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SINTESIS, PERENCATAN KOLINESTERASE DAN KAJIAN PENDOKAN 

MOLEKUL TERBITAN PIPERIDON-TERCANTUM  

PIRIMIDINA DAN TIAZOLOPIRIMIDINA 

 

ABSTRAK 

 

Penyakit Alzheimer (AD) adalah demensia yang paling biasa dalam kalangan orang tua. 

Berdasarkan hipotesis kolinergik, kehilangan neuron kolinergik dalam otak pesakit AD 

menyebabkan kemerosotan tahap neurotransmiter asetilkolina (ACh) dan akhirnya 

menyebabkan disfungsi teruk dalam sistem neuropenghantaran kolinergik. Oleh itu, 

meningkatkan tahap ACh adalah kaedah terapeutik yang berpotensi untuk memulihkan 

sebahagian besar kemerosotan ingatan dan disfungsi kognitif pada pesakit AD. 

Pencarian perencat kolinesterase yang baru sedang berjalan di seluruh dunia. 

Diinspirasikan oleh kepentingan biologi terbitan tercantum pirimidina, terutamanya 

dalam perencatan kolinesterase, tujuh puluh empat terbitan tercantum pirimidina  yang 

baru, iaitu piridopirimidina 6(a-l), piridopirimidition 7(a-l), N-etilpiridopirimidition  

8(a-j), N-etilmorfolinopiridopirimidition 9(a-j), pirimidintiol 11(a-l) dan 

thiazolopirimidina 13(a-r) telah disintesiskan dan dinilai bagi perencatan kolinesterase 

mereka terhadap asetilkolinesterase (AChE) dan butirilkolinesterase (BChE). 

 

Menariknya, enam puluh lima daripada tujuh puluh empat sebatian yang dihasilkan 

mempunyai aktiviti perencatan BChE yang poten dengan nilai IC50 yang lebih rendah 

daripada galantamina (IC50=19.34 μM) manakala sepuluh sebatian mempunyai aktiviti 
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perencatan AChE yang lebih tinggi atau setanding dengan galantamina (IC50=2.19 μM). 

Sebatian 13d dan 7e adalah perencat AChE dan BChE yang paling poten dengan nilai 

IC50 0.53 dan 1.18 μM, masing-masing. 

 

Secara umumnya, penggantian moieti karbonil (C=O) dalam siri 6 dengan moieti 

tiokarbonil (C=S) dalam siri 7 telah menambahkan aktiviti perencatan bagi kedua-dua 

AChE dan BChE. Oleh itu, kajian seterusnya telah ditumpukan kepada pengubahsuaian 

terbitan siri 7 yang berpotensi. Sebatian dalam siri 8(a-j) dan 9(a-j) yang dihasilkan oleh 

pencantuman moieti etil atau etilmorfolino kepade NH bebas daripade gelang piperidon 

dalam siri 7 telah memaparkan potensi perencatan AChE dan BChE yang lebih baik. 

Tambahan pula, sebatian dalam siri 11, yang dihasilkan oleh penukaran moieti 

tiokarbonil (C=S) dalam siri 7 dengan entiti tiol (C-SH) telah menghasilkan peningkatan 

kecil dalam aktiviti perencatan bagi kedua-dua AChE dan BChE. Walaupun 

pengubahsuaian piridopirimidotion yang tersebut dalam siri 7, kebanyakan terbitan 

dalam siri 8, 9 dan 11 lebih cenderung kepada BChE dan secara amnya lebih lemah 

dalam aktiviti perencatan AChE. Oleh itu, satu siri thiazolopirimidina (siri 13) telah 

disintesis. Sebatian dalam siri 13 bukan sahaja menunjukkan potensi perencatan 

kolinesterase yang lebih tinggi tetapi juga menunjukkan pemilihan kepada AChE yang 

lebih baik berbanding dengan siri yang lain. Tambahan pula, sebatian 13(a-d) juga 

menunjukkan sifat-sifat perencatan dual terhadap kedua-dua enzim AChE dan BChE. 

 

Perencat AChE dan BChE yang paling aktif  yang menunjukkan potensi lebih baik atau 

setanding dengan galantamina telah didokkan ke dalam tapak aktif AChE dan BChE 
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untuk tujuan penyiasatan orientasi dan ciri-ciri interaksi pengikatan mereka. Perencat ini 

lebih cenderung menunjukkan interaksi hidrofobik dan π, π-menyusun dengan sisa-sisa 

asid amino aromatik yang membarisi tapak anionik periferal (contohnya Tyr70, Tyr121, 

