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KENORMALAN-π DALAM RUANG TOPOLOGI DAN
GENERALISASINYA

ABSTRAK

Tujuan utama projek ini adalah untuk membuat kajian yang menyeluruh terhadap

versi normal yang lebih lemah normal dipanggil normal-π , yang terletak di antara

normal dan hampir normal (kuasi-normal). Pertama, kita berikan beberapa definisi

asas, ciri-ciri dan teorem, yang akan digunakan dalam perbincangan tesis ini. Keta

berikan satu kajian kaji selidik terhadap set tertutup-π , terbuka-π , tertutup-pra dan

terbuka-pra. Secara khususnya, kita mengkaji set ini dalam subruang dan juga

mengkaji imej dan imej songsang mereka di bawah fungsi yang selanjar. Sebahagian

ciri-ciri set ini dibuktikan. Kenormalan-π adalah kedua-duanya bersifat topologi

dan juga penambahan, tetapi bukan pendaraban dan tidak diwarisi secara umum.

Tanggapan terhadap set tertutup-π digunakan untuk mendapatkan pelbagai ciri dan

teorem pemeliharaan normal-π . Beberapa ciri tentang ruang hampir kerap, begitu juga

hampir kerap sepenuhnya dibentangkan dan beberapa keputusan diperbaiki. Beberapa

hubungan di antara normal-π dan kedua-dua ruang hampir kekerap dan hampir

kerap sepenuhnya diberikan. Keputusan penting adalah mengenai pembentangan

beberapa contoh lawan balas, yang pertama adalah mengenai ruang Hausdorff separa

normal tetapi tidak normal-π . Yang kedua adalah mengenai ruang Tychonoff hampir

normal tetapi tidak kuasi normal dan yang ketiga adalah mengenai ruang Tychonoff

hampir normal tetapi tidak normal-π . Kami membuktikan bahawa satah Niemytzki

xvi



dan ruang topologi garisan Sorgenfrey kuasa dua persegi hampir normal tetapi

tidak normal-π atau separa normal dan juga topologi urutan rasional adalah hampir

normal tetapi tidak semi-normal atau separa normal. Kami menunjukkan bahawa

setiap ruang hampir normal yang terhingga adalah normal-π dan produk terhingga

set tertutup-π (terbuka-π , terbuka-pra, tertutup-pra) adalah tertutup-π (terbuka-π ,

terbuka-pra, tertutup-pra). Salah satu keputusan yang paling penting adalah bahawa

terdapat versi normal-π seakan Lema Jones untuk ruang normal. Kami memberikan

beberapa syarat kepada dua ruang X dan Y supaya ruang produk X ×Y akan menjadi

normal-π . Kami juga telah memberikan beberapa keputusan untuk ruang normal-π

dan hampir para-padat dan beberapa hubungan antara normal-π dan hampir para-padat

diberikan. Kami menyiasat tentang ruang X adalah normal-π yang terbilangkan

hampir para-padat jika dan hanya jika ruang produk X × I adalah normal-π , maka

subruang X ×{0} juga normal-π .

Sebaliknya, kami memperkenalkan versi normal-pra yang lebih lemah dipanggil

normal-pra-π , yang merupakan normal-π yang di itlakkan, dan menunjukkan bahawa

normal-pra-π adalah kedua-duanya topologikal dan mempunyai ciri aditif, tetapi

tidak produktif atau tidak mempunyai ciri warisan secara umum. Sesetengah ciri,

contohnya, pengkategorian dan teorem pemeliharaan normal-pra-π dibentangkan.

Selain itu, kami memperkenalkan klasifikasi baru set terbuka-pra dan tertutup-pra yang

dipanggil terbuka-pra-π dan tertutup-pra-π , yang merupakan pengitlakan terbuka-π

dan tertutup-π , dan memberikan beberapa ciri asas mereka. Kami membuktikan

bahawa kedua-dua sub-maksimum dan extremal terkaitkan-pra adalah ciri warisan

berkenaan dengan subset padat dan terbuka. Selain itu, kita menunjukkan bahawa

produk dua ruang sub-maksima adalah sub-maksima.

xvii



π-NORMALITY IN TOPOLOGICAL SPACES AND ITS
GENERALIZATION

ABSTRACT

The main aim of this thesis is to make a comprehensive study of a weaker version

of normality called π-normality, which lies between normality and almost normality

(quasi-normality). First, we give some basic definitions, properties and theorems,

which we are going to use throughout the thesis. We give a survey study of π-closed,

π-open, pre-closed and pre-open sets. In particular, we study these sets in subspaces

and also study the images and the inverse images of them under continuous functions.

Some properties of these sets are given and proved. π-normality is both a topological

and an additive property, but neither a productive nor a hereditary property in general.

