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ANALISIS EVOLUSI BERASASKAN BIOINFORMATIK KE ATAS 

STRAIN VIRUS INFLUENZA H1N1 DI ASIA TENGGARA 

 

ABSTRAK 

 

Influenza virus A (H1N1) dikenali sebagai agen penyebab dalam jangkitan 

influenza yang serius di serata dunia. Pada bulan April 2009, wabak penyakit 

influenza muncul buat kali pertama dalam abad 21. Sehingga kini, vaksin dan ubat 

antiviral adalah antara rawatan yang berkesan untuk memerangi jangkitan influenza. 

Oleh itu, kajian evolusi virus A (H1N1) di rantau Asia Tenggara (AT) adalah penting 

untuk lebih memahami tentang kepelbagaian, kemunculan rintangan, dan 

keberkesanan vaksin. Untuk mendapatkan gambaran dalam hal ini, analisis 

filogenetik telah dijalankan ke atas rantaian penuh asid amino daripada 

hemagglutinin (HA), neuraminidase (NA) dan protein matriks 2 (M2) daripada 

influenza virus A (H1N1) dari AT. Berdasarkan kepada analisis filogenetik, edaran 

bersama pada kedua-dua strain bermusim dan strain pandemik telah diperhatikan dan 

dikenalpasti melalui pengasingan rantaian strain kepada dua klad yang berbeza. Hasil 

kajian tersebut telah mendedahkan bahawa klad “A/California/07/2009-like” adalah 

penyebab wabak pandemik yang dominan di rantau AT pada 2009. Di samping itu, 

analisis filogenetik bagi HA, NA dan M2 dengan strain vaksin untuk musim 2009-

2011 adalah berkait rapat dengan purata masing-masing sebanyak 96.5%, 98.1% dan 

96.9% kesamaan jujukan. Perbezaan yang paling ketara merupakan tiga penggantian 

asid amino (P100S, S220T dan I338V) di hampir semua HA manakala dua 

penggantian asid amino (V106I dan N248D) di semua NA daripada virus pandemik 

influenza A (H1N1) di rantau AT. Antara 24 variasi dalam HA, lima telah dilaporkan 
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dari epitop A, B dan D (N142D, S160G, I196V, S202T dan A214T) manakala empat 

daripada jumlah 15 variasi telah ditemui di epitop B dan C (P198S, K217R, S339L 

dan N369K) dalam NA daripada strain influenza yang muncul semasa wabak 

influenza 2010-2011. Mutasi H274Y tidak ketara dalam rantau AT. Perolehan mutasi 

strain influenza ini adalah daripada Thailand dan Singapura. Seterusnya, model 

jangkaan 3D bagi kedua-dua HA dan NA telah dihasilkan dan difahami struktur 

perubahan asid amino yang berlaku dengan merujuk kepada strain vaksin. Skor 

DOPE yang terendah untuk kedua-dua model HA (-53940.43) dan NA (-46962.45) 

telah dipilih dan sejajar dengan verifikasi yang dihasilkan oleh PROCHECK (iaitu 

HA: 91.0% dan NA: 89.2% residu-residu di rantau yang digemari), ERRAT (iaitu 

HA: 74.6% dan NA: 83.6% kawasan dengan lipatan protein yang betul) dan ProSA 

(iaitu skor-z bagi HA: -.9.19 dan NA: -5.21 dan kedua-dua telah didapati berada di 

kawasan tenaga yang munasabah).    
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A BIOINFORMATICS-BASED EVOLUTIONARY ANALYSIS ON 

SOUTHEAST ASIA H1N1 INFLUENZA VIRUS STRAINS  

 

ABSTRACT 

 

Influenza virus A (H1N1) is known to be the causative agent of severe 

influenza infections worldwide. In April 2009, a pandemic outbreak of influenza 

disease had occurred for the first time in 21st century. To date, vaccination and 

antiviral drugs are the only effective treatments to combat influenza infection. Thus, 

understanding the evolution of influenza virus A (H1N1) within Southeast Asia 

(SEA) region is crucial to better understand about the diversification, emergence, 

resistance and the vaccine efficacy. In order to gain insight into the matter, 

phylogenetic analyses were conducted on the full-length amino acid sequences of 

hemagglutinin (HA), neuraminidase (NA) and matrix protein 2 (M2) of influenza 

virus A (H1N1) obtained from SEA. Based on the phylogenetic analysis, co-

circulation of both seasonal and pandemic strains were observed and identified via 

the segregation of sequences into two different clades. The results had revealed that 

sequences clustered in A/California/07/2009-like clade were the dominant influenza 

strains for the 2009 pandemic occurrence in SEA. In addition, phylogenetic analyses 

for HA, NA and M2 showed they were related to the vaccine strains for the 2009-

2011 influenza seasons, with an average of 96.5%, 98.1% and 96.9% sequence 

identity, respectively. The most notable differences are three amino acid substitutions 

(P100S, S220T and I338V) in almost all HA while two amino acid substitutions 

(V106I and N248D) in all NA of influenza A (H1N1) pandemic viruses in SEA. 

