among the residents (WHO, 2014). The death rate 

continues to stay on top of all causes of death, which accounts for about 36% of total deaths 

in 2014 worldwide (Figure 2.2) (WHO, 2014).  

 

Figure 2.1: Prevalence of cardiovascular disease in United States (Source: National Centre for 

Health Statistics and National Heart, Lung, and Blood Institute) (Benjamin et al., 2018) 
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Figure 2.2: Proportional Mortality Rate of Cardiovascular Diseases from Total Deaths in 2014 

(Source: World Health Organisation) (WHO, 2014). 

 

2.2 Pathophysiology of Myocardial Infarction and Heart Failure  

The most common form of cardiovascular disease is myocardial infarction (MI) 

(Benjamin et al., 2018), pathological condition which is manifested by the lack of blood flow 

and oxygen following blockage of coronary vessels (Gabriel-Costa, 2018). Following MI, 

cardiomyocytes suffered from ischaemia, which weakens and damages its membrane integrity, 

causing intracellular content to release to the surrounding and finally die of necrosis and 

apoptosis (Orogo and Gustafsson, 2013). To compensate the loss of cardiomyocytes in the 

infarcted region, existing cardiomyocytes undergo hypertrophy to preserve tissue volume after 

infarction (Rubin et al., 1983, Ginzton et al., 1989). Sympathetic nervous system and the renin-

angiotensin-aldosterone system are also being activated to help re-establishing the cardiac 

output and blood pressure of the heart (Triposkiadis et al., 2009, Zucker et al., 2014, Hartupee 

and Mann, 2017). However, continuous activation of these systems resulted in maladaptive 

compensatory mechanism and lead to heart failure (Braunwald, 2013, Gabriel-Costa, 2018). 

The first phase of tissue repair is the infiltration of leukocytes to the infarct site to remove dead 

cells. The fibroblasts are then activated by post-infarcted inflammatory cytokines which 
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progressively repopulate the infarcted region, and ultimately lead to scar tissue formation 

(Kawaguchi et al., 2011, Frangogiannis, 2012, Turner and Porter, 2013). This event causes 

regional wall motion abnormality and left ventricular (LV) remodelling. If left untreated, 

patients will ultimately suffer from heart failure (Thygesen et al., 2012).  

In clinics, MI can be identified through clinical and pathological presentations, 

elevated necrosis biomarkers and medical devices such as electrocardiogram (ECG) or 

echocardiography (Thygesen et al., 2007, Thygesen et al., 2012). Patients with MI often 

develop ST-segment/T-wave changes or left bundle branch block and pathological Q waves. 

Acute coronary syndrome (ACS) is caused by rupturing of an atherosclerotic plaque, with 

subsequent platelet aggregation and thrombus formation (Kumar and Cannon, 2009). In 

clinical settings, ACS is classified into ST-elevation MI (STEMI), non-ST-elevation MI 

(NSTEMI) and unstable angina (UA) based on symptoms and clinical presentation for 

immediate treatment strategies (Kumar and Cannon, 2009).  

Patients with STEMI are characterised by the presence of thrombus that is rich in 

fibrin, which completely occludes a coronary artery and causes transmural ischaemia (Agewall, 

2008). Patients often undergo immediate reperfusion therapy to restore blood flow of the 

occluded coronary. Other treatments include pharmacological intervention with thrombolytic 

medication such as streptokinase and plasminogen activators in conjunction with percutaneous 

coronary intervention (Agewall, 2008). In contrast, NSTEMI patients are presented with 

platelet rich clot that partially occludes a coronary artery causing non-transmural ischaemia 

(Agewall, 2008). UA patients are presented with unstable plaque that can cause platelet 

aggregation, resulting in the formation of platelet-rich thrombus and ultimately thrombosis 

upon plaque rupture (Roe et al., 2001). Early cardiac catheterisation or surgical bypass grafting 

is used to restore blood flow while pharmacological treatments include antiplatelet and 

antithrombotic drugs for treating the symptoms. 
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2.3 Current Treatment for Cardiovascular Diseases 

2.3.1 Reperfusion Therapy 

Reperfusion therapy helps restoring blood flow after MI. Currently available 

reperfusion therapy includes fibrinolytic therapy (FT) and primary percutaneous coronary 

intervention (PCI). PCI could improve the outcomes in patients with STEMI, provided it can 

be delivered in a timely manner (Antman et al., 2004). The ‘door-to-balloon’ time of < 90 min 

after onset of MI increases the chances of survival following PCI (Boersma et al., 1996, De 

Luca et al., 2004, Antman, 2008). FT serves as an alternative therapy for PCI for patients with 

a delay up to 12-hr after the onset of symptoms (Pinto et al., 2011). Most procedures are now 

performed with drug-eluting stents to reduce restenosis rates (Htay and Liu, 2005, Kastrati et 

al., 2007). Although blood flow restoration salvages patient’s life after MI, this therapy does 

not replace the lost cardiomyocytes. 

2.3.2 Pharmacological Treatment 

Advances in pharmacological intervention have led to the discovery of various cardio-

protective drugs such as 1. statin which attenuates inflammatory response following MI (Patti 

et al., 2010, Han et al., 2018), 2. -blockers to reduce heart rate and blood pressure, hence, 

reducing the myocardial workload and oxygen demand (Yusuf et al., 1985, Kjekshus, 1986, 

Kezerashvili et al., 2012) and 3. The angiotensin converting enzyme inhibitor decreases the 

production of angiotensin II, which then lowering blood pressure and attenuating LV 

remodelling (Khalil et al., 2001, Susan et al., 2005, Oh et al., 2016). Nevertheless, current 

pharmacological strategies could only reduce the pain and minimise symptoms of the infarcted 

patients (Ramsdale et al., 1982). In addition, patients might develop unknown adverse drug 

effect that may affect the functions of other organs, such as lung (Huang et al., 2013), liver 

(Bhardwaj and Chalasani, 2007, Russo et al., 2014, Bellosta and Corsini, 2018) and kidney 

(Adhiyaman et al., 2001, Hörl, 2010). The effectiveness of cardio-protective drugs is also 

affected by the presence of other diseases, such as diabetes (Gyberg et al., 2015). Although 
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these medications help to alleviate the symptoms of MI, they do not replace the dead 

cardiomyocytes. 