The notion of π-generalized closed sets is used to obtain various characterizations

and preservation theorems of π-normality. Some properties of almost regular as well

as almost completely regular spaces are presented, and a few results of them are

improved. Some relationships between π-normality and both almost regularity and

almost complete regularity are given. The important results are about presenting

some counterexamples, the first one is about a semi-normal Hausdorff space but

not π-normal. The second one is about an almost normal Tychonoff space but

not quasi-normal and the third one is about an almost normal Tychonoff space but

not π-normal. We prove that the Niemytzki plane and the Sorgenfrey line square

topological spaces are almost normal but neither π-normal nor semi-normal and also
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the rational sequence topological space is an almost normal but neither semi-normal

nor quasi-normal. We show that every finite almost normal space is π-normal and

a finite product of π-closed (π-open, pre-open, pre-closed) sets is π-closed (π-open,

pre-open, pre-closed), respectively. One of the most important results is that there

is a version of π-normality analogous to the Jones’ Lemma for normal spaces. We

give some conditions on two spaces X and Y so that the product space X ×Y will

be π-normal. We present some results on π-normal and nearly paracompact spaces

and some relationships between π-normality and near paracompactness are given. We

investigate that a space X is π-normal countably nearly paracompact if and only if the

product space X × I is π-normal and if the product space X × I is π-normal, then the

subspace X ×{0} is also π-normal.

In addition, we introduce a weaker version of pre-normality called π-pre-normality,

which is a generalization of π-normality, and show that π-pre-normality is both a

topological and an additive property, but neither a productive nor a hereditary property

in general. Some properties, examples, characterizations and preservation theorems

of π-pre-normality are presented. Also, we introduce new classes of pre-open and

pre-closed sets called π-pre-open and π-pre-closed, which are the generalizations

of π-open and π-closed, and present some basic properties of them. We prove that

both sub-maximality and extremal pre-disconnectedness are hereditary properties with

respect to dense and open subsets. Also, we show that the product of two sub-maximal

spaces is sub-maximal.

xix



CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Topology is a very important branch of pure Mathematics. Its applications are not only

in other branches of Mathematics but also in other branches of sciences. The definition

of a topological space is very general. It is often desirable for a topologist to be able

to assign to a set of objects a topology about which he knows a great deal in advance.

This can be done by stipulating that the topology must satisfy axioms in addition to

those generally required of topological space.

Two sets A and B of a space X are said to be separated if there exist two disjoint

open sets U and V such that A ⊆ U and B ⊆ V , (Dugundji, 1966; Engelking, 1989;

Patty, 1993). A subset A of X is said to be a regularly-open or an open domain if it is

the interior of its own closure, or equivalently if it is the interior of some closed set,

and A is said to be a regularly-closed or a closed domain if it is the closure of its own

interior, or equivalently if it is the closure of some open set, (Kuratowski, 1958). A

subset A of X is called a π-closed if it is a finite intersection of closed domains and A

is called a π-open if it is a finite union of open domains, (Zaitsev, 1968). A space X

is called a mildly normal if any two disjoint closed domains A and B can be separated,

(Singal and Singal, 1973). A space X is called an almost normal if any two disjoint

closed subsets A and B, one of which is closed domain, can be separated, (Singal and

Arya, 1970). A space X is called a quasi normal if any two disjoint π-closed sets A and
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B can be separated, (Zaitsev, 1968). A space X is said to be a π-normal, (Kalantan,

2008), if for every pair of disjoint closed sets A and B, one of which is π-closed, can

be separated. A space X is said to be an almost regular if any closed domain set A and

for each x 6∈ A, there exist two disjoint open sets U and V such that x ∈U and A ⊆V . A

space X is said to be an almost completely regular if for every closed domain set A and

for each x 6∈ A, there exists a continuous function f : X −→ [0,1], where [0,1] is the

unit interval with its usual topology such that f (x) = 0 and f (A) = {1}. A Hausdorff

space is a topological space satisfying the separation axiom T2. A Tychonoff space is a

topological space satisfying the separation axioms completely regular and T1. A space

X is said to be a semi-normal if for any closed subset A of X and every open subset B

of X with A ⊆ B, there exists an open subset U of X such that A ⊆ U ⊆ int(U) ⊆ B,

(Singal and Arya, 1970). By the definitions of weaker versions of normality, we have:

normal =⇒ π-normal =⇒ almost normal =⇒ mildly normal

normal =⇒ π-normal =⇒ quasi-normal =⇒ mildly normal

On the other hand, a subset A of X is said to be a pre-open, (Mashhour et al.,

1984), if A ⊆ int(A). A space X is called a pre-normal if any two disjoint closed

subsets A and B of X can be separated by two disjoint pre-open subsets of X , (Paul and

Bhattacharyya, 1995). A space X is called an almost pre-normal, (Navalagi, 2000), if

any two disjoint closed sets A and B, one of which is closed domain, can be separated

by two disjoint pre-open subsets. A space X is called a mildly pre-normal, (Navalagi,

2000), if any pair of disjoint closed domains A and B can be separated by two disjoint

pre-open subsets of X .