Among the 24 variations in HA, five were reported from epitopes A, B and D 
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(N142D, S160G, I196V, S202T and A214T). On the other hand, four out of a total of 

15 variations had been found in epitopes B and C (P198S, K217R, S339L and 

N369K) of NA in influenza strains emerged during 2010-2011 influenza season. 

H274Y mutation was not significantly observed in the viruses in SEA. The influenza 

strains that acquired this mutation were from Thailand and Singapore. Subsequently, 

3D models of both HA and NA were predicted and elucidated structurally for the 

amino acid changes with reference to the vaccine strain. The lowest DOPE scores for 

both HA (-53940.43) and NA (-46962.45) models were chosen and they 

corresponded well with the verifications generated by PROCHECK (i.e. HA: 91.0% 

and NA: 89.2% residues in the most favoured region), ERRAT (i.e. HA: 74.6% and 

NA: 83.6% region with the correct protein folding) and ProSA (i.e. z-scores of HA: -

9.19 and NA: -5.21 and both were found in feasible range of energy).   
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1.0 INTRODUCTION 

 

1.1 Problem Statement 

 

Influenza H1N1 disease is not a new disease to the public around the globe. 

The outbreak of influenza H1N1 disease in March and early April 2009 again 

represented a significant fatal disease of the 21st century since the last pandemic 

outbreak of influenza H1N1 disease in 1918. This influenza disease that was first 

started in Mexico and the United States (USA) (Potdar et al., 2010, Smith et al., 2009) 

achieved a rapid spread in a short time to about 207 countries all around the world, 

including countries in the tropics and infected about 622,482 people worldwide 

resulting more than 7,820 deaths as of November 22, 2009. At the same time, 

Southeast Asia region reported about 738 death cases, which make it the region with 

the second highest number of deaths after Americas (WHO, 2009).  

Due to the rapid spread of novel influenza A virus (H1N1-subtyped), the 

World Health Organisation (WHO) was alarmed and raised the worldwide pandemic 

alert level from Phase 5 to Phase 6 on the 11th June 2009 (Smith et al., 2009). This 

indicated that the infectious disease brought by the novel influenza A virus (H1N1-

subtyped) was underway to be a causative factor for the increased number of 

reported deaths. Its high incidence and high mortality rate as well as lack of effective 

treatments have spurred the researchers to carry out extensive researches in 

discovering the cure for the H1N1 pandemic flu.   

With the tropical climate in the Southeast Asia (SEA) region, the people in 

this region are used to the exposure of being infected with seasonal flu throughout 

the year. Seasonal flu is also commonly known as the non-pandemic flu, whereby the 
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influenza A virus is also the causative agent. It is not a new infection to the people in 

the region, yet many of them have underestimated the fatal consequences brought by 

the influenza virus, especially when the influenza virus has turned into a pandemic 

strain. 

 Of recent years, a lot of studies have been researched on the evolutionary of 

the pandemic outbreak of 2009 H1N1 influenza virus that was first reported in 

Mexico and also the discovery of the potential neuraminidase inhibitors in combating 

the influenza disease. Researchers found that mutation and reassortment caused the 

antigenic drift while antigenic shift in different hosts of influenza virus have led to 

the outbreak of novel influenza A virus strain. Existence of the novel strains 

prompted the researchers into the discovery of potential inhibitors on neuraminidase 

protein as the current existing antiviral drugs, such as oseltamivir, is no longer 

effective for the inhibitory effects, especially for the drug-resistant strains.     

 Among the various strains of influenza viruses from the 2009 influenza 

outbreak discovered in SEA region, the evolutionary relationship among these 

influenza viruses in the region are yet to be studied. It is crucial to get the 

relationship among these viruses elucidated by phylogenetic means in order to guide 

the disease prophylaxis before probing for potential inhibitory compounds on 

hemagglutinin (HA), neuraminidase (NA) and matrix protein 2 (M2). The 

evolutionary findings will be of benefits in monitoring the diversification and 

distribution of the HA, NA and M2 proteins from the influenza A viruses in the 

region.  