2.3.3 Ventricular Assist Device Implantation 

Current standard of left ventricular assisted device (LVAD) is performed through 

standard median sternotomy (Slaughter et al., 2009). The implanted pumps allow the flowing 

of blood from left ventricle to ascending aorta and this is controlled by an external system 

(Slaughter et al., 2009). LVAD prevents bradycardia and supports the heart function in 

potentially lethal ventricular arrhythmias (Ponikowski et al., 2016). Hypertrophied 

cardiomyocytes were reversed in patients treated with LVAD for more than 6 months, with 

reduction in cardiomyocyte size and DNA damage response (Canseco et al., 2015). The 

development of a much less invasive LVAD by miniaturising the assisted device and thus 

avoid the need for sternotomy has improved early survival (Schechter et al., 2015). However, 

the failure of implanted devices in patient were mainly due to increased risk of device failure 

and infection after installing the device (Eckman and John, 2012, Ponikowski et al., 2016, 

Kormos et al., 2017).  

2.3.4 Whole Heart Transplantation 

Whole heart transplantation is the only curative option for end-stage heart failure. 

Patients receiving whole heart transplantation have achieved long-term survival for up to 20 

years (Deuse et al., 2008, Roussel et al., 2008). However, limited number of organ donors, 

risk of rejection, and the complex surgical procedure make the procedure the least favourable 

to pursue (Tonsho et al., 2014).  

2.4 Stem Cells 

Stem cells are primitive cells, which are capable of self-renewal, clonogenic and able 

to differentiate into specialised cell types (Gage et al., 1995, Sobhani et al., 2017). They can 

be classified based on their differentiation plasticity: totipotent, pluripotent, multipotent and 

unipotent. Totipotent cells can give rise to all types of cells in the body as well as 
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extraembryonic placental cells. Pluripotent cells can give rise to almost every cell in an 

organism. Multipotent cells can give rise to limited more than one cell types, while cells with 

unipotent capability can only give rise to one cell type (Sobhani et al., 2017). The most 

commonly known stem cell types are pluripotent stem cells. Pluripotent stem cells can be 

obtained from inner cell mass of an embryo, which possess the ability to form an organism 

(Evans and Kaufman, 1981). Furthermore, stem cells can also be isolated from adult tissues. 

These cells are mainly multipotent or unipotent, where they can give rise to a more specific 

and committed cell type based on their origins (Sobhani et al., 2017). Stem cells divide 

asymmetrically to a more committed daughter cells and also primitive cells, to ensure stemness 

and self-renewal (Knoblich, 2008, Gómez-López et al., 2014).  

2.4.1 Pluripotent Stem Cells 

Embryonic stem cells (ESCs) have been long discovered and shown to be able to give 

rise to basically every cell type in the body. Nonetheless, the fact that this cell type has to be 

isolated from inner cell mass of an embryo leads to ethical debates (Lalit et al., 2014). The 

discovery of induced pluripotent stem cells (PSCs), which was first described by Yamanaka 

et al. (Takahashi and Yamanaka, 2006), could be derived from genetically reprogrammed 

adult fibroblast cells with four pluripotent factors (Oct4, Sox2, Klf4, cMyc). Induced PSCs 

share similar properties with ESCs. They are pluripotent and could be provided as off-the-

shelf products. Various methods have been published to differentiate PSCs to cardiac lineages 

(Laflamme et al., 2007, Kattman et al., 2011, Lian et al., 2013). Preclinical transplantation of 

PSC-derived cardiomyocytes demonstrated cardiac function improvement in rat (Laflamme et 

al., 2007), pig (Kawamura et al., 2012) and monkey (Shiba et al., 2016). Although no tumour 

formation has been observed, the risk of teratoma formation from undifferentiated PSCs 

remains as the major concern (Mora et al., 2017). Furthermore, the transplantation of PSC-

derived cardiomyocytes could contribute to ventricular arrhythmias (Shiba et al., 2016) and 

also risk of rejection if allogeneic cells were used (Lu et al., 2013). 
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2.4.2 Adult Stem Cells 

Adult stem cells are undifferentiated cells that can proliferate, self-renew and 

multipotent. They are present in small number in different organs such as skeletal muscle 

(Formigli et al., 2010), bone marrow (Behfar et al., 2014) and heart (Beltrami et al., 2003). 

The ability of these adult stem cells to replace cell lost have drawn the attention of scientist to 

investigate the effect of various adult stem cells for treating MI as they can be easily isolated 

and expanded in vitro (Beltrami et al., 2003, Formigli et al., 2010, Behfar et al., 2014). Adult 

stem cells are the only stem cell type thus far that has shown successes in engraftment, 

differentiation, and improvement in heart function following transplantation. 

2.5 Adult Stem Cells for Heart Regeneration 

2.5.1 Skeletal Myoblasts  

Skeletal myoblasts have been tested in human trials (Table 1.2) (Menasche et al., 2001, 

Menasche et al., 2003, Smits et al., 2003, Siminiak et al., 2004, Dib et al., 2005, Siminiak et 

al., 2005, Gavira et al., 2006, Menasche et al., 2008, Durrani et al., 2010) because they can 

form contractile elements when in contact with cardiomyocytes in vitro (Durrani et al., 2010). 