Trp279 dan Tyr334 dalam TcAChE) dan tapak pengikatan kolina (contohnya Phe330 

dan Trp84 dalam TcAChE) pada enzim yang mungkin mencegah penyisipan dan 

hidrolisis substrat di tapak mangkin enzim yang menyebabkan aktiviti perencat 

kolinesterase yang kuat. Ramalan ciri-ciri fizikokimia bagi kebanyakan perencat yang 

paling aktif telah mendedahkan bahawa semua sebatian ini adalah molekul organik yang 

kecil dan sangat lipofilik, oleh itu mempunyai keupayaan yang baik untuk melalui 

halangan darah otak dan aktiviti sistem saraf pusat serta penyerapan oral yang baik 

dalam saluran gastrousus. Antaranya, sebatian 7e, 7i dan 8a menunjukkan sifat-sifat 

fizikokimia yang paling memuaskan dan boleh dipertimbangkan sebagai calon drug 

yang berpotensi. 
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SYNTHESIS, CHOLINESTERASE INHIBITORY ACTIVITY AND 

MOLECULAR DOCKING STUDY OF PIPERIDONE-GRAFTED PYRIMIDINE 

AND THIAZOLOPYRIMIDINE DERIVATIVES  

 

ABSTRACT 

 

Alzheimer’s disease (AD) is the most common form of dementia among the elderly 

people. Based on the cholinergic hypothesis, loss of cholinergic neurons in AD patients’ 

brain leads to the decline of acetylcholine (ACh) neurotransmitter level and eventually 

causes severe dysfunctions in the cholinergic neurotransmission. Thus, increasing the 

ACh levels is a promising therapeutic approach to restore the substantial impairment of 

memory and cognitive dysfunctions in AD patients. The search for new cholinesterase 

inhibitors is still ongoing worldwide. Inspired by the biological significance of 

pyrimidine-grafted derivatives, especially in cholinesterase inhibition, seventy-four 

novel pyrimidine embedded derivatives, namely pyridopyrimidines 6(a-l), 

pyridopyrimidothiones 7(a-l), N-ethyl-pyridopyrimidothiones 8(a-j), N-ethylmorpholino 

pyridopyrimidothiones 9(a-j), pyrimidinethiols 11(a-l) and thiazolopyrimidines 13(a-r) 

were synthesized and evaluated for their cholinesterases inhibitory potential against 

acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).  

 

Interestingly, sixty-five out of seventy-four synthesized compounds had potent BChE 

inhibitory activities with IC50 values lower than galanthamine (IC50=19.34 µM) while 

ten compounds had higher or comparable AChE inhibitory activity to that of 
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galanthamine (IC50=2.19 µM). Compounds 13d and 7e were the most potent AChE and 

BChE inhibitors with IC50 values of 0.53 and 1.18 µM, respectively.  

 

Generally, replacement of carbonyl (C=O) moiety in series 6 with thiocarbonyl (C=S) 

moiety in series 7, improved both AChE and BChE inhibitory activities. Therefore, 

further studies were focused on the modifications of potentially active derivatives of 

series 7. The compounds in series 8(a-j) and 9(a-j), afforded by attachments of ethyl or 

ethylmorpholino moieties to the free NH of piperidone ring in series 7 displayed better 

AChE and BChE inhibition potencies.  Furthermore, compounds in series 11, prepared 

by the conversion of the thiocarbonyl (C=S) moiety in series 7 with thiol (C-SH) entity 

also resulted in slight improvements in both AChE and BChE inhibitory activities. 

Despite the aforementioned modifications on pyridopyrimidothiones in series 7, most of 

derivatives in series 8, 9 and 11 had more selectivity toward BChE and generally weaker 

AChE inhibitory activity. Therefore, a series of thiazolopyrimidines (series 13) were 

synthesized. The compounds in series 13 not only showed higher cholinesterases 

inhibition potencies but also displayed better selectivity towards AChE compared to the 

other series. Moreover, compounds 13(a-d) also displayed dual inhibitory properties, 

against both AChE and BChE. 

 

The most active AChE and BChE inhibitors displaying more or comparable potency to 

that of galanthamine were docked into the active sites of AChE and BChE to investigate 

their orientations and binding interactions characteristics. These inhibitors preferentially 

displayed hydrophobic and π,π-stacking interactions with aromatic amino acid residues 
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composing peripheral anionic site (e.g. Tyr70, Tyr121, Trp279 and Tyr334 in TcAChE)  

and choline binding site (e.g. Phe330 and Trp84 in TcAChE) of the enzymes that 

plausibly prohibit insertion and hydrolysis of substrate at catalytic site of the enzymes 

and ensue strong cholinesterase inhibitory activities. Physicochemical properties 

predictions for the most active inhibitors revealed that all these compounds are small 

organic molecules, highly lipophilic, thus having good ability to pass through blood 

brain barrier and central nervous system activity as well as good oral absorption in the 

gastrointestinal tract. Among them, ccompounds 7e, 7i and 8a displayed the most 

favourable physicochemical properties and may be considered as promising drug 

candidates. 
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CHAPTER 1 

INTRODUCTION 

 

Alzheimer’s disease (AD) is a prevalent, irreversible neurodegenerative disorder that 

according to the World Alzheimer’s Report, till now affected more than 35 million 

people worldwide (Prince et al., 2011). The etiology of AD is not completely 

understood. The appearance of extracellular β-amyloid plaques and formation of 

intracellular neurofibrillary tangles are considered as main pathological hallmarks of 

this disease (Pimplikar, 2009). AD is clinically characterized by progressive cognitive 

impairments, loss of memory and learning disabilities along with a diverse range of 

neuropsychiatric symptoms (Ferri et al., 2004).  