Phylogenetic study is the main interest for this research since there is no 

previous study has carried out on the evolutionary relationship of all influenza 

A/H1N1-subtyped viruses in SEA. Examination of a phylogeny allows the 



3 
 

determination of the relatedness of a sequence of interest to a group of sequences 

whose three-dimensional (3D) structures have been solved experimentally and their 

functions have already been discovered. Comparatively, protein structure is more 

conserved than the protein sequence. Thus, a 3D protein structure would be more 

informative in the binding affinity studies especially in searching for the potential 

inhibitory compounds.  

However, studies have revealed that M2 protein has mutated rapidly and 

developed resistance to the existing adamantine-based antiviral drugs. Since HA and 

NA proteins of influenza virus are relatively evolving at a slower rate than M2 and 

are yet to be determined experimentally in SEA, both HA and NA are worthwhile 

targets to be modelled to obtain the 3D structures. Hence, structural prediction via 

comparative modelling approach were used in this research to obtain the 3D protein 

structures which can lead to the initiation of the drug discovery and drug design 

processes to combat the influenza disease effectively. 
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1.2 Objectives of the study 

 

The objectives of this study were: 

· to study the evolutionary relationship of the HA, NA, and M2 proteins of 

influenza viruses A (H1N1) in SEA; 

· to investigate the amino acid changes in antigenic determinants for HA, NA 

and M2 proteins of influenza viruses A (H1N1) from SEA in order to 

determine the efficacy of vaccine recommended by the WHO; 

· to investigate if the mutations conferring resistance to oseltamivir and 

adamantane-based antiviral drugs were present in the influenza viruses A 

(H1N1) in the region;  

· to determine the 3D model of both glycoproteins (i.e. HA and NA) of 

influenza virus A (H1N1) from Malaysia (A/Malaysia/2142295/2009).  
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2.0 LITERATURE REVIEW 

 

2.1 Background of influenza viruses 

  

 In general, there are three types of influenza viruses in the Orthomyxoviridae 

family, namely influenza type A, type B and type C (Bouvier and Palese, 2008, 

ElHefnawi et al., 2011, Rendell, 2006).  

 Among the three main types of influenza viruses, influenza A viruses have a 

broad range of ability to infect, humans, birds, pigs and other animals. However, 

birds, pigs and humans are the most common hosts to get infected, with the pigs 

being the intermediate host for the influenza A viruses to be spread between the birds 

and the humans (Brown, 2001, Scholtissek, 1994). Influenza A viruses are further 

characterized on the basis of their surface glycoproteins subtypes, i.e. hemagglutinin 

(HA) and neuraminidase (NA). The ratio of both the studded glycoprotein spikes 

(HA and NA) are approximately 4:1. Besides having two glycoproteins on the 

surface, a smaller number of matrix protein 2 (M2), which are the ion channels found 

integrated through the viruses membrane (Bouvier and Palese, 2008). 

Influenza B viruses have a narrow range of susceptible hosts compared to 

influenza A viruses. These viruses are usually found only in the human population 

infections. Thus far, infections by influenza type B viruses are associated with less 

severe epidemics and have not caused any pandemics (Bouvier and Palese, 2008, 

CDC, 2005). With the aid of electron microscopy, they are indistinguishable from the 

influenza A viruses, through the shape or morphology they are sharing. As with 

influenza A, influenza B viruses have both the HA and NA glycoproteins embedded 
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in the membrane and instead of M2, both NB and BM2 substituted the M2 channel 

of type A viruses in influenza B viruses (Bouvier and Palese, 2008). 

In nature, both influenza A and B viruses envelope a segmented genome 

made up of eight negative-sense single-stranded RNA (as shown in Figure 2.1). 

Segmented genome benefits the influenza virus survivability as the nature of the 

genome is able to increase the recombination of different virus genome. These eight 

single-stranded RNA encode for a total of ten proteins, which are named as 

hemagglutinin (HA), neuraminidase (NA), polymerase basic protein 1 (PB1), 

polymerase basic protein 2 (PB2), polymerase acidic protein (PA), matrix protein 1 

(M1), matrix protein 2 (M2), non-structural protein 1 (NS1), non-structural protein 2 

(NS2) and nucleoprotein (NP)  (Prakash et al., 2011, Vazquez, 2008).   

Similar to type B viruses, influenza C viruses are also commonly found in 

human infection with a much lesser severity. To date, they have not caused any 

epidemics or pandemics (CDC, 2005, Rendell, 2006). For influenza C viruses, they 

have only seven segmented RNA genome and express only a single glycoprotein on 

the influenza membrane, which are structurally diverged from both type A and type 

B influenza. The studded surface glycoprotein is identified as hemagglutinin-

esterase-fusion, which is functionally replacing both the HA and NA glycoproteins 

of influenza A and B viruses (Rosenthal et al., 1998, Vazquez, 2008). Unlike 

influenza A strains, both influenza B and C viruses have yet to be further 

characterized into distinct subtypes according to the WHO system of nomenclature. 