π-normality implies to almost normality but the converse is not true in general.
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The main problem was,“Is there an almost normal Tychonoff space which is not

π-normal?”. Kalantan did not give any example about almost normality and not

π-normality. He presented two open problems in his paper, see (Kalantan, 2008),

which are:

Problem 1. Is the Niemytzki plane almost normal? π-normal?.

Problem 2. Is the Sorgenfrey line square almost normal? π-normal?.

Also, Kalantan stated that there is an almost normal space but not π-normal in finite

spaces. Neither a proof nor an example was given. Some results as well as problems

on π-closed sets and π-normal spaces have been presented in (Thabit, 2008). In this

study, we solve all of those problems.

1.2 Literature Review

Separation axioms concern the ways of separating points and subsets in topological

space. Normality, one of the separation axioms, is an important topological property

and hence it is of significance both from intrinsic interest and from applications view

point to obtain factorizations of normality in terms of weaker topological properties.

Zaitsev (1968) introduced the notion of π-closed sets and the class of quasi-normal

space. Then, Singal and Arya (1970) introduced the class of almost normal space and

proved that a space X is normal if and only if it is both a semi-normal and an almost

normal. Singal and Singal (1973) introduced a weaker form of normality called mild

normality. In the last few years, many authors have studied several forms of normality,

as referred in many papers (Dontchev and Noiri, 2000; Ganster et al., 2002; Kohli and

Das, 2002; Noiri, 1994; Kalantan, 2008).
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π-normality, which was introduced by Kalantan in 2008, is a weaker version of

normality and lies between normality and almost normality (quasi-normality). The

importance of this property is that it behaves slightly different from normality and

almost normality (quasi-normality). π-normality is an additive property but neither a

productive nor a hereditary property in general. There are many π-normal topological

spaces which are not normal and there are many almost normal (quasi-normal) spaces

which are not π-normal.

On the other hand, the notion of pre-open sets, (Mashhour et al., 1982), plays a

significant role in general topology. The most important generalizations of regularity

(normality) are the notions of pre-regularity, (Benchalli et al., 2009), and strong

regularity (pre-normality, strong normality (Mashhour et al., 1984)), respectively.

Levine (1963) started the study of generalized open sets with the introduction of

semi-open sets. Then, Njastad (1965) studied α-open sets. Mashhour et al. (1982)

introduced pre-open and pre-continuity in topology. Since then many topologists have

utilized these concepts to the various notions of subsets, weak separation axioms,

weak regularity, weak normality and weaker and stronger forms of covering axioms

in the literature. The concepts of s-normal and s-regular spaces were introduced

and studied by Maheshwari and Prasad (1975, 1978). Arya and Nour (1990)

obtained some characterizations of s-normal spaces. Munshi (1986) introduced and

studied the notions of g-regular and g-normal spaces using g-closed sets. Further,

Noiri and Popa (1999) investigated the concepts that introduced by Munshi (1986).

Veerakumar (2002) defined the notions of g∗-pre-closed sets, g∗-pre-continuity and

g∗-pre-irresolute mappings. Nour (1989) used pre-open sets to define pre-normal

spaces. Navalagi (2000) has continued the study of further properties of pre-normal
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spaces, and also defined and investigated mildly pre-normal as well as almost

pre-normal, which are generalizations of both mildly normal and almost normal spaces.

In this thesis, we make a comprehensive study of π-normality. We introduce

and study a weaker version of pre-normality called π-pre-normality, which is a

generalization of π-normality. We also introduce and study new classes of pre-open

and pre-closed sets called π-pre-open and π-pre-closed.

1.3 Research Questions

Kalantan (2008) and Thabit (2008) presented many problems on π-normality. Now,

we list out those problems as follows:

Problems:

(1) Is there a semi-normal Hausdorff space which is not π-normal?.

(2) Is there an almost normal Tychonoff space which is not quasi-normal?.

(3) Is there an almost normal Tychonoff space which is not π-normal?.

(4) Is the rational sequence topological space almost normal? quasi-normal?

π-normal?.

(5) Is every finite almost normal space, π-normal?.

(6) Is there a version of π-normality analogous to Jones’ Lemma for normal spaces?.

(7) What are the conditions that should be given on two spaces X and Y so that the

product space X ×Y will be π-normal?.

