UNIVERSITI SAINS MALAYSIA

Second Semester Examination
Academic Session 2003/2004
February/March 2004

IEK 103/3 - UNIT OPERATIONS I

Duration : 3 hours

Please check that the examination paper consists of EIGHT (8) printed pages before you commence this examination.

Answer FIVE questions only. Students are allowed to answer all questions in English OR Bahasa Malaysia OR combinations of both.

1. (a) Water flows through a pipe of 0.15 m diameter fitted with an orifice meter of 0.10 m diameter. A vertical manometer is fitted across the orifice meter. The manometer fluid is mercury of specific gravity 13.6. Water fills the arms of the manometer. The reading of the manometer is 0.254 cm . If the coefficient of the orifice can be taken as 0.60 , what is the volumetric flow rate of water at $15.56^{\circ} \mathrm{C}$? The density of water at $15.56^{\circ} \mathrm{C}$ is $999.0 \mathrm{~kg} / \mathrm{m}^{3}$.
(70 marks)
(b) A manometer is fitted on to a pipeline as shown below. An oil of specific gravity 0.9 flows in the pipe. The manometer fluid is mercury (S.G. $=13.6$), and the manometer reading is 4.0 in . What is the value of $p_{1}-p_{2}$?
(30 marks)

2. A horizontal steel pipe has a diameter of 0.0526 m and a length of 30.48 m . The pipe roughness is $\mathrm{k}=0.000045 \mathrm{~m}$. A fluid of density $1200 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity 0.01 $\mathrm{N} . \mathrm{s} / \mathrm{m}^{2}$ flows in the pipe at a rate of $9.085 \mathrm{~m}^{3} / \mathrm{h}$. Calculate
(i) pressure drop, in $\mathrm{N} / \mathrm{m}^{2}$;
(ii) power required for the flow.
(100 marks)
3. (a) A tank is filled with a fluid of viscosity $0.08 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ and density $975 \mathrm{~kg} / \mathrm{m}^{3}$. The tank is without baffle. A 6 flat-blade turbine of diameter 0.15 m rotating at 18 rps is fitted in the tank 0.15 m from the bottom. What power is required for the operation ?
(50 marks)
(b) Two open water reservoirs as shown are connected through a smooth pipe of 10 in diameter and 4000 ft long. The water level in the upper tank is 120 ft above that of the lower tank. The volumetric flow rate is $4.5 \mathrm{ft}^{3} / \mathrm{s}$ at $70^{\circ} \mathrm{F}$. Calculate
(i) the friction loss for the system;
(ii) What is the value of the pressure p_{3} ?

4. A liquid of density $63.5 \mathrm{lb} / \mathrm{ft}^{3}$ and viscosity 1.35 cP is pumped through a steel pipe of 2 in diameter to the top of a storage tank open to the atmosphere. The volumetric flow rate of the liquid is $120 \mathrm{gal} / \mathrm{min}$. The idscharge of the pipe is 60 ft above the pump and the equivalent length of the steel pipe from the pump to the tank is 175 ft . If the pressure at the suction of the pump is $20 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$, and the pump efficiency is 65%, calculate
(i) the brake horsepower of the pump;
(ii) pressure at the discharge of the pump;
(iii) If the electrical energy cost is 7 cent for every kWh (kilowatt-hour), what is the energy cost for pumping the liquid per day?
(100 marks)
5. Consider the heat transfer by natural convection between a hot (or cold) vertical plate with a height of L at uniform temperature T_{w} and a surrounding fluid that is cooler of (hotter) with a uniform temperature T_{a}. The local heat transfer coefficient h_{x} at a height x is proportional to the local temperature difference between the plate and the fluid: $\quad h_{x}=(d q / d A) /\left(T_{w}-T_{a}\right) \quad$ It is found that the following physical factors are involved in the process:

$$
f\left(h_{x}, x, k, C_{p}, p, \mu, \beta, \Delta T, g\right)=0
$$

With the use of Buckingham Theorem, obtain the relation among the above variables.
The dimensional matrix is as follows:

	h_{x}	x	k	C_{p}	ρ	μ	β	$\Delta \mathrm{T}$	g
$\overline{\mathrm{M}}$	1	0	1	0	1	1	0	0	0
$\overline{\mathrm{~L}}$	0	1	1	2	-3	-1	0	0	1
$\overline{\mathrm{t}}$	-3	0	-3	-2	0	-1	0	0	-2
$\overline{\mathrm{~T}}$	-1	0	-1	-1	0	0	-1	1	0

