

First Semester Examination Academic Session 2018/2019

December 2018/January 2019

EEE505 – Advanced Analog Integrated Circuit Design

Duration: 3 hours

Please check that this examination paper consists of \underline{SIX} (6) pages of printed material before you begin the examination.

Instructions: Answer **FIVE (5)** questions. Answer <u>TWO (2)</u> questions in Part A and TWO (2) questions from Part B and ONE (1) question from any section.

Use two-book answers for Part A and Part B.

All questions carry the same marks

Part A:

1. For the circuit shown in Figure 1 below, assume that all transistors are operating in the saturation region. <u>Calculate</u> the following using these parameters: $K'_n = \mu_n C_{ox} = 200 \ \mu A/V^2$, $V_t = 0.4 \ V$, $\lambda = 0.1 \ V^{-1}$

a) Output current, I_{out} (5 marks)

b) Minimum output voltage, V_{out,min} (5 marks)

c) Output resistance, R_{0ut} 10 marks)

Note: For part (a) and (b) the λ effect can be neglected. BUT you need to use λ for calculating part (c).

Figure 1.

- 2. For an active-loaded MOS differential amplifier shown in Figure 2, assume that for all transistors, W/L = 7.2 μ m/0.36 μ m, μ _nC_{ox} = 387 μ A/V², μ _pC_{ox} = 86 μ A/V², $|V'_{An}|$ = 5 V/ μ m, $|V'_{Ap}|$ = 6 V/ μ m, the bias current I = 0.2 mA and Rss = 25 μ C.
 - a) Determine the <u>value</u> of differential-mode gain, A_{dm} . (Note: you may need to find the overdrive voltage, g_m and r_0 for each transistor)

 (15 marks)
 - b) Given the common-mode gain, $A_{cm} = -1/(2.g_m.Rss)$, determine the CMRR $(\frac{|A_{dm}|}{|A_{cm}|})$. (5 marks)

Figure 2.

3. Figure 3 refers to a folded cascode operational transconductance amplifier (OTA) with all transistors operate at the overdrive voltage of 0.2 V.

Figure 3.

- a) Find the expression for output resistance, R_o (5 marks)
- b) Find the expression for A_V . (5 marks)
- c) Find the expression for peak-to-peak output voltage swing. (10 marks)

Part B:

- 4. (a) Figure 4 depicts the switched capacitor resistor circuit. By referring to the figure:
 - (i) Derive the input equivalent resistance of the circuit in Figure 4. (7 marks)
 - (ii) Calculate the equivalent resistance if the clock frequency is 0.5 MHz and C is 2 pF. (3 marks)

(iii) What is the operation of MOSFET whereby the behaviour of V_{GS} is similar as V_{BE} of bandgap device? Together with switched capacitor resistor, design a PTAT current generator. The final equation must be included together with the design. (10 marks)

Figure 4

5. (a) Design DAC schematic and derive out the mathematical model equation. The model is based on current steering-resistor string approach. Draw the schematic of the DAC. Explain the functions of all the components in the schematic.

(12 marks)

(b) Extend the model up to 8-bit. Explain your model.

(8 marks)

- 6. (a) Figure 6 shows the biasing circuitries for a typical current steering DAC.
 - (i) Explain the function of the operational amplifier.

(2 marks)

- (ii) What is the value of resistance R, if I is 1 mA and VREF = 1.2 V? (2 marks)
- (iii) Assuming VDD = 3.6 V and M1 is in saturation, W/L = 24/2, Vtp = -1, Kp = $40~\mu\text{A/V}^2$, calculate the required VSG. (6 marks)
- (b) Draw the basic 8-bit DAC which must include the biasing circuitries and the DAC resistor string. (10 pts)

Figure 6