 

Based on the so-called cholinergic hypothesis, loss of cholinergic neurons in the 

forebrain, cortex and hippocampus of AD patients’ brain lead to decline in acetylcholine 

(ACh) neurotransmitter level, which eventually causes memory and cognitive 

impairments due to severe dysfunctions in cholinergic neurotransmission system 

(Bartus, 2000). Two cholinesterases, acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) are responsible for degradation and regulation of 

acetylcholine in human body, however they differ in kinetics and substrate selectivity 

(Giacobini, 2004). Acetylcholinesterase (AChE) plays a pivotal role in central and 

peripheral nervous systems to terminate the nerve impulse transmissions from the nerve 

cell to postsynaptic membrane or from the nerve cell to skeletal muscles. On the other 

hand, the role of butyrylcholinesterase (BChE) is not clearly known, although it is 



2 

 

proposed that this non-specific cholinesterase, protects AChE by hydrolyzing harmful 

toxins that may damage or deactivate AChE (Giacobini, 2003). 

 

The active sites of these two cholinesterase are located at the bottom of a 20 Å long, 

narrow gorge comprising five important regions to accommodate and hydrolyze the 

substrate, namely the catalytic triad, oxyanion hole, choline binding site, acyl binding 

pocket and peripheral anionic site. While the overall structure of human BChE is similar 

to that of human AChE, the active site of BChE has many of the channel-lining 

aromatic residues replaced by residues with aliphatic side chains, such as leucine (Leu) 

and valine (Val), making BChE more proper to accommodate bulkier substrates and 

inhibitors (Nicolet et al., 2003). Acetylcholine or inhibitors guidance inside the gorge is 

facilitated by hydrophobic interactions with aromatic amino acid residues lining the 

gorge wall (Koellner et al., 2002).  

 

Hitherto, clinically approved treatments for AD are limited to cholinesterase inhibitors 

(e.g. donepezil, galanthamine, rivastigmine, huperzine A), which act by inhibiting 

cholinesterases and also N-methyl d-aspartate receptor antagonists (e.g. memantine), 

which act at the glutaminergic pathway (Farlow et al., 2009). Organic synthesis is a 

valuable tool to prepare a library of drug candidate molecules and their bioactivity 

guided modifications to amplify the desired activities and to minimize or eliminate the 

unwanted properties for extensive biological, pharmacological and animal studies 

(Lednicer, 2009). Among the biologically active lead compounds, pyrimidine grafted 

entities were found to possess a wide range of biological properties such as 
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antibacterial, anti-inflammatory, antiviral, anti HIV (Lednicer, 2009) as well as 

cholinesterase inhibitory activity (Mohamed et al., 2010). 

 

Problem statement 

Currently, the most widely used approach for symptomatic treatment and/or alleviation 

of severe cognitive impairments in the individuals suffering from AD is limited to 

cholinesterase inhibitor drugs such as donepezil or galanthamine. Despite the 

tremendous efforts in search of novel disease modifying agents working via β-amyloid 

or tau pathways, none is clinically available due to their adverse effects. Moreover, 

limitation of potent cholinesterase inhibitor drugs, keeps the search for new inhibitors 

going worldwide. On this note, in the present study, novel piperidone grafted 

pyrimidine and thiazolopyrimidine derivatives were synthesized and evaluated for their 

cholinesterases inhibitory activities, in search for new cholinesterase inhibitors. 

Furthermore, their molecular interactions and orientation with cholinesterase were 

studied. 
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Objectives 

The aims of the present study are as follow: 

1. To synthesize, isolate, characterize and elucidate the structure of novel piperidone 

grafted pyrimidines, pyrimidinethiols and thiazolopyrimidine derivatives. 

2. To evaluate the cholinesterases inhibitory activities of synthesized compound 

against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). 

3. To investigate the structure-activity relationship (SAR) studies of the synthesized 

compounds. 

