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MULTIWAY PARTIAL LEAST SQUARE UNTUK PERMODELAN DAN 

PENGAWALAN REAKTOR POLY METHYL METHACRYLATE  

 

ABSTRAK 

 

Pempolimeran merupakan proses di mana unit-unit monomer bergabung melalui 

tindak balas kimia untuk membentuk rantaian monomer yang panjang dipanggil 

polimer. Proses yang tidaklelurus ini mengeluarkan haba  dan pembolehubah keluar 

seperti berat molekul yang tidak boleh didapati ketika proses sedang beroperasi. 

Dengan itu ianya perlu diukur melalui analisis makmal dan hanya sampel yang 

terhad sahaja boleh didapati semasa proses sedang dijalankan.  

 Ketidakhadiran pembolehubah keluaran seperti berat molekul dan penukaran 

monomer membawa pada pembangunan model inferensi. Dalam kajian ini model 

pelbagai cara kuasa dua terkecil separa telah digunakan. Model ini adalah salah satu 

kaedah Chemometric yang terkenal dimana ianya mampu memantau dan 

meramalkan pembolehubah keluaran. Model ramalan ini menyediakan tempat 

dimana pembolehubah keluaran boleh diramalkan berdasarkan data operasi seperti 

suhu reaktor, suhu jaket dan kadar aliran penyejuk. Model ramalan ini memerlukan 

sejumlah besar data yang dikumpulkan hasil daripada proses sebelumnya. Proses ini 

merupakan proses yang dapat menghasilkan keluaran seperti yang dikehendaki.  

 Dalam kajian ini, ianaya memberi tumpuan kepada ramalan keluar proses 

pempolimeran seperti penukaran monomer, berat molekul purata dan jumlah berat 

molekul purata. Ini adalah kerana sifat semulajadi pembolehubah ini yang tidak 

boleh didapati semasa proses sedang beroperasi. Kajian ini juga membantu untuk 

memantau pembolehubah di samping mengesan produk di luar spesifikasi. Idea di 

sebalik model tambahan pula adalah memberikan nilai ramalan pada masa tertentu.  
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 Di samping itu, data-data untuk kajian ini diperolehi melalui simulasi selain 

daripada loji sebenar ataupun ekperimen. Suhu reaktor, suhu jaket dan kadar aliran 

penyejuk telah dikenal pasti sebagai pembolehubah masukan manakala berat dan 

jumlah berat molekul purata serta penukaran monomer digunakan sebagai 

pembolehubah keluaran. Data simulasi ini telah dianggap sebagai proses yang 

sebenar.  

 Model ramalan yang dicadangkan ini telah berjaya meramalkan 

pembolehubah keluaran dari data pembolehubah masuk yang baru apabila reaktor 

beroperasi pada suhu 61-64°C. Ramalannya menghasilkan peratusan purata kesilapan 

yang rendah berbanding suhu di luar julat data pembangunan. Data pembangunan 

merupakan data yang digunakan untuk membentuk model ramalan. Jika ramalan 

baru di lakukan ke atas data baru di mana ianya berada di dalam julat data 

pembangunan, ia juga menghasilkan peratusan kesilapan yang rendah. Model 

tambahan juga menunjukkan bahawa ianya berjaya meramalkan hasilan 

pembolehubah keluaran pada masa 150 minit dan 320 minit. Ramalan menghasilkan 

peratusan yang rendah.  
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MULTIWAY PARTIAL LEAST SQUARE FOR MODELING AND 

MONITORING OF POLY METHYL METHACRYLATE REACTOR 

 

ABSTRACT 

 

Polymerization is the process in which monomer units are combined by 

chemical reaction to form long chains monomer called polymer. The output variables 

such as molecular weight and conversion are unavailable online thus they need to be 

measured through laboratory analysis and moreover only a limited sample are made 

during the process.   

The unavailability output variables leads to the development of inferential model 

which in this study used Multiway Partial least squares (MPLS). MPLS model is one 

of the famous Chemometric method which able to monitor and predict the process 

output properties. This inferential model prepared a place where output properties 

such as molecular weight can be predicted based on operating data such as reactor 

and jacket temperature and coolant flowrate. This inferential model requires a large 

amount of data which accumulated during previous processes. These data are 

considered as normal process which produced desired output properties. 

The present study focuses on the prediction the output properties of Methyl 

Methacrylate (MMA) polymerization such as monomer conversion, the weight 

average molecular weight (Mw) and the number average molecular weight (Mn). 