As stated in the WHO memorandum published in 1980, the existing antigenic 

variation among influenza B and C viruses are well established and thus the divison 

into subtypes are not warranted (WHO, 1980). 
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Figure 2.1: The structure of influenza A viruses (Taken from: Vazquez, 2008). 

 

2.1.1 Standard nomenclature for influenza A viruses 

 

According to the WHO, the standard nomenclature for all three types of 

influenza (A, B and C) includes the virus type; species from which it was isolated (if 

non-human); location of virus isolation; isolate number; year of isolation (Bouvier 

and Palese, 2008). In addition, an index describing both the surface glycoproteins 

(HA and NA) subtypes are followed in parentheses in identifying the strains of 

influenza A viruses. For instance, A/Malaysia/820/2009 (H1N1) is a human 

influenza A virus from Malaysia in 2009 with the isolate number of 820, and it has 

both HA and NA of subtype 1 (Bouvier and Palese, 2008, WHO, 1980).  
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2.1.2 Reproductive cycle of influenza A viruses 

 

In nature, the influenza survivability is favoured by their segmented genome. 

Influenza viruses replicate themselves by using the host cellular machinery for the 

synthesis of their genome and the related components (Smith and Helenius, 2004).  

To gain access into a living host, recognition and attachment between the HA 

surface glycoproteins of influenza viruses and the N-acetylneuraminic acid (also 

known as sialic acid) is of prime importance to initiate the infection. Sialic acid is a 

cell receptor with nine-carbon acidic monosaccharide, which is usually seen at the 

terminal end of surface glycoproteins of animal species. As mentioned earlier, pigs 

are being the intermediate host for the influeza A viruses to spread between the 

avians and the humans. The logical explanation for this phenomenon could be the 

presence of both sialic acid receptors (α-2,3 and α-2,6) for avian and human 

respectively in pigs (Brown, 2001, Scholtissek, 1994). 

As shown in Figure 2.2, once the HA is attached to the host sialic acid 

receptor, the influenza virus particles will penetrate into the host by endocytosis. The 

penetrated virions will be released from the endosome when the pH of the 

surrounding environment inside the host is decreased to approximately pH 5.0. At 

the acidic environment, the viral M2 ion channels will be activated and allow the 

influx of protons into the virions. The influx of the protons will bring the acidic 

condition to the virions and thus disrupt the protein-protein interactions. As a 

consequence, the virions will be released into the infected cellular cytoplasm 

(Sidorenko and Reichl, 2004, Sieczkarski and Whittaker, 2002a, Sieczkarski and 

Whittaker, 2002b, Vazquez, 2008) before the uncoated virions being transported into 

the cellular nucleus. Using the host cellular nucleus, these virions are transcribed and 
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translated into all the ten structural proteins respectively (Sidorenko and Reichl, 

2004). 

 

 

Figure 2.2: Reproductive cycle of influenza A viruses (Taken from: Sidorenko 

and Reichl, 2004). 

 

Subsequently, all the transcribed and translated virion components are 

packaged in the host cellular nucleus and transported into the cellular cytoplasm. In 

the cytoplasm, accumulation of the M1 matrix proteins initiates the influenza virus 

budding at the cell membrane (Portela and Digard, 2002). The virus progeny can 

only be released upon the present of sialidase activity from the NA surface 

glycoprotein (Bouvier and Palese, 2008, Vazquez, 2008).  
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2.2 Glycoproteins of influenza A viruses 

 

2.2.1 Hemagglutinin  

 

 Hemagglutinin (HA) is one of the two major glycoproteins that are expressed 

and embedded on the viral membrane. To date, HA exists in a total of 16 

serologically distinct subtypes (designated as H1-H16). However, only three HA 

subtypes (H1, H2, and H3) are found to be the circulating strains in human 

population (Astrahan and Arkin, 2010, Bouvier and Palese, 2008). H5 subtype on the 

other hand has been found to be circulating among the avians (Anwar et al., 2006, 

Cheung et al., 2006).  

Structurally HA is composed as a trimeric protein (as shown in Figure 2.3). 

HA is further subdivided into two structurally distinct regions, where there are a stem 

comprising a triple-stranded coiled-coil of alpha-helices, and a globular head of 

antiparallel beta-sheet being positioned atop the stem. The globular head contains the 

sialic acid receptor binding domain and is surrounded by the predicted variable 

antigenic determinants (Bouvier and Palese, 2008).    