4. To investigate the orientations and binding interaction types of the most active 

inhibitors inside the active site gorge of AChE and BChE by molecular docking 

analysis and predict their relevant physicochemical properties. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Alzheimer’s disease 

 

2.1.1. Prevalence, incidence and impact of Alzheimer’s disease 

According to the 2012 World Alzheimer report, there are an estimated of 35.6 million 

people with dementia worldwide (Prince et al., 2011). Alzheimer’s disease (AD) is the 

most common form of dementia, which accounts for 60 to 80 % of dementia cases in 

the elderly (Beckett et al., 2010). This number doubles every 20 years, estimated to 

reach 65.7 million by 2030 and 115.4 million by 2050. Approximately 58% of people 

with dementia live in developing countries, but by 2050 this will rise to 71%. The 

fastest growth in the elderly population is taking place in China, India, and their south 

Asian and western Pacific neighbours (Alzheimer's Disease International, 2013).   

 

As the population ages, the prevalence of AD and related dementias increase. In United 

States, one in eight people age 65 and older (13 %) show symptoms of AD. Almost half 

of people age of 85 and older (45%) are suffering from AD (Hebert et al., 2003). 

Researches also revealed that, women are more affected by AD and other dementias 

than men. Based on estimations, 16% of women at age of 71 and older have AD or 

other dementias compared to 11% of men (Plassman et al., 2007). This larger 

proportion of older women having AD or other dementias is basically due to the fact 

that women live longer than men (Seshadri et al., 1997). 
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Prevalence and incidence studies showed that people with higher years of education 

seem to be at lower risk for AD and other dementias than those with less years of 

education (Gurland et al., 1999). Researchers believed that higher level of education 

provides a “cognitive reserve” that enables individuals to tolerate the changes in the 

brain which could ensue AD or another dementia (Roe et al., 2007).  

 

Despite affecting a comparatively lesser number of people that other chronic diseases 

such as diabetes mellitus and heart related diseases, the impact of AD on social and 

economic burden, due to its huge financial resource consumption (e.g. Medicare and 

caregivers costs) is tremendous. In 2012, in United States more than 15 million family 

members and other caregivers provided an estimated 17.5 billion hours of care to people 

with AD with a value of more than USD 216 billion. Medicare payments for services to 

beneficiaries age 65 years and older with AD are three times more than the payments 

for beneficiaries without these conditions. Total payments in 2013 for health care, long-

term care, and hospice services for people age 65 years and older with dementia are 

expected to be USD 203 billion (Mebane-Sims, 2009).  

 

2.1.2. Clinical symptoms of Alzheimer’s disease 

AD is manifested by a progressive impairment of cognitive functions including memory 

loss that disrupts daily life, challenges in planning and solving the problems, confusion 

with time or places and withdrawal from work or social activities. At advanced stages of 

the disease, AD patients also exhibit behavioural disturbances including agitation, 
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irritability, anxiety, delusions and depression resulting in morbidity and eventual 

mortality (Ferri et al., 2006). 

 

2.1.3. Pathogenesis of Alzheimer’s disease 

The main and dominant pathological changes of the brain believed to contribute in the 

development of AD are the accumulation of β-amyloid (Aβ) plaques outside the 

neurons and neurofibrillary tangles, composed of hyper-phosphorylated tau proteins, 

inside the neurons.  

 

The β-amyloid plaques first appear in the frontal cortex, and then spread over the entire 

cortical region, while hyper-phosphorylated tau and insoluble tangles initially appear in 

the limbic system and then progresses to the cortical region (Pimplikar, 2009). The 

pathogenesis of AD is explained by various hypotheses such as amyloid, tau and 

cholinergic hypotheses.  

 

2.1.3.1. Amyloid hypothesis 

Although the exact cause of AD has been the subject of considerable debate, the 

amyloid hypothesis remains one of the best defined and most studied conceptual 

framework for AD (Pimplikar, 2009). As originally proposed in the early 90s, the 

accumulation of hydrophobic amyloid-β peptides outside the neurons in basal forebrain 

due to amyloid precursor protein (APP) over expressed cleavage results in aggregation 

and formation of insoluble plaques (senile plaques), which trigger a cascade of 
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deleterious changes, resulting in neuronal death and thus causing AD (Hardy et al., 

1992). 

 

It is also proposed that basal forebrain cholinergic neurotransmission functions (e.g. 

ACh regulation and release as well as receptor signalling) are impaired by these 

neurotoxic plaques (Yankner et al., 1990) which is a causal factor for the symptoms of 

AD (Auld et al., 2002). However, further studies showed that plaque load does not 

correlate well with the degree of dementia in humans. Furthermore, many AD patients 

with severely impaired memory showed no plaques at post-mortem analysis (Terry et 

al., 1991). On the other hand, recent advances in neuroimaging techniques have shown 

the presence of huge plaques in cognitively normal people (Nordberg, 2008). 

