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PENJELMAAN FASA DAN TINDAK BALAS DAYA-DEFLEKSI DAWAI 

ARKUS NiTi BAGI PEMASANGAN PENDAKAP DALAM RAWATAN 

ORTODONTIK 

ABSTRAK 

Dawai arkus NiTi digunakan secara meluas di peringkat awal rawatan ortodontik 

kerana ciri-ciri super-elastik dan biokompatibiliti. Walaupun dawai arkus super-elastik 

NiTi sering digunakan di setiap peringkat rawatan ortodontik, evolusi penjelmaan fasa 

dan tingkah laku daya-defleksi dawai ini ketika dilenturkan dalam sistem pendakap 

masih kurang diketahui. Oleh kerana perubahan lenturan sering ditemui semasa 

rawatan pengarasan gigi, tahap ubah bentuk dawai dan geseran akan mengubah 

tingkah laku daya-defleksi dan seterusnya menjauhi kriteria daya optimum. 

Kajian ini menyiasat evolusi penjelmaan fasa dan daya yang dikeluarkan oleh 

dawai arkus NiTi semasa rawatan pengarasan. Model unsur terhingga tiga dimensi 

bagi lenturan dawai arkus NiTi dalam konfigurasi tiga pendakap gigi telah 

dibangunkan dengan menggunakan subrutin bahan dan interaksi sentuh. Pekali 

geseran yang diperlukan untuk menentukan hubungan antara dawai dan pendakap 

keluli tahan karat diperoleh daripada ujian geluncur. Kecekapan model ini diperiksa 

dengan membandingkan ramalan lengkung daya-defleksi dengan keputusan 

eksperimen. Penyelidikan ini meningkatkan pengetahuan terkini tentang pengaruh 

geseran kepada tingkah laku daya-defleksi dawai arkus NiTi melalui kajian kuantitatif 

pada dua keadaan; melentur dawai pada pelbagai konfigurasi pengarasan (jarak antara 

pendakap, lenturan dawai dan suhu mulut) dan melentur dengan padanan pendakap 

yang diperbuat dari bahan yang berbeza (nilai pekali geseran diubah antara 0.1 hingga 

0.5). 
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Semasa melentur, hanya sebahagian kecil panjang dawai mengalami 

transformasi daripada austenit ke martensit manakala selebihnya tidak mengalami 

sebarang ubahbentuk. Dawai yang diaktifkan pada 2.0 mm menghasilkan tegasan 

maksimum pada plateau tegasan, menunjukkan bahawa ubah bentuk dawai NiTi 

disebabkan oleh transformasi martensit yang diaruh tegasan. Dawai yang dilenturkan 

sehingga 3.0 mm dan 4.0 mm menghasilkan tegasan maksimum pada garis elastik 

martensit. Penambahan magnitud geseran di pinggir pendakap gigi meningkatkan daya 

maksimum dan cerun lengkung penyahaktifan dengan ketara, disamping 

mengurangkan nilai daya minimum. Bagi kes lenturan 4.0-mm, dawai berdiameter 0.4-

mm menghasilkan daya di antara 0.13 N sehingga 0.73 N, yang mana dalam julat daya 

optimum untuk mencapai gerakan gigi yang effektif. Nilai geseran tertinggi 

bermagnitud 8.33 N dan 3.72 N telah dihasilkan ketika melentur dawai 0.40 × 0.56-

mm dan 0.4-mm sebanyak 4.0 mm pada suhu 46°C dengan menggunakan jarak antara 

pendakap 7.0 mm. Model regresi yang dibangunkan boleh digunakan untuk 

menjangka daya-defleksi dawai NiTi, khususnya bagi sistem pendakap yang dikaji. 

Pemadanan dawai bulat dengan pendakap seramik (≥ 0.4)  menghasilkan daya 

bermagnitud sifar di awal urutan penyahaktifan, seterusnya menghalang gerakan gigi 

yang diperlukan. 
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PHASE TRANSFORMATION AND FORCE-DEFLECTION RESPONSES OF 

NiTi ARCHWIRE FOR BRACKET ASSEMBLY IN ORTHODONTIC 

TREATMENT 

ABSTRACT 

NiTi archwires are used widely during the early stage of orthodontic treatment 

due to its superelastic and biocompatibility properties. Even though the superelastic 

NiTi archwires are always preferred in most orthodontic treatments, the evolution of 

phase transformation and force-deflection behaviour of this wire subjected to bend in 

the bracket system is still uncertain. Since changes in bending setting are frequently 

encountered during levelling, the extent of wire deformation and binding friction at 

the wire-bracket interface would alter the force-deflection behaviour and subsequently 

defies the optimal force criteria.  