They can be isolated as satellite cells from skeletal muscle (Formigli et al., 2010) and these 

cells can be expanded in vitro from patient’s biopsied muscle within two to three weeks 

(Menasche et al., 2003). Transplantation of autologous skeletal myoblast to patients with 

severe ischaemic cardiomyopathy showed no perioperative complications following cell 

transplantation (Menasche et al., 2003). This is followed by mixed results in other skeletal 

myoblast-treated patients (Smits et al., 2003, Siminiak et al., 2004, Dib et al., 2005, Gavira et 

al., 2006). Furthermore, skeletal myoblasts also failed to develop intercalated discs following 

transplantation (Ferreira-Cornwell et al., 2002) and limited by the incidence of ventricular 

arrhythmias following myoblast transplantation, due to propagation of different action 

potentials between skeletal myoblasts and host cardiomyocytes (Menasche et al., 2003, 

Abraham et al., 2005). In another randomised phase II Myoblast Autologous Grafting in 

Ischaemic Cardiomyopathy (MAGIC) trial, which demonstrated no improvement in left 
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ventricular ejection fraction (LVEF) (Menasche et al., 2008). Similarly, a double-blinded, 

randomised controlled study (MARVEL-1) also showed higher risk of ventricular tachycardia 

following skeletal myoblast intramyocardial injection in patients with MI (Povsic et al., 2011). 

These findings limit the use of skeletal myoblast in treating the damaged heart. The list of 

clinical trials using skeletal myoblasts was shown in Table 2.1. 

Table 2.1: List of Clinical Trials Using Skeletal Myoblasts for Heart Regeneration 

 

Clinical Trials Number of 

Patients 

Duration 

(Months) 

Changes in 

LVEF (%) 

References 

Menasche et al. (2003) 9 10.9 +8% (Menasche 

et al., 

2003) 

Smits et al. (2003) 5 6 +7% (Smits et 

al., 2003) 

Siminiak et al. (2004) 10 12 +6% (Siminiak 

et al., 

2004) 

Dib et al. (2005) 30 24 +8% (Dib et al., 

2005) 

Gavira et al. (2006) 12 12 +20%* (Gavira et 

al., 2006) 

Menasche et al. (2008) 97 6 +4% (Menasche 

et al., 

2008) 

*Significant improvement in LVEF (p < 0.05) 

 

2.5.2 Bone Marrow-derived Mononuclear Cells 

Bone marrow is a home to multiple stem cell populations with regenerative potential, 

namely the bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (MSCs) 

and haematopoietic stem cells (HSCs). Orlic et al. first reported events of neomyogenesis in a 

mouse model of MI following intramyocardial injection of bone marrow cells (Orlic et al., 

2001). This study was then sparked tremendous interest in using the BMMNCs from bone 

marrow aspirate to treat damaged myocardium and soon initiated first cell therapy in human 

trials due to its high availability and feasibility (Behfar et al., 2014). Various human clinical 

trials have been performed to test the functional efficacy of BMMNCs in heart repair. 

Stauer et al. (2002) demonstrated that intracoronary administration of autologous 

BMMNC in human improved cardiac function (Strauer et al., 2002). Intracoronary 
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administration of autologous BMMNCs also showed improvement in global LVEF in acute 

MI (Wollert et al., 2004). Similar results have also been reported in other randomised 

controlled trials (Assmus et al., 2002, Schachinger et al., 2004, Afzal et al., 2015). 

Intracoronary administration of enriched CD133Pos BMMNCs was demonstrated to be safe in 

COMPARE-AMI trial (Mansour et al., 2010), able to improve LV performance, increase 

myocardial perfusion, and enhance cell viability in acute MI patients (Bartunek et al., 2005). 

Although BMMNCs has been shown to be safe (Strauer et al., 2002, Janssens et al., 2006, 

Mansour, 2016), the outcomes showed mixed results (Dawn et al., 2009). Some studies 

suggest that BMMNCs has not been beneficial to the damaged heart (Janssens et al., 2006, 

Meyer et al., 2006, Gowdak et al., 2008, Meyer et al., 2009, Nowbar et al., 2014). TIME 

randomised trial (Traverse et al., 2012) and Late TIME trial (Traverse et al., 2012) were 

performed to elucidate if duration of injection affects the outcome of BMMNCs in heart 

regeneration. Both studies showed no improvement in LVEF regardless of time of injection 

after acute MI. Similarly, intracoronary administration of autologous BMMNCs in 

REGENERATE-AMI trial demonstrated reduction in infarct size but no improvement in 

LVEF (Choudry et al., 2016). Some key clinical trials which were conducted are summarised 

in Table 2.2.  
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Table 2.2: List of Clinical Trials Using Bone Marrow-derived Mononuclear Cells for Heart 

Regeneration 

 
Clinical Trials Number of 

Patients 

Duration 

(Months) 

Changes in 

LVEF(%) 

References 

TOPCARE-AMI (2002) 20 4 +8.5%* (Assmus et al., 

2002) 

TOPCARE-AMI (2004) 59 4 +8.0%* (Schachinger 

et al., 2004) 

BOOST (2004) 60 6 +6.7%* (Wollert et al., 

2004) 

BOOST (2006) 60 6 +5.9% (Meyer et al., 

2006) 

REPAIR-AMI (2006) 204 4 +10.5%* (Schachinger 

et al., 2006) 

LEUVEN-AMI (2006) 67 4 +3.3% (Janssens et 

al., 2006) 

ASTAMI (2006) 97 6 +3.1% (Lunde et al., 

2006) 

TCT-STAMI (2006) 20 6 +4.8%* (Ge et al., 

2006) 

TOPCARE-CHD (2007) 121 3 +1.8%* (Assmus et al., 

2007) 

Gowdak (2008) 10 12 +4% (Gowdak et 

al., 2008) 

FINCELL (2008) 80 6 +4%* (Huikuri et al., 

2008) 

HEBE (2008) 26 12 +2.2%* (Hirsch et al., 

2008) 

BOOST (2009) 60 61 -2.5% (Meyer et al., 

2009) 

ASTAMI (2009) 100 36 +1.8% (Beitnes et al., 

2009) 

REGENT (2009) 200 6 +3%* (Tendera et al., 

2009) 

Traverse (2010) 40 6 +6.2% (Traverse et 

al., 2010) 

BONAMI (2010) 101 3 +3.3% (Roncalli et 

al., 2011) 

REPAIR-AMI (2010) 204 24 +4.7%* (Assmus et al., 

2010) 

FOCUS-HF (2011) 30 6 +4.5%* (Perin et al., 

2011) 

HEBE (2011) 200 4 +3.8%* (Hirsch et al., 

2011) 

Late-TIME (2011) 87 6 +0.5% (Traverse et 

al., 2011) 

TOPCARE-AMI 55 60 +11%* (Leistner et al., 

2011) 

TIME (2012) 120 6 +3.2% (Traverse et 

al., 2012) 

Antoinitsis (2012) 9 12 +21.2%* (Antonitsis et 

al., 2012) 

FOCUS-CCTRN (2012) 92 6 +1.4% (Perin et al., 

2012) 

SWISS-AMI (2013) 200 4 +1.4 (For 

early 

injection) 

+1.1% (For 

late injection) 

(Surder et al., 

2013) 

*Significant improvement in LVEF (p < 0.05) 
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2.5.3 Bone Marrow-derived Mesenchymal Stem Cells 

Bone marrow cells are composed of haematopoietic or non-haematopoietic cells. 

