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1. (a) Figure 1 shows a structure of a linear time invariant digital system.  It is observed that 

the output sequence of the system is y1(n)={10,19,16,9,2} when the given input is 

x1(n)=(n). 

 

 
 

Figure 1 
 

(i) Determine the impulse response h3(n), if h1(n) = {5,2} and h2(n) = {1,-1,2,0,-1}. 

(20 marks) 

 

(ii) Determine the output from this system y2(n) if the input is x2(n)={2,5}. 

(10 marks) 

 

(b) Sketch all possible ROCs for the following system function H(z).  Then, get all the 

possible impulse response h(n) from this system function: 

 

𝐻(𝑧) =
1

1 − 2.3𝑧−1 + 0.6𝑧−2
 

(50 marks) 

 

(c) Two discrete-time sequences are given as: 

 

𝑥(𝑛) = {1,2,3,4,5} 

𝑦(𝑛) = {2,2,4,4,5} 

 

Determine the normalized cross-correlation of signal y with respect to signal x, yx(l). 

(20 marks) 
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2. (a) By using pole-zero plot, propose a third order high pass filter.  The filter should be 

stable.  Provide H(z) and H().   

(30 marks) 

 

(b) Your research project requires you to design a lowpass finite impulse response 

(FIR) filter.  The specifications of the filter are as follows: 

 

 Passband edge frequency Fp = 2.2kHz 

 Stopband edge frequency Fs = 2.3kHz 

 Peak passband ripple p = 0.02dB 

 Minimum stopband attenuation s = 45 dB 

 Sampling rate FT = 5kHz 

 

The first step of designing this FIR filter is to estimate the filter’s order.  Estimate the 

order of the filter by using: 

 

(i) Kaiser’s formula. 

(ii) Ballenger’s formula. 

(iii) Hermann’s formula. 

 

Which formula gives the lowest order of the filter? 

(40 marks) 

 

(c) We want to design a digital lowpass Butterworth filter G(z) with the passband edge 

frequency p at 0.35, with a passband ripple not exceeding 0.25dB.  The minimum 

stopband attenuation is 10dB at the stopband edge frequency s of 0.55.  Assume 

|G(ej0)|=1. By using the following formula, determine the order N of the filter. 
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(30 marks) 

 
 
 
 
 
 
 

…4/- 
SULIT 



SULIT EEE512 
- 4 - 

 
 
3. Figure 3 shows a parallel form I realization of a digital system.  From this figure,  

 

a) Obtain the system function H(z). 

(10 marks) 

 

b) Draw the equivalent cascade realization of the system. 

(40 maks) 

 

c) Draw the equivalent parallel form II realization of the system. 

(50 marks) 

 
  

 

 
Figure 3 
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4. (a)  The two texture images shown below are quite different, but their histograms are 

identical. Both images have size 80 × 80 pixels, with black (0) and white (255).  

 

 

 

 

 

 

 

 

 

 

 

 

Suppose that both images are blurred with a 3×3 smoothing filter, would the resultant 

histograms still be the same? Draw an approximation of the histograms of both images. 

Explain your answer.  

 

Note: the black lines are used to signify the boundaries of the two images but not part of 

them. 

                                                                             (30 marks) 

 

(b) The following figures shows (i) a 3-bit image of size 5-by-5 image in the square, with 

x and y coordinates specified, (ii) a Laplacian filter and (iii) a low-pass filter. 
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(i) (ii) 

Figure 4(a) 

Image Laplacian filter Low pass filter 

x 

y 
0 1 2 3 4 

0 7 3 5 4 0 

1 1 0 7 5 0 

2 4 6 2 4 1 

3 4 3 4 1 2 

4 6 1 7 4 3 

(i) 

(
0 1 0
1 −4 1
0 1 0

) 

(ii) 

(
0.01 0.1 0.01
0.1 0.56 0.1

0.01 0.1 0.01
) 

(iii) 

Figure 4(b) 
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Compute the following: 

 

(i) The output of a 3 × 3 mean filter at (2,2).  