 

2.1.3.2. Tau hypothesis 

The pioneering findings suggested that tau hyper-phosphorylation could constitute a 

common pathogenic pathway in different neurodegenerative diseases such as AD (Iqbal 

et al., 1986; Wood et al., 1986). Physiologically, high level of abnormal tau proteins 

inside the neurons, form insoluble neurofibrillary tangles that inhibit the transportation 

of nutrients and other essential molecules throughout the cell (Weiner et al., 2012). In 

healthy subjects, tau protein is a component of microtubules representing the internal 

support structures for the transport of nutrients, vesicles, mitochondria and 

chromosomes within the cell. Microtubules also stabilize growing axons, which are 

necessary for the development and growth of neurons (Griffin, 2006).  
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In AD, tau protein is abnormally hyper-phosphorylated and forms insoluble fibrils, 

originating deposits within the cell. This process also contributes to cell death. The 

brain of patients in advanced stages of AD shows dramatic shrinkage from cell loss and 

widespread debris from dead and dying neurons. These pathological hallmarks begin to 

appear decades before symptoms onset and long before the dementia stage is reached 

(Toledo et al., 2012).  

 

2.1.3.3. Cholinergic hypothesis 

Cholinergic hypothesis argues that the activity of choline acetyltransferase, the enzyme 

responsible for the synthesis of ACh remarkably decreases in the cortex and 

hippocampus of AD patient’s brain (Bowen et al., 1976; Davies et al., 1976). 

Diminished ACh synthesis and two other specific function of cholinergic synapses viz. 

depolarization-induced ACh release as well as choline uptake in nerve terminals to 

replenish the acetylcholine synthetic machine (Nilsson et al., 1986) result in loss of 

acetylcholine neurotransmitter levels in these brain regions that eventually leads to 

memory loss and other cognitive symptoms of AD (Bartus, 2000).  

 

2.1.4. Pharmacological management of Alzheimer’s disease 

Presently, there are two classes of drugs being used for the treatment of AD, namely the 

cholinesterase inhibitors and glutamate receptor antagonist. These agents are mainly for 

symptomatic treatment of AD and are widely prescribed to ameliorate cognitive 

impairments in these patients (Weinera et al., 2010). Despite the tremendous efforts in 
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search of novel disease modifying agents working via β-amyloid or tau pathways, none 

are clinically available due to their adverse effects.  

 

2.1.4.1. Acetylcholinesterase inhibitors 

The dominant effect of acetylcholinesterase inhibitors (e.g. galanthamine, donepezil, 

rivastigmine and huperzine A) is to restore the cognitive loss as the prevailing symptom 

in AD. These cognitive improvement makes it possible for the patients to respond more 

appropriately and promptly to the environment and facilitates daily living, thus 

increases their quality of life (Pepeu et al., 2012). Acetylcholinesterase inhibitors 

display consistent but modest clinical efficacy against cognitive decline (Lanctôt et al., 

2003). The inhibition of AChE is currently the most promising and widely used 

approach for treating AD. Researchers also revealed that AChE inhibition could play a 

pivotal role in alleviating amyloid β-peptide (Aβ) plaques deposition inside the brain 

(Inestrosa et al., 1996). 

 

2.1.4.2. N-methyl-d-aspartate (NMDA) receptor antagonists 

To date there is only one N-methyl-d-aspartate (NMDA) receptor antagonist, namely 

memantine, which acts at glutaminergic pathway and being clinically used to treat AD. 

However, its highly undesirable side effects at therapeutic doses, makes cholinesterase 

inhibitors a better choice for symptomatic improvement of AD (Parsons et al., 1999).  
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2.2. Cholinesterase enzymes 

Cholinesterases (ChE’s) are a family of enzymes that catalyze the hydrolysis of ACh 

into choline and acetic acid, an essential process to restore the cholinergic transmission 

inside the brain. There are two types of ChE in a mammalian body differing by their 

functions and substrate specificity: acetylcholinesterase (AChE; EC 3.1.1.7) (Figure 

2.1A) and butyrylcholinesterase (BChE; EC 3.1.1.8) (Figure 2.1B) (Pohanka, 2011).  

 

A                                                                        B 

 

 

 

 

 

 

 

Figure 2.1. Representation of Torpedo californica AChE (A) and human BChE (B) 

(Protein Data Bank, 2013) 

 

2.2.1. Physiological functions 

As shown in Figure 2.2, acetylcholinesterase (AChE) plays a pivotal role in central and 

peripheral nervous systems. The synaptic AChE terminates the nerve impulse 

transmissions from the nerve cell presynaptic membrane to postsynaptic membrane 

through the synaptic gap or from the nerve cell membrane to skeletal muscles through 

fast hydrolysis of acetylcholine (Silman et al., 2005).  
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Butyrylcholinesterase (BChE), which is also known as pseudo-cholinesterase or plasma 

cholinesterase is a non-specific enzyme that hydrolyzes many different choline esters. 

BChE physiological function is still unclear, but due to the wide distribution of ChE 

agents in plants, it has been proposed that BChE might be a naturally developed 

protecting enzyme against these toxicants (Antokhin et al., 2010). Apart from that, there 

has been some evidence that neuronal BChE may play a role in certain non-cholinergic 

pathways such as cell differentiation (Giacobini, 2001). 