Bone marrow-derived mesenchymal stem cells (BMSCs) are the multipotent precursors of 

non-haematopoietic lineages and possess the ability to differentiate into adipose, bone, 

cartilage, skeletal muscle, neural, and other cell types (Dominici et al., 2006). BMSCs can be 

harvested from bone marrow, they are proliferative in vitro, and can be stored for long term 

use, or served as an off-the-shelf product. Several studies documented that BMSCs were able 

to differentiate into cardiomyocytes in vitro with the use of demethylating agent such as 5-

azacytidine (Xu et al., 2004, Antonitsis et al., 2007), or through co-culture with 

cardiomyocytes (Cai et al., 2012a). Furthermore, these cells expressed low MHC class I and 

lacked MHC class II (Schu et al., 2012), thus making BMSCs as a better allogeneic cell source 

for heart regeneration as compared to many other cell types. 

Clinically, intracoronary infusion of BMSCs shortly after acute MI has been shown to 

be safe and feasible for transplantation, and able to improve LV function (Chen et al., 2004, 

Kim et al., 2018a) for up to five years of follow-up (Rodrigo et al., 2013). In POSEIDON-

DCM trial (Hare et al., 2012), patients were randomised to either allogeneic or autologous 

BMSCs intravenously and followed for up to 12 months (Hare et al., 2012). The study showed 

that greater improvement in LV function in non-ischaemic dilated cardiomyopathy patients 

was observed in allogeneic as compared to autologous BMSCs (Hare et al., 2017). More 

importantly, allogeneic BMSC transplantation did not exert immune response in patients (Hare 

et al., 2017). MESAMI phase I pilot study was conducted to introduce BMSCs through 

intramyocardial injection in patients with chronic ischaemic cardiomyopathy (Guijarro et al., 

2016). They observed significant improvements in LVEF at 12-month follow-up albeit with a 

smaller sample size of ten (Guijarro et al., 2016).  

In Phase II placebo-controlled randomised MSC-HF trial, patients suffered from heart 

failure who received a high number of autologous BMSCs through intramyocardial 

administration showed greater functional improvement in the ischaemic heart after 12 months, 
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suggesting a positive correlation between cell dose and disease severity (Mathiasen et al., 

2015). In the TRIDENT study, low dose (20 million) and high dose (100 million) cells were 

tested by transendocardially administered to patients with ischaemic cardiomyopathy for up 

to 12 months (Florea et al., 2017). Subjects who were given high dose BMSCs showed 

significant improvement in LVEF, which suggests that the dose of administered BMSCs does 

dictate the functional outcome (Florea et al., 2017). Another study which administered 25, 75, 

or 150 million cells of allogeneic bone marrow mesenchymal precursor cells in chronic heart 

failure patients in a phase II trial by transendocardial injection. Chronic heart failure patients 

administered with 150 million cells showed significant reduction in major adverse cardiac 

events at 12-months followed up despite no significant improvement in LVEF was observed 

(Perin et al., 2015). This suggests high dose of BMSC administration is necessary for gaining 

greater therapeutic benefit in damaged heart. Table 2.3 lists the major human clinical trials of 

using BMSCs in heart regeneration. 

Table 2.3: List of Clinical Trials Using Bone Marrow-derived Mesenchymal Stem Cells for 

Heart Regeneration 

 

Clinical Trials Number of 

Patients 

Duration 

(Months) 

Changes in 

LVEF(%) 

References 

Chen (2004) 69 6 +18%* (Chen et 

al., 2004) 

Hare (2009) 53 6 +6.5% (Hare et al., 

2009) 

POSEIDON (2012) 30 13 +1.65% 

(Allogeneic) 

+2.3% 

(Autologous) 

(Hare et al., 

2012) 

PROMETHEUS (2014) 6 18 +10.1%* (Karantalis 

et al., 2014) 

SEED-MSC (2014) 80 6 +1.6%* (Lee et al., 

2014) 

TAC-HFT (2014) 65 12 +7.6% (Heldman 

et al., 2014) 

MSC-HF (2015) 55 6 +5.0%* (Mathiasen 

et al., 2015) 

MESAMI (2016) 10 12 +6.3%* (Guijarro et 

al., 2016) 

*Significant improvement in LVEF (p < 0.05) 

 

 



15 

 

2.5.3(a) Indirect Effects of BMSCs in Cardiac Therapy 

The BMSCs can secrete a wide array of cytokines, chemokines and growth factors 

(Mirotsou et al., 2007, Markel et al., 2008). Conditioned medium derived from BMSCs 

attenuated cardiac fibroblast proliferation through down-regulation of genes regulating 

cellular proliferation and inhibition of type I and III collagen synthesis in vitro (Ohnishi et al., 

2007). Paracrine factors secreted by BMSCs exerted anti-apoptotic effects on cultured 

cardiomyocytes and endothelial cells under conditions that mimic ischaemia in mice model 

with acute MI (Iso et al., 2007). Secreted factor such as vascular endothelial growth factor 

(VEGF) is primarily present in conditioned medium generated from BMSCs, which is 

responsible for cardioprotection and angiogenic effects in MI rat heart (Gao et al., 2007). This 

observation is further supported using VEGF- and hepatocyte growth factor- (HGF-) 

overexpressing murine BMSCs, which showed improvement in ventricular ejection function 

and reduction in scar size (Deuse et al., 2009).  