(8) Is a finite product of π-open (π-closed) sets, π-open (π-closed)?.
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(9) If M is a π-open subspace of X and A ⊆ M. Is the statement “A is a π-open in M

if and only if A is a π-open in X”, true?.

(10) Is any almost regular Lindelöf space, π-normal?.

(11) Is any almost regular space with σ -locally finite base, π-normal?.

(12) Is any π-closed (π-open) set in an almost regular space with σ -locally finite base

an Fσ -set (a Gδ -set), respectively?.

(13) Is a π-closed (π-open, open domain) subspace of a π-normal space, π-normal?.

1.4 Research Objectives

The objectives of this study are:

(i) To make a comprehensive study of π-normality with other topological aspects

such as addition, product, quotient, subspace, images and pre-images of

functions.

(ii) To give various characterizations of π-normality by using π-generalized closed

sets and establish preservation properties under continuous or some generalized

sense of continuous mappings as well as some relationships between π-normality

and other weaker versions of both regularity and complete regularity.

(iii) To distinguish between π-normality and other weaker versions of normality by

giving counterexamples and improve some previous results on almost regularity,

almost complete regularity and almost normality.
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(iv) To give some conditions on two spaces X and Y so that the product space X ×Y

will be π-normal.

(v) To introduce and study a new concept of topological properties called

π-pre-normality and present some properties, examples, characterizations and

preservation theorems of it.

(vi) To introduce and study new classes of pre-open and pre-closed sets called

π-pre-open and π-pre-closed.

1.5 Research Methodology

We use the basic definitions and the theorems in the Chapter 2, and some definitions

and results in the references (Kalantan, 2008; Thabit, 2008; Singal and Singal, 1973,

1968; Singal and Arya, 1970, 1969a; Shchepin, 1972)...ect., to solve the listed main

problems by proving or giving counterexamples.

1.6 Thesis Contribution

Most results in this thesis are included in the chapters 3,4,5,6,7 and 8. The most

important results can be listed as follows:

(1) There exists a semi-normal Hausdorff space but not π-normal.

(2) There is an almost normal Tychonoff space but not quasi-normal.

(3) There is an almost normal Tychonoff space but not π-normal.

(4) The Niemytzki plane and the Sorgenfrey line square topological spaces are almost

normal but neither π-normal nor semi normal.
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(5) The rational sequence topological space is almost normal but neither quasi-normal

nor semi-normal.

(6) Every finite almost normal space is π-normal.

(7) There is a version of π-normality (quasi normality) analogous to Jones’ Lemma

for normal spaces.

(8) A finite product of π-open (π-closed, pre-open, pre-closed) sets is π-open

(π-closed, pre-open, pre-closed), respectively.

(9) An almost regular, Lindelöf space (or with σ -locally finite base) is not necessarily

π-normal.

(10) Any π-closed (π-open) set in an almost regular space with σ -locally finite base

is an Fσ -set (a Gδ -set), respectively.

(11) We study both π-closed and π-open sets in subspaces and prove the following

results:

• Let M be a π-open subspace of X and A ⊆ M. A is a π-open in M if and only

if A is a π-open in X .

• Let M be an open (dense) subspace of X and A ⊆ M. If A is an open domain

(closed domain, π-open, π-closed) in X , then A is an open domain (closed

domain, π-open, π-closed) in M, respectively.

• Let M be an open (dense) subspace of X and A ⊆ X . If A is an open domain

(closed domain, π-open, π-closed) in X , then M
⋂

A is an open domain

(closed domain, π-open, π-closed) in M, respectively.

(12) A π-open subspace of a π-normal space is not necessarily π-normal.
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(13) We give some conditions on two spaces X and Y so that the product space X ×Y

will be π-normal, where we prove the following results:

• If X is a π-normal, countably compact and M is a paracompact first

countable, then the product space X ×M is a π-normal.

• The product X ×Y of a countably nearly paracompact, π-normal space X and

a nearly compact second countable space Y , is a π-normal.

• Let X × I be the product of a space X and the closed unit interval I with its

usual topology. If X × I is a π-normal, then X ×{0} is a π-normal subspace

of X × I.

• A space X is a π-normal, countably nearly paracompact if and only if the

product space X × I is a π-normal.

(14) Every weakly regular (almost regular) paracompact space is a π-normal.

(15) Any regular, nearly paracompact space is a π-normal but an almost regular, nearly

paracompact space is not necessarily π-normal.

(16) We study both pre-closed and pre-open sets in subspaces and prove the following

results:

• Let M be a closed domain subspace of X and A ⊆ M. A is a pre-closed in M

if and only if A is a pre-closed in X .

• Let M be a closed subspace of X and A ⊆ M. If A is a pre-closed in M, then

A is a pre-closed in X .