6. (a) A horizontal venturi meter of throat diameter 2.50 cm is fitted to a pipeline of diameter 7.82 cm . Water at $26.67^{\circ} \mathrm{C}$ flows through the pipeline. Mercury (S.G. $=$ 13.6) manometer is used. If the manometer reading is 39.0 cm , what is the mass flow rate, in kg / s ? If 10% of the differential pressure is lost, what is the power consumption of the meter?
(60 marks)
(b) Oil ($\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$ and $v=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$) flows in a smooth $5 \times 5 \mathrm{~cm}$ square duct at an average velocity of $4.0 \mathrm{~m} / \mathrm{s}$. What is the pressure drop in 25 m long of the duct?
(40 marks)

CONVERSION
FACTORS AND CONSTANTS OF NATURE

To converi from	To	Muliply byt
acre	$\mathrm{n}^{\mathbf{2}}$	43,560.
	m^{2}	4046.85
ata	$\mathrm{N} / \mathrm{m}^{2}$	$1.01325 * \times 10^{5}$
	$\mathrm{ib} / \mathrm{fin} \mathrm{M}^{2}$	14.696
Alogacio number barrel (xecrpienm)	particies/g mol	6.022169×10^{3}
	\mathfrak{a}^{3}	5.6146
	gal'(U.S.)	42*
	m^{3}	0.15899
bas:	$\mathrm{N} / \mathrm{m}^{2}$	$1 . \times 10^{3}$
	$\mathrm{ib} / \mathrm{in} .{ }^{2}$	14.504
Bo:tzaxama constant	J / K	1.380622×10^{-23}
B u	calm	251.996
	$\mathrm{fl}_{\mathrm{H}} \mathrm{H} \mathrm{b}_{5}$	778.17
	J	1055.06
	kWh	2.9307×10^{-4}
Btufb	calm $/ \mathrm{s}$	0.55556
Bupfo-*	$\mathrm{calm}_{\mathrm{m} / \mathrm{g}}{ }^{\circ} \mathrm{C}$	1.
BLu/fett	$\mathrm{W} / \mathrm{m}^{2}$	3.1546
	W/me ${ }^{2}{ }^{*} \mathrm{C}$	5.6783
	$\mathrm{xcal} / \mathrm{m}^{2}-\mathrm{h}-\mathrm{K}$	4.882
$B \mathrm{~L}-\mathrm{fl}_{\mathrm{f}} \mathrm{f}^{2}-\mathrm{h}-{ }^{\circ} \mathrm{F}$	$\mathrm{W} \cdot \mathrm{m} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$	1.73073
	$\mathrm{kcal} / \mathrm{m}-\mathrm{h}-\mathrm{K}$	1.488
$\mathrm{cas}_{1 \%}$	Btu	3.9683×10^{-3}
	$\mathrm{ft}_{\mathrm{l}} \mathrm{lb}$	3.0873
	J	4.1863*
cal	J	4.184*
cm	in.	0.39370
	fi	0.0328084
cm^{3}	0^{3}	3.531467×10^{-5}
	gal (U.S)	264172×10^{-4}
CP (certipoise)	kg / m-s	$1 \times \times 10^{-3}$
	1b/fth	24191
	$\mathrm{lb} / \mathrm{l}-\mathrm{s}$	6.7197×10^{-4}
CSt (centistoke)	$\mathrm{m}^{2 / \mathrm{s}}$	1. $\times 10^{-6}$
faraday	$\mathrm{C} / \mathrm{gmol}$	9.648670×10^{4}
0.	m	0.3048*
flib_{3}	Btu	1.2851×10^{-3}
	$\mathrm{Cal}_{\text {IT }}$	0.32383
	J	1.35582
$\mathrm{fl}-\mathrm{lb}_{7} / \mathrm{s}$	$\mathrm{Bt} 4 / \mathrm{h}$	4.6262
	hp	1.81818×10^{-3}
$\mathrm{f}^{2} \mathrm{~h}$	$\mathrm{m}^{2} / \mathrm{s}$	2581×10^{-5}
	$\mathrm{cm}^{2} / \mathrm{s}$	0.2581
fi^{3}	cm^{3}	2.8316839×10^{4}
	gal (U.S.)	7.48052
	L	28.31684
$f(t)^{3}-2 t: 9$	Bru	2.71948
	caltr	685.29
	J	2.8692×10^{3}
$11^{3} / \mathrm{s}$	gal (U.S)/min	448.83
gal (U.S.)	n^{3}	0.13368
	in ${ }^{3}$	231.
gravitational constant gravity acceicration, standard h	$\mathrm{N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	6.673×10^{-11}
	$\mathrm{m} / \mathrm{s}^{2}$	9.80665*
	\min	60.
	5	3600*
hp	Bru/h	2544.43
	kw	0.74624
hp/1000 gal	$\mathrm{kW} / \mathrm{m}^{3}$	0.197
in.	cm	2.54*
in. ${ }^{3}$	cm^{3}	16.3871
J	erg	$1 \times \times 10^{7}$
	$\mathrm{ft-lb}_{f}$	0.73756
kg	lb	2.20462
kWh	Btu	3412.1
L	m^{3}	$1 \times \times 10^{-3}$
1 b	kg	0.45359237 *
$\mathrm{lb} / \mathrm{t}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	16.018
	$\mathrm{g} / \mathrm{cm}^{3}$	0.016018
16 fin : ${ }^{\text {a }}$	$\mathrm{N} / \mathrm{m}^{2}$	6.89473×10^{3}
$16 \mathrm{~mol} / \mathrm{ta}^{2}-\mathrm{h}$	$\mathrm{kg} \mathrm{mol} / \mathrm{m}^{2}-\mathrm{s}$	1.3562×10^{-3}
	$\mathrm{g} \mathrm{mol}^{\text {/ }} \mathrm{cm}^{2}-\mathrm{s}$	1.3562×10^{-4}
light, speed o! m	m / s	2997925×10^{8}
	$f 1$	3.280840
	in.	39.3701
m^{3}	\mathfrak{n}^{3}	35.3147
	gal (U.S.)	264.17
N	dyn	$1 * \times 10^{3}$
	$1 \mathrm{lb}^{\text {, }}$	0.22481
$\mathrm{N} / \mathrm{m}^{2}$	$16, / \mathrm{in} .{ }^{2}$	1.4498×10^{-4}
Planck wonstunt	J-s	6.626196×10^{-34}.
proof (C.S.)	percent alcohol by volume	0.5
ton (long)	kg 10	$\begin{aligned} & 1016 . \\ & 2240 . \end{aligned}$
Ion (short) 1on (meriric)	ib 37	2000.
	kg	1000
	16	2204.6
yd	f	3.-'
	m	0.9144*