This study investigated the evolution of phase transformation and forces released 

by NiTi archwire during orthodontic levelling treatment. For this purpose, a three-

dimensional finite-element model of superelastic NiTi wire bends in three-bracket 

configurations was developed by employing a user material subroutine of 

superelasticity and contact interaction. The friction coefficient required to define the 

contact between the wire and stainless steel bracket was obtained from a sliding test. 

The competency of the bending model was examined by comparing the predicted 

force-deflection curve with the experimental results. The work further advanced the 

current knowledge on the influence of binding towards the force-deflection behaviour 

of NiTi wire by performing a quantitative study at two levelling conditions; bending 

at different levelling settings (inter-bracket distance, wire deflection and oral 
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temperature) and bending with the presence of different bracket materials (friction 

coefficient at contact locations were varied from 0.1 to 0.5). 

During bending, only a small section of the wire length underwent austenite to 

martensite transformation, leaving the rest of the length substantially undeformed. The 

wire activated to 2.0 mm produced the maximum stress on the stress plateau, implying 

that the NiTi wire was deformed by stress-induced martensitic transformation. The 

wire activated to 3.0 mm and 4.0 mm essentially produced the maximum stress on the 

elastic line of martensite. The generation of binding at the bracket edges significantly 

elevated the maximum force and the slope of the deactivation curve, whilst diminished 

the minimum force values. The greatest binding of 8.33 N and 3.72 N was generated 

by the 0.40 × 0.56-mm and 0.4-mm archwires at the maximum deflection (4.0 mm) 

and temperature readings (46°C), and at the minimum inter-bracket distance (7.0 mm). 

For the case of large tooth displacement (4.0 mm), the 0.4-mm archwire delivered 

force in between 0.13 N to 0.73 N, which are within the optimal force range. The 

developed regression model can be used to predict the force-deflection of NiTi wire 

for the studied bracket system. Additionally, the archwires coupled with the ceramic 

brackets (≥ 0.4) produced zero force magnitude at the onset of the deactivation cycle, 

thus inhibited further tooth movement.
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CHAPTER 1                               CHAPTER ONE 

INTRODUCTION 

1.1 Research background 

1.1.1 Fixed appliance therapy 

Patients mainly seek orthodontic treatment to improve dental appearance 

(Abdullah, 2001). Most orthodontic treatments are carried out using fixed appliance 

therapy, as it promotes accurate tooth positioning (Angel, 1928). Figure 1.1 shows the 

main components of the fixed appliance used in a famous malocclusion case of a 

highly displaced canine tooth. The installation of the appliance is started by bonding 

the dental brackets on the tooth, before an archwire is carefully placed inside the 

bracket slot by following the irregularity of the bracket position, hence inducing 

localized bending across the wire length. Then, the archwire is secured inside the slot 

with the help of small rubber rings, fine wires, or metal door, depending on the ligation 

type of the chosen bracket. As the archwire tries to regain its' straight shape throughout 

the treatment duration, the malposed tooth is slowly pulled downwards, in the bending 

recovery direction. 

 

Figure 1.1 Ligation of a markedly irregular canine tooth (Graber et al., 2016) 

 



   

 2   

 

On average, fixed braces usually last from 18 to 36 months (Hwang et al., 2001), 

and longer treatment will be required for teeth further out of position. A healthier tooth 

movement rate was reported to be around 1.0 mm per month, which can be achieved 

by applying a force of strength between 0.10 N and 1.20 N (Mitchell, 2013; Proffit et 

al., 2014). Forces within this range are efficient, in terms of providing maximum 

patient comfort (Krishnan and Davidovitch, 2006) and negligible permanent damage 

to the supporting periodontal tissues (Noda et al., 2010; Gonzales et al., 2008). 

Commercial orthodontic brackets in the market can be categorized into 

conventional and self-ligating brackets. A conventional bracket uses elastomer ties or 

stainless steel ties to secure the archwire inside the bracket slot, whilst a self-ligating 

bracket uses its' built-in clip to keep the archwire within the slot. Additionally, self-

ligating brackets are available in two types, active and passive. Figure 1.2 shows the 

mechanisms and the slot dimensions for both bracket types. The clip on the active 

bracket is designed to continuously press the archwire towards the slot base, hence 

promoting full control for finishing and detailing. In contrast, no pressing mechanism 

is designed for the passive bracket, and the deeper slot depth allow the archwire to 

slide freely along the slot.  

 

Figure 1.2 Comparison of ligating mechanisms and slot dimensions between an 

active and a passive self-ligating bracket (S. Samawi, 2014) 
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