• Let M be an open (or dense) subspace of X and A ⊆ M. A is a pre-open in M

if and only if A is a pre-open in X .
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• Let M be a closed domain subspace of X . If A is a pre-closed (pre-open) in

X , then A
⋂

M is a pre-closed (pre-open) in M, respectively.

• Let M be an open (or dense) subspace of X . If A is a pre-open (pre-closed) in

X , then A
⋂

M is a pre-open (pre-closed) in M, respectively.

• If M is an open (or dense) subspace of X and A ⊆ M, then pclM(A) =

pclX(A)
⋂

M.

(17) A closed domain subspace of a π-pre-normal space is a π-pre-normal.

(18) The image of a pre-closed (pre-open) subset under a closed-and-open bijective

continuous function is a pre-closed (pre-open), respectively.

(19) The inverse image of a pre-closed (pre-open) subset under an open continuous

function is a pre-closed (pre-open), respectively.

(20) An open subspace of a sub-maximal space is a sub-maximal, and the product of

two sub-maximal spaces is a sub-maximal.

(21) π-pre-normality is both a topological and an additive property but neither a

productive nor a hereditary property in general.

(22) There is a version of π-pre-normality analogous to the Urysohn’s Lemma for

normal spaces by adding some conditions.

1.7 Thesis Organization

This thesis is organized as follows:

Chapter 1; Introduction: This chapter is an introduction of the thesis.
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Chapter 2; Preliminaries: This chapter contains some basic definitions, theorems

and some classical results in the General Topology as well as in the Set Theory, which

we are going to use throughout the thesis.

Chapter 3; π-Open and π-Closed Sets: In this chapter, we give a survey study

of the notions of π-closed and π-open sets. These kinds of sets are used to define the

notions of both π-normality and π-pre-normality. We study these notions in subspaces,

in free sum and in product spaces. Also, we study the images and the inverse images

of these under continuous functions. We prove some various properties of them and

present some examples.

Chapter 4; π-Normal Topological Spaces: In this chapter, we study the notion of

π-normality. We obtain various characterizations, properties and examples concerning

it and present its relationships with other types of separation properties weaker than

normality as well as regularity. We present some properties of almost regular spaces

and improve a few of them. We show that an almost regular Lindelöf space (or with

σ -locally finite base) is not necessarily π-normal by giving two counterexamples. We

give some conditions to assure that the product of two spaces will be π-normal and

that the quotient space of a π-normal space will be π-normal.

Chapter 5; New Results on π-Normality: In this chapter, we present the most

important results on π-normality. We show that there is a version of π-normality

analogous to Jones’ Lemma for normal spaces and prove that both the Niemytzki

plane and the Sorgenfrey line square topological spaces are almost normal but neither

π-normal nor semi-normal. Also, we prove that the rational sequence topological space
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is almost normal but neither semi-normal nor quasi normal and that every finite almost

normal space is π-normal. We present some characterizations of almost completely

regular spaces by using the notions of π-closed as well as zero-sets.

Chapter 6; π-Normal and Nearly Paracompact Spaces: In this chapter, we present

some results on π-normal and nearly paracompact spaces. We give other conditions on

two spaces X and Y so that the product space X ×Y will be π-normal. We prove that if

the product space X × I is π-normal, then the subspace X ×{0} is π-normal. We also

show that X is π-normal countably nearly paracompact if and only if the product space

X × I is π-normal.

Chapter 7; π-Pre-normal Topological Spaces: In this chapter, we introduce and

study a weaker version of pre-normality called π-pre-normality. We show that this

notion is both a topological and an additive property, and prove that it is hereditary only

with respect to closed domain subspaces. Some properties, examples, characterizations

and preservation theorems of this property are presented. We study the notions of

pre-open (pre-closed) sets in subspaces as well as their images and inverse images

under continuous functions. We give some characterizations of almost pre-regularity

by using the notion of π-closed sets and present its relationships with π-pre-normality.

Chapter 8; π-Pre-open and π-Pre-closed Sets: In this chapter, we introduce

new classes of pre-open and pre-closed sets called π-pre-open and π-pre-closed,

respectively, which are the generalizations of π-open and π-closed. We present and

prove some basic properties of them. We prove the facts that an open subspace of

a sub-maximal (resp. an extremally pre-disconnected) space is a sub-maximal (resp.
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an extremally pre-disconnected) and that the product of two sub-maximal spaces is a

sub-maximal. We also prove that a finite product of pre-closed (pre-open) sets is a

pre-closed (pre-open). We investigate that π-pre-normality is neither a productive nor

a hereditary property in general by giving two counterexamples. We also show that

there is a version of π-pre-normality analogous to the Urysohn’s Lemma for normal

spaces by adding some conditions.

Chapter 9; Conclusion: This chapter summarizes the most important results that

have been found throughout the study. We also present some problems that found

during this research, and we still do not have the answers for them until now.