 HA protein is responsible to initiate the attachment of virus to cellular sialic 

acid receptors and subsequently mediating the virus to gain entry into the infected 

cell via fusion of viral and cellular membranes (Astrahan and Arkin, 2010). In 

addition, HA also plays a structural role in budding and particle formation (Furuse et 

al., 2010).  
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Figure 2.3: Diagram of an uncleaved HA monomer in ribbon representation of 

influenza virus A (H1N1). The structure contains the sialic acid receptor-binding site, 

which is surrounded by the 5 predicted antigenic sites (Sa, Sb, Ca1, Ca2, and Cb). As 

shown, the stem is composed of the Helix A and B, and the fusion peptide (Taken 

from: Bouvier and Palese, 2008). 

 

2.2.2 Neuraminidase  

 

 Neuraminidase (NA) being the other major glycoproteins, are expressed on 

the influenza A virus surface (Duvvuri et al., 2009, Webster et al., 1982). Together 

with HA, both HA and NA form the basis in identifying the virus. To date, there are 

a total of nine serologically distinct subtypes (designated as N1-N9) of NA are 

known (Astrahan and Arkin, 2010, Bouvier and Palese, 2008). Across these subtypes, 

N-terminal 

C-terminal 
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only N1 and N2 subtypes of NA are more commonly found to cause an influenza 

infectious disease in human populations thus far (Reid et al., 2000).  

The NA proteins are anchored in the viral membrane as a tetramer, which are 

composed of four identical monomeric structures (as shown in Figure 2.4). Each of 

the NA monomers is structurally divided into four main regions: an N-terminal 

conserved hydrophilic hexapeptide, a hydrophobic segment across the 

transmembrane, a thin stalk which is stabilized by carbohydrate and intermolecular 

disulphide bonds, and the enzymatically and antigenically active “head” which is 

positioned at the top of protein structure (Blok and Air, 1982, Guangxiang et al., 

1993, Reid et al., 2000, Sylte and Suarez, 2009).   

 

 

(a)                                            (b) 

 
Figure 2.4: (a) The NA molecule with its “square boxlike head” consists of 4 

coplanar subunits connected to the “stalk” with a hydrophobic knob at the end. (b) A 

rosette of 6 tetrameric NA molecules which have “heads” of about 4 x 8 nm and 

stalks of about 10 nm (Taken from: Blok and Air, 1982). 
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NA protein serves as an enzyme to remove the terminal sialic acids from both 

the viral and host receptors (Sylte and Suarez, 2009). With this cleavage enzymatic 

functionality, NA facilitates the elution of newly formed viruses during budding 

from host cells to initiate the next infection cycle. Cleaving at the terminal sialic 

acids can also prevent the agglutination of HA proteins to the host sialic acid 

receptors (Blok and Air, 1982, Guangxiang et al., 1993, Reid et al., 2000, Sylte and 

Suarez, 2009).   

                        

2.2.3 Matrix protein 2  

 

 Besides HA and NA, the third type of membrane protein, called matrix 

protein 2 (M2), is abundantly expressed on the plasma membrane of infected cells. 

Structurally M2 is a small integral membrane protein with a total of 97 amino acid 

residues, which forms a pH-gated proton channels in the viral transmembrane 

(Schnell and Chou, 2008, Sansom et al., 1997). M2 protein (as shown in Figure 2.5) 

is composed of 3 domains: a short extracellular N-terminal domain with 24 amino 

acid residues; a transmembrane domain with 19 amino acid residues, and a long 

intracellular C-terminal cytoplasmic domain with 54 amino acid residues (Zhong et 

al., 1998). The ion channel is a homotetrameric membrane protein in its native state 

(Holsinger and Alams, 1991, Sugrue and Hay, 1991) which is stabilized by 

disulphide bridges (Sansom et al., 1997, Zhong et al., 1998).  
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Figure 2.5: Scheme of M2 ion channel. M2 protein has a small N-terminal 

domain (24 residues), transmembrane domain (19 residues), and long C-terminal 

domain (54 residues) (Taken from: Betakova, 2007).  

 

 The M2 protein functions as a gated ion channel in the replicative cycle of 

influenza A virus, which will be activated at low acidic pH. At low acidic pH, it 

enables acidification of the interior of endocytosed virions (Holsinger et al., 1994) 

and thus facilitates the protein-protein interactions between the matrix protein and 

virion components. Thus, M2 protein plays a determining role in regulating virus 

morphogenesis, virus assembly and virus budding (Betakova, 2007, Sansom et al., 

1997).  