Temperature T, ${ }^{\circ} \mathrm{F}$	Viscosity $\dagger \mu^{\prime}$, cP	Thermal conductivity $\ddagger k$, Btu/ft-h- ${ }^{\circ}$ F	$\begin{aligned} & \text { Density§ } \rho \text {, } \\ & \mathrm{lb} / \mathrm{ft}^{3} \end{aligned}$	$\psi_{f}=\left(\frac{k^{3} \rho^{2} g}{\mu^{2}}\right)^{1 / 3}$
32	1.794	0.320	62.42	1,410
40	1.546	0.326	62.43	1,590
50	1.310	0.333	62.42	1,810
60	1.129	0.340	62.37	2,050
70	0.982	0.346	62.30	2,290
80	0.862	0.352	62.22	2,530
90	0.764	0.358	62.11	2,780
100	0.682	0.362	62.00	3,020
120	0.559	0.371	61.71	3,530
140	0.470	0.378	61.38	4,030
160	0.401	0.384	61.00	4,530
180	0.347	0.388	60.58	5,020
200	0.305	0.392	60.13	5,500
220	0.270	0.394	59.63	5,960
240	0.242	0.396	59.10	6,420
260	0.218	0.396	58.53	6,830
280	0.199	0.396	57.94	7,210
300	0.185	0.396	57.31	7,510

\dagger From International Critical Tables, vol. 5, McGraw-Hill Book Company, New York, 1929, p. 10.
\ddagger From E. Schmidt and W. Sellschopp, Forsch. Geb. Ingenieurw., 3:277 (1932).
§ Calculated from I. H. Keenan and F. G. Keyes, Thermodynamic Properties of Steam, John Wiley \& Sons. Inc., New York. 1937.
... 8/-

$$
\mathrm{n}_{\mathrm{F}} ;\left(\mathrm{a}-\log N_{R e}\right) / b
$$

Jadual Pemalar a dan b.

Fig.	Line	a	b
$0-14$	B	1.0	40.0
$0-15$	H	1.7	18.0
$9-15$	0	0	16.0
$0-15$	D	2.3	16.0

Rajah Fungsi kuasa p lwn Ne bagi propeler 3 bilah