References; We list the references that have been used in the research.
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CHAPTER 2

PRELIMINARIES

In this chapter, some basic definitions, theorems and some classical results in general

topology as well as in set theory, which we are going to use throughout the thesis, are

presented (without proof). The closed unit interval [0,1] is denoted by I and it will be

considered with its usual topology. Throughout this thesis, a space X always means a

topological space on which no separation axioms are assumed, unless explicitly stated.

We will denote an ordered pair by 〈x,y〉. A is an open in X means A is an open set in

X or A is an open subset of X . Similarly, if A is closed in X . The main references of

this chapter are (Arhangel’skii, 1963; Dugundji, 1966; Engelking, 1989; Patty, 1993;

Steen and Seebach, 1995). At first, we give the definitions of a topology and an open

set.

2.1 Topological spaces, open and closed sets

Definition 2.1 A topological space is a pair (X ,T ) consisting of a non-empty set X

and a family T of subsets of X satisfying the following conditions:

(T1) X , /0 ∈ T .

(T2) If U ∈ T and V ∈ T , then U
⋂

V ∈ T .

(T3) If Uα ∈ T for each α in an index set Λ, then
⋃

α∈ΛUα ∈ T .
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The set X is called a space, the elements of X are called points of the space and the

subsets of X belonging to T are called open sets. The family T of open subsets of X

is also called a topology on X . An open neighborhood of an x ∈ X is just any open set

U containing x.

Definition 2.2 A subset A of X is called a closed subset if its complement X \A is an

open. A subset A is called a clopen subset if it is an open and a closed subset at the

same time.

Definition 2.3 Let A be a subset of X .

(i) The interior of A is denoted by int(A) and defined as:

int(A) = {x ∈ X : there is an open set U ∈ T such that x ∈U ⊆ A}.

(ii) The closure of A is denoted by A and defined as:

A = {x ∈ X : U
⋂

A 6= /0, for each U ∈ T with x ∈U}.

(iii) A point x ∈ X is called a limit point (or an accumulation point) of A if for any

open neighborhood U of x, we have U
⋂
(A\{x}) 6= /0. The set of all limit points

of A is called derived set and denoted by Ad .

2.2 Properties of the closure and the interior

Now, we give some properties of int(A) and A, which are in (Engelking, 1989; Patty,

1993).

Proposition 2.4 Let X be a space and A,B ⊆ X. Then,
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(1) A = A
⋃

Ad .

(2) int(A
⋂

B) = int(A)
⋂

int(B).

(3) int(A
⋃

B)⊇ int(A)
⋃

int(B).

(4) If A ⊆ B, then A ⊆ B.

(5) A
⋃

B = A
⋃

B.

(6) A
⋂

B ⊆ A
⋂

B.

(7) A = A.

(8) X \A = X \ int(A)

(9) int(X \A) = X \A.

(10) A is an open if and only if A = int(A).

(11) A is a closed if and only if A = A.

2.3 Subspaces, bases and subbases for a topology

Definition 2.5 Let M be a non-empty subset of a topological space (X ,T ). The

subspace topology or relative topology on M determined by T is the collection

TM = {U
⋂

M : U ∈ T }.

If X and Y are two spaces and A ⊆ X
⋂

Y , then we denote the interior of A with

respect to the space X by intX(A), the interior of A in the space Y by intY (A), the

closure of A in X by AX and the closure of A in Y by AY . Also, if U ⊆ X
⋂

Y , then we

say U is an X-open if it is an open in X and similarly, for Y -open.
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Remark 2.6 (Engelking, 1989) Let M be a subspace of X and A ⊆ M. Then:

(i) intX(A)⊆ intM(A).

(ii) AM ⊆ AX .

(iii) intM(A) = M \ (M \A
X
).

Definition 2.7 Let (X ,T ) be a topological space. A subfamily B of T is called a

base of X if every non-empty open subset of X can be represented as a union of a

subfamily of B. Any open set B ∈ B is called a basic open subset of X . Any base B

of X satisfies the following conditions:

[B1] X =
⋃{B : B ∈ B}.

[B2] If B1,B2 ∈B and x ∈ B1
⋂

B2, then there exists B ∈B such that x ∈ B ⊆ B1
⋂

B2.

Proposition 2.8 Let B be a family of subsets of X, which has properties [B1] and [B2].

Define T on X by U ∈ T if and only if U = /0 or U =
⋃

B0, for a subfamily B0 ⊆ B.

Then, T is a unique topology on X, which has B as a base. The topology T is called

the topology generated by B.

Definition 2.9 A family P ⊂ T is called a subbase for a topological space (X ,T ) if

the family of all finite intersection U1
⋂

U2
⋂

U3
⋂
...