 

 

 

 

 



15 
 

2.3 Influenza pandemics 

 

 Influenza virus A is associated with its deadly infection that could bring the 

sudden increase in the mortality rate. They had been the causative agents for several 

pandemic flu outbreaks, such as the Spanish flu (1918), the Asian flu (1957), the 

Hong Kong flu (1968) and the recent Mexican flu (2009). Of all these pandemics, 

they were informally identified in accordance to their presumed sites of origin 

(Kilbourne, 2006). Back to the 1957 and 1968, around the time of the Asian and 

Hong Kong pandemics, some postulated that the influenza pandemic will recur as 

frequent as every 10-11 years (Gaydos, 2006, Morens and Fauci, 2007). However, 

according to the influenza expert, Edwin Kilbourne, Sr., he concluded that there is no 

predictable cyclicity of the major influenza outbreaks, with all of the occurrences 

differ from one another (Kilbourne, 2006).  

 Historically, the Spanish pandemic (H1N1-subtyped) that occurred in 1918-

1919 was among the most deadly pandemics which had killed about 50-100 million 

people worldwide. Thus far, the outbreak was characterized by its exceptionally high 

mortality in the 20th century, especially among the young adults aged in between 15-

45 years old (Morens and Fauci, 2007, Reid et al., 2000). The lack of a complete 

explanation for the origin of 1918 Spanish pandemic has always been disputed. 

However, according to Kilbourne (2006), epidemiologic-epizootiologic evidence 

strongly suggested that the causative influenza virus of the pandemic was actually 

transmitted from humans to swine rather than the reverse direction. On the other 

hand, Taubenberger and colleagues reported contrary to the previous research group. 

Instead of the 1918 virus arose by gene reassortment between human and animal 
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virus, they claimed the whole process occurred by genome adaptation (Morens and 

Fauci, 2007, Taubenberger et al., 1997, Taubenberger et al., 2005).   

 After a few decades, another pandemic outbreak of Asian flu occurred in 

1957. When substantial amino acid changes had accumulated in the circulating 

H1N1 influenza virus from the very first pandemic outbreak in 1918, the influenza 

virus was therefore drifted to become a novel emergent of H2N2-subtyped influenza 

virus. The disease achieved a rapid global spread to the public with the exception of 

the elderly people aged 70-year-old and above. The 1957 pandemic had called for the 

different vaccine to respond on the novel HA and NA antigens of H2N2-subtyped 

influenza. Unlike the 1918 pandemic, Asian flu viruses (H2N2-subtyped) emerged 

for only 11 years in the human population before being substituted by the Hong 

Kong flu viruses (H3N2-subtyped) (Kilbourne, 2006).     

 Another novel pandemic Hong Kong flu, of H3N2-subtyped influenza virus 

came into existence in the human population in 1968. This pandemic was named in 

accordance to its site of emergence and it was brought by the H3N2 strain influenza 

viruses that arose by gene reassortment. However, widespread immunity to N2 from 

the past exposure to H2N2 flu had helped to lessen the severity of 1968 pandemic flu.  

It has been estimated that 700,000 people died from this pandemic (Reid et al., 2000). 

Among all the pandemics, only the pandemic Mexican flu happened in the 

21st century. Mexican flu was initiated by the H1N1-subtyped influenza viruses, 

which was similar to the influenza subtype that caused 1918 pandemic. However, the 

2009 outbreak was again announced as the pandemic rather than epidemic due to the 

emergence of the resistant H1N1 strains. Evidence suggested that pandemic flu 

outbreak as the result of genetic reassortment and recombination with different 
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strains of influenza A viruses to produce a novel surface protein, either the HA or 

NA or both happened to be novel antigen variants on the viral surface.  

 

2.4 Evolution of influenza A viruses 

 

The hallmark of influenza viruses is antigenic variation, which they evolve 

continually over time by two different means: antigenic drift and antigenic shift (as 

shown in Figure 2.6). Evolution of the influenza is credited to the mutability of the 

segmented RNA genome and thus contributes to the recurrent annual epidemics of 

the infectious disease. Accumulation of the wide antigenic diversity will cause the 

emergence of novel influenza A viruses in human population that has little immunity 

towards the disease (Hay et al., 2001, McDonald et al., 2007, Morens and Fauci, 

2007). 