 

 
Figure 2.2. Schematic representation of AChE action (Katzung et al., 2004) 

 

Previous studies revealed that as the AD progresses, the activity of AChE decreases 

whereas the activity of BChE remains unaffected or even increases (Giacobini, 2004). 

In the brain of advanced staged AD patients, BChE can compensate for AChE when the 
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activity of AChE is inhibited. Thus, BChE hydrolyzes the already depleted levels of 

ACh in these patients (Xie et al., 2000; Greig et al., 2005). It has been also proposed 

that individuals with low-activity of BChE can sustain cognitive functions better 

comparing to individuals with normal BChE activity (Holmes et al., 2005). Therefore, 

inhibitors with good balance between AChE and BChE inhibitory activity are valuable 

therapeutic targets in AD therapy. 

 

2.2.2. Structural specifications 

The overall architecture of the AChE and BChE enzymes is quite similar. The active 

site is located at the bottom of a 20 Å deep cavity named as “aromatic gorge”. Substrate 

and inhibitor guidance down the aromatic gorge is facilitated by hydrophobic 

interactions with aromatic residues lining the gorge wall such as phenylalanine (Phe), 

tryptophan (Trp) and tyrosine (Tyr) (Koellner et al., 2002). The overall structure of 

human AChE (hAChE) is very similar to that of Torpedo californica (TcAChE), 

whereby only the residues numbering are different. On the other hand, in the active site 

of BChE, aromatic residues such Trp and Phe, are replaced with hydrophobic ones 

including leucine (Leu) and valine (Val), making BChE more appropriate to 

accommodate bulkier substrates and inhibitors (Nicolet et al., 2003).  

 

2.2.3. Residue compositions of the active site gorge  

Active site gorge of AChE and BChE can be classified into five regions, namely the 

catalytic triad, oxyanion hole, acyl pocket, choline binding site, and peripheral anionic 

site. The active site is located at the bottom of the gorge, lying 20 Å below the surface. 
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The catalytic triad is the most important site of the enzymes, where the hydrolysis of 

acetylcholine takes place. Both AChE and BChE possess the catalytic triad (CT), which 

is composed of Ser200, His440 and Glu327 residues in TcAChE and His438, Ser198 

and Glu325 in hBChE (Sussman et al., 1991). The mechanism of substrate 

complexation to CT is plausibly via nucleophilic attack of serine hydroxyl moiety to 

carbonyl group of acetylcholine to give an acyl-enzyme intermediate. In the next step, 

water molecule deacylates serine by hydrolyzing its ester linkage of the substrate and 

converts acetylcholine to acetic acid and choline (Figure 2.3).  

 

 
Figure 2.3. Acetylcholine hydrolysis in AChE active site (ATSDR, 2013) 

 

Four other binding sub-sites play important role for guiding, orientation and insertion of 

the choline substrate in the catalytic cavity (Figure 2.4). Using TcAChE residue 

numbering, the functions of these sub-sites are described as follows:  
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(i) A three-pronged “oxyanion hole” formed by the amides backbone of Gly118, 

Gly119, and Ala201, stabilizes the negative charge developed at the C=O moiety of the 

substrate in the acylation/de-acylation process (Harel et al., 1996). 

 

(ii) A concave hydrophobic pocket (acyl-binding pocket) consisting of residues 

Phe288 and Phe290 is located in the so-called acyl loop, in which the acetyl or 

propanoyl moiety of the substrate is bound (Pezzementi et al., 2011).  

 

(iii) While the catalytic triad hydrolyzes the ester bond, the anionic site interacts with 

the acetylcholine quaternary ammonium atom and is responsible for its correct 

orientation. The aromatic rings of Trp84 and Phe330 at “choline binding site or α-

anionic site” of the enzyme stabilize the quaternary ammonium function of the choline 

moiety through cation-π interactions (Harel et al., 1993).  

 

 (iv) A peripheral anionic site ( anionic site), composed of aromatic Tyr 70, Asp72, 

Tyr 121, Trp279 and Tyr 334 residues guides the substrate to catalytic triad (Çokuğraş, 

2003). The peripheral anionic site is located 15Å above the active site, close to the 

mouth of the gorge.  
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Figure 2.4. Active site residue compositions in Torpedo californica AChE  (Dvir et al., 
2010) 
 

The enzyme active site gorge residue compositions of TcAChE, hAChE and hBChE are 

summarized in Table 2.1.  The overall structure of human AChE (hAChE) and Torpedo 

californica (TcAChE) are similar, they only differ in the residues numbering. On the 

other hand, in the active site of BChE, aromatic residues such Trp and Phe, are replaced 

with hydrophobic ones (Cheung et al., 2012). 
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2.2.4. Cholinesterase inhibitors 

Cognitive impairment is the most prominent and clinically relevant feature of AD. 