This is due to the nature of these properties since these output properties are not 

available online. This work helps to monitor the properties and it can be used to 

detect off specification product. The idea behind the additional model is that this 

model gives a prediction value at specific time during the process.   
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Moreover in this study, the properties data were obtained via simulation instead 

of real plant data or experimental. However, this simulated data were assumed as a 

real process. Simulated reactor temperature, jacket temperature and coolant flowrate 

were identified as input variables meanwhile molecular weight (Mw and Mn) and 

monomer conversion as output variables that been used in MPLS model.  

The proposed inferential model was successfully predicts the output 

properties of new input data at reactor temperature 61-64°C. The predictions gave 

low average percentage error result compared to the temperatures out of the range of 

development data. Development data are the data used to build MPLS model. 

Whenever inputs data was in the range in development data, the percentage error was 

obviously minimum. The additional model was also successfully predicted the output 

properties at time 150 minutes and 320 minutes. The errors of predicted output 

properties were low.  
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CHAPTER ONE 

INTRODUCTION 

This chapter firstly covers the introduction of polymerization process and the 

method of MPLS in predicting and process monitoring. This chapter also provides 

the objectives, the scope of this research study and lastly thesis organization.  

 

1.1 Introduction 

A polymer is a large molecule that is built up by the repetition of small molecules 

called monomer. This repetition is called polymerization process. Polymer industry 

is one of the important industries in the world producing the most essential things in 

our daily lives. Mankind has used polymers since a long times ago such as tyre for 

vehicle, gloves for protecting hands, footwear for foot protection, rubber-based 

components and material for transport and construction industries. This industry 

evolves drastically in chemical industry instead of pharmaceutical, petroleum, food, 

textile and etc.  

Polymer reactor either continuous or batch is designed to produce polymer in 

wide range of molecular weight. Molecular property is an importance output 

property to be controlled in order to produce the good and high quality product. This 

property cannot be measured directly or online thus its need to be measured in the 

laboratory so that this process needs a delay time to discover its results. The 

operating conditions in polymer reactor influence the molecular properties of the 

polymer being produced. Furthermore these properties are difficult to measure 

frequently because of limited sample. 
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Polymer producers faced many challenges and the obvious challenge is the heat 

release by the process reaction. In fact the rapid grow of polymer manufacturer gives 

an increased demand satisfaction of customer to the end product produce.  This 

creates a dynamic environment where the polymer industries undergo continuous 

improvement to keep existing in the markets.  Thus manufacturers need to concern 

several aspects such as improve the behaviour of the process, their effect on output 

properties and efficient process technology. The need to maintain the efficiency of 

producing the consistent high quality product leads to the development of inferential 

model.  

A big achievement in polymerization reaction engineering is the                    

Chiu et al (1983) model, which this model successfully described the polymerization 

over entire conversion range based on free volume theory. This model proposed a 

Methyl methacrylate process model which diffusional limitations affected the rate 

constants. This model compared to others described the effects of composition, 

temperature and molecular weight continuously in their model. The other models 

involved break points to characterize the onset of diffusional limitations.  

In chemical process industries, process monitoring and controlling are extremely 

important in terms of the contribution towards producing a high quality product. 

Process monitoring plays an important role in current technology as the output of the 

model is monitor via the prediction based on operational data. Statistical process 

control (SPC) is effective in monitoring chemical processes and it is applied to 

monitor and control a process via a prediction chart. In addition it can detect any 

deviation process via monitoring scheme and the occurrence of off-specification 

product can also be detected. SPC is a method which uses statistical method in 

quality control. It is believed that the deviation can be detected and removed more 
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quickly by observing the output properties prediction.  In some approach this 

monitoring process provides acceptable limits where the prediction of the model 

should lie within this limits. Beside, this process can lead to the identification of 

unwanted output properties. On top of that this process is able to gives timely 

information on the process performance and also it helps to reveal the progress of 

their properties. 

This SPC method is a soft sensing tool that has been developed to gives an 

online measurement of polymer properties. Partial least squares (PLS) and Neural 

Network (NN) are the famous methods offer that approach. These methods can be 

modelled by using the historical data of previous processes. NN is similar as MPLS 

which can make predictions of future data. NN is a software simulation of a 

biological brain. Its can predict an output pattern when it recognizes a given input 

pattern. This is different to MPLS, which MPLS consisted equation that can help to 

predict output data and this method is easy to implement.    

Multiway PLS (MPLS) is an extension method of PLS which MPLS generally 

applied to batch process. Batch process data exist in three dimensional which 

contains a few batches, variables and time points. In addition, this method is able to 

handle large volume of data. This method compresses a large volume of data into 

low dimensional data. MPLS model indirectly describe the process by its low 

dimensional data of latent structure.    

 

1.2 Problem statement 

Producing a consistent high quality product is an objective of all chemical 

processes especially polymerization process. Producing an intended polymer product 

is not an easy task as their reactions are nonlinear and highly exothermic. This highly 