⋂
Un, Ui ∈ P for i = 1,2,3, ...,n,

is a base for (X ,T ).
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2.4 Some special topological spaces

Now, we give the definitions of some famous topological spaces.

Example 2.10 (The usual topology on R)

Consider the real numbers R and let B = {(a,b) : a,b ∈ R,a < b} be the set of all

bounded open intervals. Then, B is a base for a unique topology on R. This topology

is called the usual topology on R and denoted by U .

Example 2.11 (The Sorgenfrey line topology on R)

Consider the set of real numbers R and let B = {[a,b) : a,b ∈ R,a < b}. Then, B

is a base for a unique topology on R. This topology is called the Sorgenfrey line

and denoted by S . The Sorgenfrey line square is the square of the Sorgenfrey line

topological space.

Example 2.12 (The left ray topology on R)

Consider the set of real numbers R and let B = {(−∞, a) : a ∈ R}, then B is a base

for a unique topology on R. This topology is called the left ray topology and denoted

by L .

Example 2.13 (The right ray topology on R)

Consider the set of real numbers R and let B = {(a,+∞) : a ∈ R}, then B is a base

for a unique topology on R. This topology is called the right ray topology and denoted

by R.

18



Example 2.14 (The particular point topology)

Let X be any set having more than two points. Fix a point p ∈ X . Define Tp ⊆ P(X)

as follows:

Tp = { /0}
⋃
{U ⊆ X : p ∈U}

If X = R, then (R,Tp) is called the particular point topology on R.

Example 2.15 (The co-countable topology on R)

The co-countable topology on R is denoted by C C and defined as U ∈C C if and only

if U = /0 or R\U is countable.

Example 2.16 (The co-finite topology on R)

The co-finite topology on R is denoted by C F and defined as U ∈ C F if and only if

U = /0 or R\U is finite.

2.5 Local base and famous examples

The following definitions are in (Engelking, 1989; Patty, 1993)

Definition 2.17 A family B(x) of open neighborhoods of x is called a local base of X

at the point x if for any open neighborhood V of x, there exists an open set U ∈ B(x)

such that x ∈U ⊆V .

Definition 2.18 Let X be a space and suppose that for every x ∈ X a local base B(x)

of X at x is given, then the collection {B(x) : x ∈ X} is called a neighborhood system.

Any neighborhood system {B(x) : x ∈ X} of X satisfies the following conditions:
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[BP1] For each x ∈ X , B(x) 6= /0 and for each U ∈ B(x), we have x ∈U .

[BP2] If x ∈U ∈ B(y), then there exists an open set V ∈ B(x) such that V ⊆U .

[BP3] For each U1,U2 ∈ B(x), there exists an open set U ∈ B(x) such that U ⊆

U1
⋂

U2.

Proposition 2.19 Let X be a non-empty set and {B(x) : x ∈ X} be a collection of

families of subsets of X, which satisfies properties [BP1], [BP2] and [BP3]. Let T be

the family of all subsets of X that are unions of subfamilies of
⋃

x∈X B(x). Then, T is

a unique topology on X while the collection {B(x) : x ∈ X} is a neighborhood system

of X. The topology T is called the topology generated by the neighborhood system

{B(x) : x ∈ X}.

Definition 2.20 A sequence of a space X is a function a : X −→N such that a(k) = ak.

For each m ≥ 1, a set Am = {ak : k ≥ m} is called a tail of (an)n∈N.

Definition 2.21 Let X be a space. We say that a sequence (an)n∈N converges to x ∈ X

and denoted by an −→ x if for any open neighborhood Ux of x, there exists a tail Am

of (an)n∈N such that Am ⊆ Ux. That means for any open neighborhood Ux of x, there

exists an m ∈ N such that ak ∈Ux for each k ≥ m.

Now, we recall the definitions of two famous topological spaces, which are the

Niemytzki plane and the rational sequence, (Steen and Seebach, 1995).

Example 2.22 Let P= {〈x,y〉 : x,y ∈ R,y > 0} be the open upper half-plane with the

usual Euclidean topology and L be the x-axis. We generate a topology T on X =P
⋃
L
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by the following neighborhood system: the basic open neighborhood of 〈x,y〉 ∈ P is an

open disc D in P. The basic open neighborhood of 〈x,0〉 ∈L is of the form {〈x,0〉}⋃D,

where D is an open disc in P, which is tangent to L at the point 〈x,0〉. This topology is

called the Niemytzki plane or the Moore plane.

Example 2.23 Let X = R. For each x ∈ P, where P is the irrational numbers, fix a

sequence {xn}n∈N ⊂Q such that xn −→ x, where the convergency is taken in (R,U ).