Cholinesterase inhibitors act by inhibiting cholinesterase enzymes from hydrolyzing 

acetylcholine, thus restoring the cognitive abilities in AD patients (Posner et al., 2013). 

To date, there are few prominent cholinesterase inhibitors available, namely tacrine, 

physostigmine, rivastigmine, donepezil, galanthamine and huperzine A, which 

structures are depicted in Figure 2.5. 

 

Tacrine or tetrahydroaminoacridine was the first FDA approved drug for the treatment 

of mild or moderate AD. Tacrine is a centrally acting, reversible AChE inhibitor, which 

exhibit a variety of pharmacological properties including interacting with nicotinic 

Table 2.1: Residue compositions of the enzyme active sites in TcAChE, hAChE and hBChE 

Site name 
Residue composition  

in TcAChE 
(Cheung et al., 2012) 

Residue composition  in 
hAChE 

(Cheung et al., 2012) 

Residue composition  in 
human BChE 

(Nicolet et al., 2003) 

Catalytic triad 
Ser200, His440 

&Glu327 
Ser203, His447 &   

Glu201 
His438, Ser198 & 

Glu325 

Choline binding 
site (α-anionic site) 

Trp84 & Phe330 Trp86 & Phe338 Trp82 & Phe329 

Acyl-binding 
pocket 

Phe288 & Phe290 Phe295 & Phe297 Leu286 & Val288 

Oxyanion hole 
Gly118, Gly119 & 

Ala201 
Gly121, Gly122 & 

Ala204 
Gly116, Gly117& Ala199 

Peripheral anionic 
site (β-anionic site) 

Tyr70, Asp72, Tyr121, 
Trp279 & Tyr334 

Tyr72, Asp74, Tyr124, 
Trp286 & Tyr341 

Trp231 & Phe398 
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receptors (Svensson, 2000). Tacrine is not prescribed clinically after multiple reports on 

its severe hepatotoxicity. 

 

Physostigmine is a competitive inhibitor of the AChE with the ability to diffuse 

through the blood brain barrier. It has been suggested as an alternative for protection 

against organophosphate brain toxicity as well as symptomatic treatment of AD. The 

therapeutic use of physostigmine is limited due to its biological constraints such as short 

elimination half-life, narrow effective dose range, low in vivo stability and low oral 

bioavailability (Walter et al., 1995). 

 

Rivastigmine (Exelon) is a novel carbamate type, reversible dual cholinesterase 

inhibitor used for symptomatic treatment of mild to moderate dementia in AD and 

idiopathic Parkinson’s disease. This inhibitor displays specific activity for central AChE 

over peripheral AChE (Kumar et al., 2009; Thomas et al., 2012). Adverse effects of 

rivastigmine are generally those associated with a second generation AChE inhibitor, in 

particular gastrointestinal effects, such as nausea and vomiting (Blesa González et al., 

2011). A new rivastigmine formulation has recently been developed in the form of 

transdermal patches, which provide a stable release of drug over time (Wentrup et al., 

2009). It is a safe, well tolerated system, which at the same time allows good adherence 

and effective drug penetration via the skin, with good local tolerability, ensuring ease of 

use together with optimized pharmacokinetics (Farlow et al., 2009). 
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Galanthamine, a tertiary alkaloid extracted from Galanthus and Narcissus species 

(Amaryllidaceae), is a competitive and reversible AChE inhibitor. In addition to 

inhibition of AChE, galanthamine interacts allosterically with nicotinic ACh receptors 

to potentiate the action of agonists of these receptors and amplifies the ACh response by 

increasing ACh release (Samochocki et al., 2003; Nakao et al., 2008). Galanthamine 

has more than a 10-fold selectivity for AChE in contrast to BChE. The inhibition of 

AChE ceases 24 hours after the discontinuing galanthamine, therefore anesthetic agents 

and muscle relaxants, can be safely administered within a short period of stopping 

galanthamine (Coyle et al., 2001).  

 

Donepezil is a reversible and non-competitive cholinesterase inhibitor for the treatment 

of AD. It is a selective inhibitor toward AChE rather than BChE. This drug was 

demonstrated to be potent and selective toward brain AChE with lower adverse effects 

in comparison to tacrine (Yu et al., 2005). Several studies have demonstrated its 

efficacy in slowing the deterioration of cognitive function and its safety in long-term 

treatment. This drug has been shown to be effective for mild-to-moderate AD, and the 

start of treatment at earlier stage has been recommended (Zhang et al., 2007). 

 

Huperzine A, a novel Lycopodium alkaloid discovered from the Chinese folk medicine 

Huperzia serrata, has been found to inhibit AChE selectively and possess well tolerated 

properties that may be especially suitable for AD treatment (Zhao et al., 2002). 

Huperzine A is approved by the United States Food and Drug Administration as a 

dietary supplement for memory improvement and has been employed for centuries to 
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treat swelling, fever and blood disorders in China. Studies had showed its effectiveness 

to improve cognitive abilities in AD patients (Wang et al., 2009). 