Recently, BMSC-derived extracellular vesicles, including exosomes and 

microvesicles have been investigated. Exosomes secreted from GATA4 overexpressing 

BMSCs are anti-apoptotic and could protect heart function through miRNAs-mediated 

activation of cell survival signalling pathways (Yu et al., 2015). BMSCs released extracellular 

vesicles upon hypoxia, promoted neoangiogenesis and preserved cardiac function following 

intramyocardial injection into acute MI rat model (Bian et al., 2014). In acute MI rat model, 

administration of BMSC exosomes can enhance cardiac function and promote 

neovasculogenesis (Teng et al., 2015). 

2.5.3(b) Direct Transdifferentiation of BMSCs into Cardiomyocytes 

Mechanism of which transplanted BMSCs transdifferentiate into cardiomyocytes has 

been proposed. BMSC can differentiate into cardiomyocyte in vitro when induced by 5-

azacytidine, although the differentiation is extremely rare under physiological conditions 

(Martin-Rendon et al., 2008, Mu et al., 2011). The combination of angiotensin II and 5-

azacytidine can further promoting BMSC differentiation into cardiomyocyte-like cells (Xing 
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et al., 2012). Engrafted human BMSCs in the mice myocardium could differentiate into 

cardiomyocytes (Toma et al., 2002). However, the BMSCs-derived cardiomyocytes still 

retained their stromal phenotype and could not become functional cardiomyocytes in vitro 

despite expressing cardiac-specific markers (Rose et al., 2008). In another study, BMSCs-

overexpressing Akt transplantation has superior effect in engraftment within the infarcted 

myocardium. Authors observed a rare event whereby BMSC fused with cardiomyocytes as 

well as low rate of BMSC transdifferentiation (Noiseux et al., 2006). In vitro co-culture model 

of human BMSCs and neonatal rat ventricular cardiomyocytes has demonstrated active cell 

fusion between these two cells (Shadrin et al., 2015). While these hybrids showed 

electrophysiological properties and evidence of cytoplasmic content exchanges, there was no 

fusion of nucleus being observed (Shadrin et al., 2015). This event might be closely related to 

gap junctional coupling between BMSCs and cardiomyocytes, at which the inhibition of 

cardiac specific transcription factors NKX2.5 and GATA4 reduced with cell-cell gap junction 

inhibition (Lemcke et al., 2017). However, these hybrid cells are not proliferative, and the 

event of fusion is extremely rare (Shadrin et al., 2015). 

2.6 Endogenous Cardiac Stem Cells 

Mammalian heart was once believed to be a terminally differentiated organ, with no 

regenerative capacity. Although majority of the cardiomyocytes are permanently withdrawn 

from the cell cycle, emerging evidence demonstrates that cardiomyocyte proliferation exists 

albeit at a very low rate (Bergmann et al., 2009, Senyo et al., 2013), with a turnover rate of 

about 1% (Bergmann et al., 2009) or 4-10% (Senyo et al., 2013). Other study showed a 3.4-

fold increment in the number of cardiomyocytes from 1 to 20 years of age based on cell cycle 

activity (Mollova et al., 2013). Cardiomyocyte turnover rate as measured by thymidine 

analogue iododeoxyuridine method, however, reported as high as 22% of the cardiomyocytes 

are replaced and renewed annually (Kajstura et al., 2010b). In addition, the genomic C-14 

method demonstrated the number of cardiomyocytes remain constant over the lifetime starting 

1 month after birth (Bergmann et al., 2009). There was limited cardiomyocyte turnover, with 
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the cardiomyocyte renewal of 1% turning over annually at the age of 20 (Bergmann et al., 

2009).  

Despite differences reported in the rate of cardiomyocyte turnover, consensus was 

reached that the heart is not a post-mitotic organ (Bergmann et al., 2009, Senyo et al., 2013). 

In new-born mice, the generation of new cycling cardiomyocytes decreased dramatically upon 

delivery (Walsh et al., 2010). However, the authors revealed that postnatal cardiomyocyte 

generation is a result of a short proliferative burst day 14. This means that postnatal 

cardiomyocytes retain the potential to proliferate but activity surged at day 14 to contribute to 

the final cardiomyocyte number in mice via insulin growth factor-1/insulin growth factor-1-

receptor/Akt (IGF-1/IGF-1-R/Akt) pathway (Naqvi et al., 2014). 

Nevertheless, adult mammalian heart has limited regenerative capability and ageing 

can affect cardiomyocyte turnover (Bergmann et al., 2009). The estimated cardiomyocyte 

turnover rate is 1% at the age of 25 years old and declines to 0.45% at the age of 75 (Bergmann 

et al., 2009). Studies showed that the heart of one-day-old mouse can be fully regenerated after 

MI induction (Porrello et al., 2011, Haubner et al., 2012). However, the regeneration capacity 

is lost in seven-day-old MI mouse as evidenced by scarring in the heart which is similar to the 

adult after 21 days (Porrello et al., 2011, Haubner et al., 2012). In a case study, the heart of a 

human new-born child with severe MI due to coronary artery occlusion was able to recover 

completely (Haubner et al., 2016). This again suggests that inert heart regeneration is greatly 

dependent on age (Bergmann et al., 2009, Porrello et al., 2011, Haubner et al., 2012). To 

investigate the difference in dividing myocytes in the normal and diseased heart, Kajstura et 

al. collected human hearts from patients 19 to 104 years old and investigated the magnitude 

of myocyte regeneration (Kajstura et al., 2010a). They observed inverse relationship between 

young myocytes and ageing, with 0.69% and 0.89% of the young myocytes declines per year 

in women and men, respectively. The declines were associated with an increased number of 

senescent cells (Kajstura et al., 2010a). Therefore, the search for suitable cell candidates for 

treating infarcted heart continues. 
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As the loss of cardiomyocytes post-MI could not be replaced merely by pharmacology 

interventions, stem cell therapy offers hopes to reconstitute infarcted heart either by secreting 

cardioprotective paracrine factors integrate with the target tissues and differentiate into 

functional cardiomyocytes to replenish the pool of cardiac muscle cells. Studies have shown 

that the heart harbours a group of cardiac stem cells that can be harvested, purified, expanded 

in vitro and finally implanted into patient own heart in autologous transplantation (Beltrami et 

al., 2003, Bearzi et al., 2007, Bolli et al., 2011). Cardiac stem cells have been isolated by 

different groups based on their surface marker expression (SCA-1 (Oh et al., 2003) and c-kit 

(Beltrami et al., 2003)), functional properties such as the ability to efflux dye Hoechst 33342 

(Side population) (Pfister et al., 2005), and the factor-stimulated self-aggregated 3-

dimensional multicellular clusters (a.k.a. cardiospheres) (Messina et al., 2004). 