Let An(x) denote the nth-tail of the sequence, where An(x) = {x j : j ≥ n}. For each

x ∈ P, let B(x) = {Un(x) : n ∈ N}, where Un(x) = An(x)
⋃{x}. For each x ∈ Q, let

B(x) = {{x}}. Then, {B(x)}x∈R is a neighborhood system. The unique topology on

R generated by {B(x)}x∈R is called the rational sequence on R and denoted by RS .

2.6 Continuous functions and homeomorphism

The following definitions and results are in (Engelking, 1989; Patty, 1993)

Proposition 2.24 Let X and Y be two sets, f : X −→ Y be a function, A,B ⊆ X and

C,D ⊆ Y , then:

(i) f (A
⋃

B) = f (A)
⋃

f (B).

(ii) f−1(C
⋃

D) = f−1(C)
⋃

f−1(D).

(iii) f (A
⋂

B) ⊆ f (A)
⋂

f (B) and f (A
⋂

B) = f (A)
⋂

f (B) if and only if f is

one-to-one.

(iv) f−1(C
⋂

D) = f−1(C)
⋂

f−1(D).
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(v) f (A)\ f (B)⊆ f (A\B).

(vi) A ⊆ f−1( f (A)) and A = f−1( f (A)) if f is one-to-one.

(vii) f ( f−1(D))⊆ D and f ( f−1(D)) = D if f is onto.

Definition 2.25 Let X and Y be two spaces. Then,

(1) A function f : X −→Y is called a continuous at a point x ∈ X if for each open set V

in Y with f (x) ∈V , there exists an open set U in X such that x ∈U and f (U)⊆V .

The function f is called continuous on X if it is continuous at each point x ∈ X .

(2) A function f : X −→ Y is called an open (resp. a closed) if the image of any open

(resp. closed) set in X is an open (resp. closed) set in Y .

(3) A function f : X −→ Y is called a clopen if it is a closed and open.

Observe that we do not require continuity in the definitions of open and closed

functions.

Theorem 2.26 Let X and Y be two spaces and f : X −→ Y be a function, then the

following statements are equivalent:

(a) f is continuous.

(b) For each open set V ⊆ Y , f−1(V ) is an open in X.

(c) The inverse image of all members of a subbase P for Y are open sets in X.

(d) For each basic open set W ⊆ Y , f−1(W ) is an open in X.
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(e) For each closed set M ⊆ Y , f−1(M) is a closed in X.

(f) For each A ⊆ X, we have f (AX
)⊆ f (A)

Y
.

(g) For every B ⊆ Y , we have f−1(B)
X ⊆ f−1(BY

).

(h) For every B ⊆ Y , we have f−1(intY (B))⊆ intX( f−1(B)).

Theorem 2.27 Let f : X −→ Y be a continuous function, A ⊆ X and B ⊆ Y , then:

(1) f is a closed if and only if f (A)
Y
= f (AX

).

(2) f is an open if and only if intX( f−1(B)) = f−1(intY (B)).

(3) f is an open if and only if f−1(B)
X
= f−1(BY

).

(4) If f is an open, then f (intX(A))⊆ intY ( f (A)).

(5) If f is an open and onto, then f (intX(A)) = intY ( f (A)).

Definition 2.28 A function f : X −→Y is called a homeomorphism if it is continuous,

one-to-one, onto and f−1 is continuous. Two spaces X and Y are homeomorphic if

there exists a homeomorphism f from X onto Y and denoted by X ∼= Y .

Definition 2.29 A property P is said to be a topological property if whenever one

space possesses the property P, any space homeomorphic to it also possesses the same

property. If every subspace has the property P whenever a space does, then the property

P is said to be a hereditary property.
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Proposition 2.30 Let f be a bijective continuous function from a space X onto a space

Y , then the following conditions are equivalent:

(1) f is a homeomorphism.

(2) f is a closed.

(3) f is an open.

(4) The set f (A) is a closed in Y if and only if A is a closed in X.

(5) The set f−1(B) is an open in X if and only if B is an open in Y .

(6) The set f−1(B) is a closed in X if and only if B is a closed in Y .

(7) The set f (A) is an open in Y if and only if A is an open in X.

2.7 Separability, second and first countability

The following definitions and propositions are in (Engelking, 1989; Patty, 1993).

Definition 2.31 A point x in a space X is called an isolated point if and only if {x} is

open. Indeed, the singleton {x} is open if and only if {x}=X \X \{x}, i.e., x 6∈X \{x}.

Definition 2.32 A set A is called a finite if it is an empty or there exists a bijective

function f : A → In, where In = {a1,a2, ...,an}, n ∈ N. A set that is not finite is called

an infinite. A set A is called a countably infinite if there exists a bijective function

f : A →N. A set A is called a countable if it is finite or countably infinite. A set that is

not countable is said to be uncountable.
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