 

2.4.1 Antigenic drift 

 

According to Treanor (2004), antigenic drift is explained as a subtler process 

than antigenic shift that accumulates point mutations within the antibody-binding 

sites in the HA or / and NA that abrogate the binding of some antibody. The amino 

acid replacements will result in the viruses cannot be inhibited well by the antibodies 

induced by the previous infectious strains. In addition to mutation, Scholtissek (1994) 

also associated the phenomenon as a selection of influenza variants under the 

selection pressure of the host immunity. It is thus easier for the viruses to intrude on 

a partially immune population. Thus, it is necessary to update the vaccine 
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components consistently to confer maximum immunity to the human populations 

against the circulating strains (McDonald et al., 2007, Plotkin et al., 2002). 

 

2.4.2 Antigenic shift 

 

This phenomenon of amino acid replacements produce a new strain of 

influenza A viruses that totally escape from the host immunity. The mutations are 

mainly found in the epitope regions of the surface glycoproteins (HA and NA). As 

influenza A viruses have a broad range of susceptible host, reassortment and 

recombination of genetic materials from different animal species are commonly 

detected. The resulted changes will thus create novel subtypes that have not been 

present in human viruses. Consequently, the introduction of a novel strain into 

human population is usually a pandemic or a worldwide epidemic that will result in 

hundreds of thousands or millions of influenza-related deaths (Scholtissek, 1994, 

Treanor, 2004).  
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Figure 2.6: Phenomenon of antigenic drift that occurred within the same animal  

species while antigenic shift involved combination of genomes from different animal 

species (Taken from: Turner et al., 2010). 

 

2.5 Anti-influenza therapy 

 

 Influenza continues to be a major threat to people around the globe. Evolution 

by antigenic drift caused the regular recurrence of influenza epidemics and numerous 

scientific studies have revealed that sufficient changes will produce drifted virus to 

reinfect the same host (Carrat and Flahault, 2007). To avoid and recover from the 

infection, influenza vaccine and the use of antiviral agents, respectively, are 

recommended. 

 

 

 

Antigenic drift 

Antigenic shift 
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2.5.1 Influenza vaccine 

 

Vaccine remains the most effective defense for the prophylaxis and 

prevention from influenza infections (Gust et al., 2001). However, due to the regular 

emergence of drifted viruses, a review on the influenza vaccine content is needed 

consistently (McDonald et al., 2007, Plotkin et al., 2002). The strain selection is an 

ongoing and complex process whereby it involves the concerted and coordinated 

efforts from national and international organisations. A year round surveillance of 

new influenza strains is conducted by the Centers for Disease Control and Prevention 

and the WHO (Treanor, 2004). As a result, antigenic mismatch can be avoided and 

maximum vaccine effectiveness can be delivered (Wood, 2002).  

 Anti-HA antibody provides a better protection against the drifted influenza 

variants. They are playing the protective role in shielding the recognition and 

attachment between viral HA and host sialic acid receptors. Thus, the influenza 

infection becomes impossible when the first stage of the viral infection is disturbed 

(Virelizier, 1975).   

However, anti-NA antibody in host is triggered by the vaccine strains and 

they serve to inhibit the release of the progeny virus particles from infected cells. The 

inhibited NA proteins of influenza virus are unable to remove the sialic acid 

receptors attached to the HA and thus causing self-aggregation at the surface of 

infected cells (Bouvier and Palese, 2008, Palese et al., 1974, Webster et al., 1982).  

In a nutshell, antibody against the HA is neutralising and is very protective 

against infection and illness while antibody against the NA serves to mitigate the 

severity of illness (Treanor, 2004). 
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2.5.2 Antiviral agents 

 

The unique replication mechanism of influenza virus has allowed 

investigators to identify a number of potential molecular targets for drug design. 

However, there are only two established antiviral agents that are available in the 

current marketplace. Both types of antiviral agents have two different kinds of 

inhibitory mechanisms, either targeting on M2 ion channel or neuraminidase 

glycoprotein, respectively.  

 

2.5.2(a) M2 ion channel blockers 

  

M2 ion channel is a specific target for anti-influenza drugs amantadine and 

rimantadine (Chizhmakov et al., 1996, Holsinger et al., 1994). Amantadine and 

Rimantadine (as shown in Figure 2.7) are two drugs belong to the Adamantanes 

group (Schnell and Chou, 2008, Zaraket et al., 2010) which has been introduced for 

prophylaxis and treatment of influenza A disease for many years. Both drugs are 

proven inactive against influenza B viruses which lack of the M2 membrane-

spanning proteins (Sansom et al., 1997). 