2.7 Types of Cardiac Stem Cells 

2.7.1 SCA-1 Cardiac Stem Cells 

Oh et al. first reported a population of SCA-1-expressing cells from murine adult heart, 

which was distinct from haematopoietic origin as they lacked CD34, CD45 markers. These 

cells expressed cardiac transcription factors such as GATA4 and MEF2C (Oh et al., 2003), 

and could differentiate into cardiomyocytes in vitro in the presence of 5-azacytidine or 

oxytocin (Matsuura et al., 2004). When these cells were transplanted into mice intravenously, 

cells that also co-expressing chemokine receptor type 4 (CXCR4) migrated to the injured 

myocardium and differentiated into cardiomyocytes following MI (Oh et al., 2003, Oh et al., 

2004). Cardiac stem cells co-expressing SCA-1 and WT1 in the mouse heart have been 

demonstrated to give rise to de novo cardiomyocytes that structurally and functionally 

integrate with resident heart muscle after MI (Smart et al., 2011). Chong et al. (2011) have 

recently demonstrated that a population of SCA-1 and PDGFR positive cells derived from 

proepicardium of mouse heart has the capacity for clonogenic propagation, long term in vitro 

growth, and multilineage differentiation both in vitro and in vivo (Chong et al., 2011). 

Nonetheless, SCA-1 positive cardiac stem cells in human have not been identified so far. 
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Human SCA-1-like cardiac cells has been shown to express early cardiac transcription factors 

such as GATA4, and NKX2.5 and could achieve better cardiac differentiation upon 5-

azacytidine treatment (Smits et al., 2009). 

2.7.2 Side Population Cells 

Functionally, cardiac stem cells can be isolated based on the ability to efflux metabolic 

dyes through overproduction of ATP-binding cassette transporters (ABCG2 or MDR-1). 

ABCG2 protects and regulates homeostasis and function of cardiac side population (SP) cells 

(Pfister et al., 2008). Loss of ABCG2 expression in Abcg2 knockout mice lead to reduction in 

proliferation capacity and increased cell death (Pfister et al., 2008). SP cells were identified 

based on the ability to efflux dye Hoechst 33342 (Goodell et al., 1996), and their presence 

ranged from 0.03% to 3.5% of total mononuclear cardiac cells (Pfister et al., 2005). SP cells 

express SCA-1 but not haematopoietic markers such as CD34 and CD45 (Martin et al., 2004, 

Pfister et al., 2005). Pfister et al. demonstrated the presence of two types of SP cells based on 

the surface marker CD31 (Pfister et al., 2005, Liang et al., 2010). They showed that only 

cardiac SP cells that does not express CD31 could differentiate into functional cardiomyocytes 

in vitro (Liang et al., 2010). When these cells were co-cultured with neonatal cardiomyocytes, 

they expressed cardiac differentiation markers, suggesting the ability of these cells to form 

cardiomyocytes (Hierlihy et al., 2002). Furthermore, SCA-1-expressing cardiac cells could 

migrate from non-ischaemic myocardium into the infarcted area where they differentiated into 

both cardiomyocyte and endothelial-like myocardium (Liang et al., 2010) through up-

regulation of CXCR4 (Oyama et al., 2007), a receptor for the chemotactic cytokine known as 

stromal derived factor 1 (SDF-1) (Liang et al., 2010, Liang et al., 2011). 

2.7.3 Cardiospheres 

Cardiospheres are characterised by a mixed population of cardiac cells that grow as 

three dimensional (3D) clusters in vitro (Messina et al., 2004). They are derived from the 

outgrowth cells from atrial or ventricular explant which were then induced with factors to 

aggregate and form spherical structures (Messina et al., 2004). They expressed endothelial 
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(KDR/FLK-1, CD31) and stem cell (CD34, c-kit, SCA-1) markers (Messina et al., 2004). They 

could spontaneously differentiate into cardiomyocytes and endothelial cells, which were 

sphere size and culture time dependent. These cardiospheres were self-adherent cell clusters 

that can grow as monolayer culture on plastic surface and were termed cardiosphere-derived 

cells (CDCs) (Messina et al., 2004). CDCs are a mixture of stromal, mesenchymal and 

progenitors which are comprised of c-kit, CD31 and CD34 cells (Davis et al., 2009). They are 

clonogenic, capable of long-term self-renewal, and can commit to cardiac, smooth muscle and 

vascular lineages both in vitro and in vivo (Messina et al., 2004, Smith et al., 2007). Similar 

to SCA-1-expressing cells, these cells also expressed CXCR4 under hypoxic condition and 

could migrate to injured myocardium following intravenous injection (Tang et al., 2010). In 

view of its promising regenerative capability in animal studies, autologous CDCs were first 

tested in Phase I clinical trial (CADUCEUS), on patients with acute MI. The outcome showed 

reduced infarct size and increased viable heart mass at six months. However, no difference in 

LVEF was observed as shown in Table 2.4 (Makkar et al., 2012). Furthermore, CDCs were 

also found to possess the angiogenic potential and can secrete variety of growth factors 

including angiopoietin, basic fibroblast growth factor (bFGF), HGF, IGF-1 and VEGF (Li et 

al., 2012). 