 

 

Figure 2.5. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease 

 

2.3. Molecular docking 

Molecular docking is a process that predicts the conformation of a ligand within the 

active site of a receptor or enzyme and finds the lowest energy binding modes between 

them. It has become a useful tool in drug discovery efforts and is a primary component 

in many drug discovery programs (Kitchen et al., 2004). Pioneering research works in 

the area of molecular docking date back into the early 1980s. However, it took at least a 

decade for this technology to become popular among computational chemists and 

pharmaceutical researchers (Kuntz et al., 1982). Molecular docking procedure typically 

consists of two interrelated task: (i) to sample possible lowest energy conformational 
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states of the protein-ligand complex and (ii) to calculate of the free energy of these 

complex to produce a score, which can be further correlated to biological activities or 

other functions, the so-called scoring (Novikov et al., 2009). Docking simulation or in 

silico methodology is a valuable tool in investigation of the binding orientation of 

probable active ligands inside the active site of a specified protein from a particular 

library of compounds (McInnes, 2007). 

 

2.3.1. The role of molecular docking in cholinesterase inhibitors design 

The active site of AChE and BChE enzymes are composed of 5 major sub-sites, namely, 

peripheral anionic site (PAS), acyl binding pocket, choline binding site, oxyanion hole 

and catalytic triad. Compounds inhibiting ChE can be divided into three particular 

groups, which are 

(i)  Compounds binding at catalytic triad of the enzyme (e.g. nerve agents). 

(ii) Compounds interacting with the choline binding site of the enzyme (e.g. 

galanthamine).  

(iii) compounds binding at the peripheral anionic site of the enzyme (e.g. huperzine A). 

 

The catalytic triad binding inhibitors are the compounds with the chemical structure of 

organophosphorus or carbamate derivatives mainly including toxins, chemical warfare 

agents or pesticides. These compounds interact with serine residue in the catalytic triad 

of the enzyme, providing stable, irreversible esters (Bajgar, 2004). On the other hand, 

inhibitors binding to the choline binding site of the enzyme, typically contain condensed 

aromatic cores (e.g. galanthamine). In comparison to the catalytic triad inhibitors, the 
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compounds interact with the choline binding site are reversible inhibitors (Pohanka, 

2011). 

 

The peripheral anionic site is the main target of newly synthesized drugs for AD 

treatment. Studies showed that the deposition of amyloid plaque in AD might be 

accelerated or even triggered by interaction of β-amyloid with the peripheral anionic 

site of the enzyme. Thus, inhibition of the peripheral anionic site not only improve the 

symptomatic effects of AD due to the enhancement of acetylcholine availability but also 

slows down the deposition of β-amyloid plaques, as one of the major pathological 

hallmarks of AD (Berson et al., 2008; Arce et al., 2009). Moreover, drugs binding to the 

peripheral anionic site as well as choline binding site (e.g. donepezil, galanthamine) 

inhibit AChE more effectively.  

 

Thus, the therapeutic features of newly synthesized inhibitors can be demonstrated by in 

silico interaction analysis with the amino acid residues composing active site of 

cholinesterase enzymes prior to employing expensive and time-consuming in vivo 

techniques. 

 

2.4. Medicinal chemistry 

Medicinal chemistry is the science that deals with discovery and design of new 

therapeutic chemicals and their development into useful medicines (Lednicer, 2009). It 

may involve isolation of compounds from nature or the synthesis of new molecules, 

investigation of the relationships between the structure of molecules and their activity, 
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and elucidation of the interactions between this molecules and the receptors of various 

kind (Bauer, 1969).  

 

Medicinal chemistry has been practiced for several thousand years. The earliest written 

records of Chinese, Indians, South Americans and Mediterranean civilizations described 

the therapeutic effect of different plants (Sneader et al., 1985). However, the modern 

therapeutic is considered to have begun with an extract of foxglove plant for the 

treatment of dropsy (congestive heart failure) in 1785 by Withering (Withering, 1785). 

As a result of advances made in synthesis and separation methods as well as 

biochemical techniques since the late 1940s, a rational approach to design, synthesis and 

chemical modification to improve or change their medicinal properties was established.  

 

2.4.1. The role of organic synthesis in drug discovery 

Generally, drugs are not discovered. What is more likely to be discovered is known as a 

lead compound. The lead is a prototype compound that has a number of attractive 

pharmacological activities and pharmaceutical applications, but may have other 

undesirable properties including high toxicity, absorption difficulties, insolubility or 

metabolism difficulties. The structure of the lead compound is modified by organic 

synthesis to amplify the desired activities and to minimize or eliminate the unwanted 

properties to prepare a drug candidate, which is a compound appropriate for extensive 

biological, pharmacological and animal studies (Lednicer, 2009).  
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