 

 

Figure 2.7: The structure of M2 ion channel blockers: amantadine (left) and 

rimantadine (right) (Taken from: Astrahan and Arkin, 2010).  
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In designing drugs to exert inhibitory effects on the wild-type M2 (WT-M2) 

ion channel, two mechanisms of action were proposed: the drug that blocks the 

channel by binding at the opening of the pore (Astrahan et al., 2004), and the drug 

that binds firmly to the side chains of H37 in a deeper location of the channel (Pinto 

and Lamb, 2007, Zhong et al., 2000). These proposed mechanisms were 

subsequently proven in the experimental and theoretical studies (Chen et al., 2007, 

Hu et al., 2006, Intharathep et al., 2008, Kass and Arkin, 2005, Laohpongspaisan et 

al., 2009).  

However, studies revealed that their use has been restricted as the adverse 

effects on the intestinal and central nervous systems arose and the emergence of 

resistance towards the drugs (Englund et al., 1998, Hayden et al., 1989, McKimm-

Breschkin et al., 2003). The resistance to these drugs is genetically associated with 

amino acid substitutions at positions L26, V27, A30, S31, G34, L38 and W41 in the 

membrane-spanning domain of the protein (Englund et al., 1998, Holsinger et al., 

1994, Saito et al., 2006). Among these mutations, A30T and S31N are the most 

common mutations for influenza A viruses from Vietnam, Malaysia, Cambodia and 

Thailand in SEA region that confer resistance towards amantadine (Hurt et al., 2007, 

Ilyushina et al., 2005).  

For V27A and S31N mutations, the replacement of valine to alanine had 

caused the widening of channel’s pore size while the latter mutation led to the 

reduction in channel’s pore size. The size of the channel’s pore is associated to the 

changes in the H+ influx (Astrahan and Arkin, 2010). Laohpongspaisan and 

coworkers (2009) had also studied the proton conductance in terms of the water 

density across the channel. However, zero water density was reported associated to 

the L26I mutation while a slight degree of water density was traced in the presence 
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of A30T mutation (Laohpongspaisan et al., 2009). The pH of M2 channel will 

ultimately determine the opening of the channel, of which the protonated H37 

residue and the rotation of W41 side chain to a conformation parallel to the pore’s 

axis will allow the influx of H+ (Betakova, 2007). 

 

2.5.2(b) Neuraminidase inhibitors  

  

 Prior to the existence of both zanamivir and oseltamivir, 2-deoxy-2,3-

didehydro-D-N-acetylneuraminic acid (DANA, as shown in Figure 2.8), an 

unsaturated transition-state sialic acid analog was first designed and synthesized to 

inhibit the NA enzyme activity. However, its inhibitory activity on NA is reported to 

be weak in vitro and vice versa when administered in vivo (McKimm-Breschkin, 

2000). As a result, a review on DANA drug design is demanded in order to produce a 

NA antiviral drug with better inhibitory activity.  

 

 

 

Figure 2.8: Chemical structure of unsaturated sialic acid analog (DANA) (Taken 

from: Varghese et al., 1998). 

 

4’ 

6’ 
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Drug design based on the complex structure of viral NA protein and its cell 

surface receptor (sialic acid), such as zanamivir (GG167) (as shown in Figure 2.9) is 

efficacious for inhibiting the influenza infection. Zanamivir has a different 

conformation than the previous NA inhibitor where the 4’ position on the sugar ring 

of DANA is replaced by a guanidinium group. There are two ways of administration, 

either through oral inhalation or intranasal instillation. High concentration of the 

inhaled drug will be delivered to the respiratory tract (Gubareva et al., 2000), where 

the virus is replicating (McKimm-Breschkin et al., 2003, McKimm-Breschkin, 2000, 

Smith et al., 2001).  

Subsequently, oseltamivir (as shown in Figure 2.9) was developed based on 

the need for antiviral to be efficacious as an orally administered NA inhibitor. 

Instead of a single substitution on the sugar ring in zanamivir, oseltamivir has a 

cyclohexene ring with a substitution of an amino group at the 4’ position in the ring 

and more importantly the glycerol side chain at 6’ position is replaced by a bulky 

hydrophobic pentyl ether group (McKimm-Breschkin et al., 2003, McKimm-

Breschkin, 2000, McKimm-Breschkin et al., 2007). Oseltamivir exists in two forms: 

oseltamivir carboxylate (GS4071) and oseltamivir phosphate (GS4104) (Lew et al., 

2000). Usually, it is taken orally in the form of ethyl ester prodrug oseltamivir 

phosphate, which is subsequently converted by hepatic esterases to the active form of 

oseltamivir, called oseltamivir carboxylate (McKimm-Breschkin et al., 2003, 

McKimm-Breschkin, 2000, Smith et al., 2001). 
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