Table 2.4: List of Clinical Trials Using Cardiosphere-derived Cells for Heart Regeneration 

 

Clinical Trials Number of 

Patients 

Duration 

(Months) 

Changes in 

LVEF(%) 

References 

CADUCEUS (2012) 25 6 +5.4% (Makkar et 

al., 2012) 

CADUCEUS (2014) 25 12 +5.4% (Malliaras 

et al., 

2014) 

*Significant improvement in LVEF (p < 0.05) 

 

2.7.4 Islet-1 Cardiac Progenitor Cells 

Laugwitz et al. (2005) first described the presence of LIM homeodomain transcription 

factor Islet-1 (ISL-1) cardiac progenitor cells in the heart of rat, mouse and human (Laugwitz 

et al., 2005). These cells were mainly found in neonatal heart (Cai et al., 2003), forming 
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outflow tract, right ventricle, and atrial (Cai et al., 2003). To recapitulate developmental 

precursors in the embryonic heart, embryonic derived ISL-1 cardiac progenitor cells 

expressing NKX2.5 and FLK1 were shown to differentiate into cardiomyocytes, smooth 

muscle, and endothelial cells (Moretti et al., 2006). Despite limited in vitro expansion, ISL-1 

positive ventricular progenitor cells have been shown to differentiate into functional 

ventricular muscle tissues (Domian et al., 2009). ISL-1 cardiac progenitor cells persisted in 

the proximal outflow tract during adulthood (Genead et al., 2010) but their number was rare 

with only 500-600 cells being detectable in the myocardium of a one to five day old rat 

(Laugwitz et al., 2005). Furthermore, the ISL-1 expression gradually lost the differentiation 

capacity with age (Weinberger et al., 2012).  

2.8 c-kit Cardiac Stem Cells 

2.8.1 Characteristics of c-kit Cardiac Stem Cells 

Cardiac stem cells were first identified in the adult rat heart (Beltrami et al., 2003). 

These cells were known to be clonogenic, able to self-renew, and multipotent (Kawaguchi et 

al., 2010). Attempts to isolate cardiac stem cells had also been extended to mice (Smith et al., 

2014), canine (Linke et al., 2005) and human (Bearzi et al., 2007, He et al., 2011) following 

the report, based on the surface marker c-kit (Beltrami et al., 2003, Ellison et al., 2013, Smith 

et al., 2014). Study have shown that constitutive expression of c-kit promotes cardiac repair 

through enhanced angiogenic and myogenic response after injury in mice (Di Siena et al., 

2016). Likewise, absence of c-kit signalling in the heart worsened cardiac remodelling after 

MI (Di Siena et al., 2016). The isolated c-kit cardiac stem cells from the transgenic mice 

constitutively expressing c-kit also showed higher growth potential, clonogenicity, and 

cardiomyocyte differentiation as compared to c-kit cardiac stem cells from wild type mice in 

vitro (Di Siena et al., 2016). Kawaguchi et al. (2010) isolated a group of clonogenic c-kit 

cardiac stem cells that expressed high levels of GATA4 and found that these cells have better 

potential in heart regeneration by increasing cardiomyocyte survival and contractility through 

IGF-1/IGF-1R/Akt pathway (Kawaguchi et al., 2010). 
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Smith et al. (2014) demonstrated the freshly isolated c-kit cardiac stem cells and 

showed that they expressed SCA-1, CD90, CD140a, and CD166 but negative for 

haematopoietic markers such as CD34 and endothelial markers such as CD31 (Smith et al., 

2014). The cells also expressed MSC-related markers such as CD29, CD44, CD105, and CD90 

(Gambini et al., 2011). Some studies suggested that the isolated c-kit cardiac stem cells were 

heterogeneous, and can be divided into two distinct populations based on their differentiation 

potency, namely the myogenic or the vasculogenic cardiac stem cells (Hosoda, 2012). 

Myogenic cardiac stem cells are more committed to differentiate into myocyte lineage and 

they expressed c-kit but not KDR (Hosoda, 2012). Whereas, vasculogenic cardiac stem cells 

expressed both c-kit and KDR, and found to reside mainly in the vascular niche of the vessel 

wall, which derive vascular endothelial or smooth muscle cells (Hosoda, 2012). 

These cells also showed expression of cardiac transcription factors such as GATA4 

and NKX2.5 (Kawaguchi et al., 2010, Smith et al., 2014). These two markers are early markers 

of early cardiac committed cells. The crosstalk between these two cardiac transcription factors 

are critical for early cardiogenesis (Durocher et al., 1997). SOX2 has been known to maintain 

cell pluripotency (Park et al., 2012). Cardiac c-kit cells also expressed SOX2, suggesting that 

the cells are partially committed to cardiac lineage but at the same time maintaining cell 

pluripotency (Smith et al., 2014, Leong et al., 2018). TERT encodes for telomerase reverse 

transcriptase, a core catalytic subunit of telomerase enzyme, helps protecting chromosome 

ends from shortening by adding small repeated DNA to the ends of chromosomes, thus, 

maintaining telomere integrity (Nugent and Lundblad, 1998, Osterhage and Friedman, 2009, 

O'Sullivan and Karlseder, 2010). This is also one of the important genes indicating stemness 

of cells. 

2.8.2 Cardiac Stem Cell Niche and Activation 

2.8.2(a) Niche and Location 

The niche of c-kit cardiac stem cells is mostly found in the atria and apex, the region 

with low haemodynamic stress surrounded by differentiated myocytes (Leri et al., 2005, 
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Bearzi et al., 2007). These cells can divide symmetrically and asymmetrically, but 

asymmetrical division is more predominant to maintain the pool of stem cells while deriving 

a more committed daughter cell (Urbanek et al., 2006, Bearzi et al., 2007, Hosoda, 2012). The 

stem cells that reside in the hypoxic niche microenvironment are mostly quiescent (Sanada et 

al., 2014), and oxygen is required for re-activation of the quiescent cells to re-enter cell cycle. 

The quiescent stem cells within the hypoxic niche could be stimulated to re-enter cell cycle by 

injury (Sanada et al., 2014), be it the infarction (Docshin et al., 2018) or drug induced 

cardiotoxic injury such as isoproterenol (Ellison et al., 2013).  