 

(ii) The output of a 3 × 3 median filter at (2,2). 

  

(iii) The output of the 3 × 3 Laplacian filter shown above at (2,2).  

 

(iv) The output of the 3 × 3 low-pass filter shown above at (2,2).  

 

(v) The histogram of the whole image. 

(70 marks) 

 

5. (a)   A filtered function in spatial domain is given by: 

 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 + 1) 

 

 

(i) Obtain the filter transfer function 𝐻(𝑢, 𝑣) in frequency domain, 

(30 marks) 

 

(ii) Show that 𝐻(𝑢, 𝑣) is a high pass fitter. 

(20 marks) 

 

(b)  The convolution theorem of two dimensional variables 𝑓(𝑥, 𝑦) and ℎ(𝑥, 𝑦)is given by: 

𝑓 (𝑥, 𝑦)  ⊗  ℎ(𝑥, 𝑦)  =  𝐹 (𝑢, 𝑣) 𝐻(𝑢, 𝑣) 

 

where 𝐹(𝑢, 𝑣) and 𝐻(𝑢, 𝑣) are two dimensional Fourier transform of 𝑓(𝑥, 𝑦) and 

ℎ(𝑥, 𝑦) respectively.  

 

Prove the validity of this theorem. 

(50 marks) 

 
Given: 

ℑ𝑓(𝑥 − 𝑥0, 𝑦 − 𝑦0) = 𝐹(𝑢, 𝑣)𝑒
−𝑗2𝜋(

𝑢𝑥0
𝑀

+
𝑣𝑦0
𝑁

)
 

2𝑗 sin 𝑥 = 𝑒𝑗𝑥 − 𝑒−𝑗𝑥 

2 cos 𝑥 = 𝑒𝑗𝑥 + 𝑒−𝑗𝑥 
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6. (a)  Write an expression for a wavelet Ψ1,4(𝑥) in terms of the Haar scaling function. 

Hence plot Ψ1,4(𝑥). 

(40 marks) 

 

(b)  Consider a 4 × 4 image as follow  

𝑓(𝑥, 𝑦) = (
4 8
8 4

) 

 

(i) Draw the required filter bank to implement a first-scale two-dimensional fast 

wavelet transform (FWT) of 𝑓(𝑥, 𝑦). Label all inputs and outputs with the 

proper arrays. 

(40 marks) 

 

(ii) Draw the synthesis filter bank of FWT for reconstructing the f(x,y). 

(20 marks) 

 
Given: 
 
The wavelet functions are defined as: 

𝜓𝑗,𝑘(𝑥) = 2
𝑗
2𝜓(2𝑗 𝑥 − 𝑘) 

 

𝜓(𝑥) = ∑ ℎ𝜓(𝑛)√2

𝑛

𝜑(2𝑥 − 𝑛) 

 

𝜓(𝑥) = {
1     ;       0 ≤ 𝑥 < 0.5
−1  ;       0.5 ≤ 𝑥 < 1
0             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 
The Haar scaling functions are defined as: 

𝜑(𝑥) = {
1     ;       0 ≤ 𝑥 < 1
0     ;      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 

 

𝜑𝑗,𝑘(𝑥) = 2
𝑗
2 𝜑(2𝑗 𝑥 − 𝑘)            

 

The scaling function coefficients for the Haar function are given by: 

ℎ𝜑(𝑛) = { 
1

√2
,

1

√2
 } for 𝑛 = 0,1 

 
The scaling function coefficients for the Haar wavelet are given by: 

ℎ𝜓(𝑛) = { 
1

√2
, −

1

√2
 } for 𝑛 = 0,1 
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Kaiser’s formula: 
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Table 1: Summary of analysis and synthesis formulas 

 Continuous-time signal Discrete-time signals 

Time-domain Frequency-domain Time-domain Frequency-domain 
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Inverse Discrete Fourier Transform (IDFT):  
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Table 2: Some common z-transform pairs. 

 Signal, x(n) z-Transform, X(z) ROC 
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Table 3: Properties of the z-transform. 

Property Time domain z-domain ROC 

Notation 
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