Ellison et al. (2011) showed that IGF-1 and HGF are key growth factors to activate c-

kit cardiac stem cells, and administration of the two factors in combination with cardiac stem 

cells promote cardiac repair in infarcted swine heart (Ellison et al., 2011) with profound 

increased bromodeoxyuridine (BrdU) labelled cardiac stem cells and new cardiomyocyte 

formation (Ellison et al., 2011). 

2.8.2(b) Function of c-kit Cardiac Stem Cells 

Intravenous infusion of adult c-kit cardiac stem cells ameliorates LV remodelling in 

mice model by reducing fibrosis, cardiomyocyte hypertrophy and increasing cardiomyocyte 

density in the LV myocardium (Kazakov et al., 2015). c-kit regulates the homeostasis between 

pro- and anti-angiogenic proteins in the LV myocardium towards pro-angiogenic mediators to 

increase endothelial cell density (Kazakov et al., 2015). Thus, the transplantation of c-kit 

cardiac stem cells can ameliorate oxidative stress in cardiomyocytes and non-cardiomyocytes 

after stem cell transplantation (Kazakov et al., 2015). Intracoronary infusion of autologous 

cardiac stem cells improves regional and global LV function by promoting cardiac and 

vascular regeneration in swine (Bolli et al., 2013). The transplanted cells expressed cardiac 

specific markers in the infarcted region, suggesting cardiac stem cells can be differentiated 

into cardiomyocytes (Bolli et al., 2013).  
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Cardiac stem cells are able to differentiate into cardiomyocytes, smooth muscle and 

endothelial cells (Beltrami et al., 2003). Cardiac troponin I is a marker to identify mature 

cardiomyocytes (Bedada et al., 2014). In vitro, the differentiated cardiomyocytes were 

identified by cardiac troponin I, which has been widely used to confirm cardiac lineage 

commitment (Beltrami et al., 2003, Kawaguchi et al., 2010). Smooth muscle actin is present 

on actin cytoskeleton of smooth muscle cells (Lehman and Morgan, 2012), while von 

Willebrand factor is an endothelial cell marker (Zanetta et al., 2000). These markers have been 

used to characterise cardiac stem cell commitment to smooth muscle and endothelial lineages 

in vitro (Beltrami et al., 2003, Ellison et al., 2013, Smith et al., 2014). Other cardiac-related 

markers at gene level such as Myh6 and Myh7 are also widely used for determining cardiac 

lineage specification (Plaisance et al., 2016). Myh6 encodes for -myosin heavy chain, which 

is important for structural organisation (Epp et al., 1993, Posch et al., 2011). The loss of Myh6 

led to embryonic lethality (Jones et al., 1996). -myosin heavy chain is encoded by Myh7. The 

shift of expression from Myh6 to Myh7 in mice was related to severe cardiovascular stress due 

to maladaptive response (Krenz and Robbins, 2004). Mutation of this gene causes patients 

with hypertrophic cardiomyopathy (Laredo et al., 2006). 

2.8.3(c) Engraftment 

Although promising results have been obtained from the recent human clinical trial 

using patients’ own cardiac cells for heart repair (Bolli et al., 2011, Chugh et al., 2012), the 

survival of c-kit cardiac stem cells following transplantation are poor and thus limiting the 

treatment outcome (Hong et al., 2014). Using mice model, Hong et al. performed 

intracoronary c-kit cardiac stem cell administration in coronary occluded mice followed by 

reperfusion. They found that more than 85% of c-kit cardiac stem cells that were present during 

the five min of administration were lost by 24-hr, and only about 3.5% of cardiac stem cells 

being spotted at day seven, for which the number of transplanted cells declined continuously 

(Hong et al., 2014). 
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Encouraging results that demonstrated c-kit cardiac stem cells improved global 

function of LV in animal models have led to the very first human clinical trial - Phase I, 

randomised, open-label, single-center trial of Stem Cell Infusion in Patients with Ischaemic 

CardiOmyopathy (SCIPIO) (Bolli et al., 2011), conducted on patients with ischaemic 

cardiomyopathy. Briefly, c-kit cardiac stem cells were isolated from the right atrial appendage 

of patients undergoing open heart surgery for coronary artery bypass grafting. Harvested c-kit 

cardiac stem cells underwent expansion in vitro and were then infused back into the donor 

heart via intracoronary injection. The results indicated the potential use of autologous 

transplantation of c-kit cardiac stem cells in improving the regional and global heart function. 

The study demonstrated the improvement of LVEF by 7.6% within 4 months (Bolli et al., 

2011) and 13.7% at 12 months (Chugh et al., 2012) following transplantation (Table 2.5).  

Table 2.5: List of Clinical Trials Using Cardiac Stem Cells for Heart Regeneration 

 

Clinical Trials Number of 

Patients 

Duration 

(Months) 

Changes in LVEF (%) References 

SCIPIO (2011) 23 4 +8.2%* (Bolli et 

al., 2011) 

SCIPIO (2012) 33 4 and 12 +7.6%* (4 months) 

+13.7% (12 months) 

(Chugh et 

al., 2012) 

*Significant improvement in LVEF (p < 0.05) 

 

2.9 Ageing 

2.9.1 Telomere Length 

According to Hayflick limit of cell division, every single cells have limited capability 

in division, which is determined by telomere attrition, or shortening (Shay and Wright, 2000). 

Telomeres are located at the ends of chromosomal DNA with thousands of tandem repeats of 

the TTAGGG sequence, which function to protect the chromosome ends from DNA damage, 

degradation and thus maintain cellular and DNA stability during replication (Fyhrquist and 

Saijonmaa, 2012, Nguyen et al., 2016). However, telomere length is shortened by 30-150 base 

pairs with each cell division. Upon reaching critical telomere length, cells will become 

senescent, along with activation of cell cycle inhibitor arrest pathways, via p16INK4a (Avolio et 

al., 2014), p21 or p53 (Blackburn, 2000). Nonetheless, the telomere shortening process can be 
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