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PEMACU 0.8 – 2.4 GBPS DENGAN SKIM “DE-EMPHASIS” BOL EH LARAS 

BAGI ANTARAMUKA MEMORI DDR3 

 

ABSTRAK 

 

 Keperluan lebar jalur memori untuk menaikkan prestasi sistem komputer telah 

mendorong evolusi memori sistem ke tahap penggunaan teknologi “Double Data Rate 

Synchronous Dynamic Read Access Memory (DDR SDRAM)”. Kecenderungan untuk 

memaksimakan lebar jalur memori telah menyebabkan Gangguan Antara-Simbol (ISI) 

menjadi penting dan ia menjejaskan integriti isyarat bagi data yang dihantar. Dalam 

penyelidikan ini, seni bina pemacu dengan skim kawalan “de-emphasis” dan rintangan 

boleh laras adalah dicadangkan untuk kadar data dan kepadatan sistem memori DDR3 

SDRAM yang tinggi. Pemacu yang dicadangkan dilaksanakan dengan menggunakan 

proses teknologi CMOS 45 nm. Rekabentuk dan pelaksanaan litar yang dicadangkan 

melibatkan reka bentuk seni bina pemacu, pengawal data, blok penentukuran rintangan 

dengan penjana rujukan serta rangka lantai untuk litar analog yang kritikal iaitu tiga 

segmen pemacu bagi simulasi pasca-rangka lantai untuk memastikan parasitik dalam 

rangka lantai tidak mempunyai kesan yang besar ke atas prestasi pemacu. Pemacu ini 

mempunyai 15 kaki “de-emphasis” yang membentuk 15 tahap voltan “de-emphasis” 

yang mampu mengurangkan ketar ISI yang disebabkan oleh frekuensi operasi yang 

tinggi. Selain itu, kepadatan sistem memori DDR3 yang tinggi boleh merosotkan ketar 

mata dan ketinggian mata dan hal ini menyebabkan kesukaran dalam pensampelan dan 

pemulihan data.  Oleh itu, rintangan pemacu yang dicadangkan boleh diprogramkan 

antara 20, 30 dan 40 Ω untuk mengimbangi kesan perubahan “motherboard routing” 



xix 

 

dalam sistem memori bagi memperbaik integriti isyarat. Simulasi pra dan pasca-rangka 

lantai telah menunjukkan pemacu yang dicadangkan mampu mengurangkan isyarat 

ketar mata pada 37.3, 37.2 dan 32.5% untuk rintangan 20, 30 dan 40 Ω dengan kod “de-

emphasis” yang tertentu. Keputusan keseluruhan yang diperolehi melalui simulasi pra- 

rangka lantai dan pasca-rangka lantai telah menunjukkan persetujuan yang baik 

terhadap spesifikasi yang disasarkan. 
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A 0.8 – 2.4 GBPS DRIVER WITH ADJUSTABLE DE-EMPHASIS SCHEME 

FOR DDR3 MEMORY INTERFACE 

 

ABSTRACT 

 

The need for greater memory bandwidth to boost the computer system 

performance has driven system memory evolution to Double Data Rate Synchronous 

Dynamic Read Access Memory (DDR SDRAM) technologies. Trends to maximize 

memory bandwidth have caused Inter-Symbol Interference (ISI) become significant 

which degraded the signal integrity of transmitted data. In this research, a driver 

architecture with adjustable de-emphasis and impedance control scheme is proposed for 

high-data rate and high-density DDR3 SDRAM memory system. The proposed driver is 

implemented using 45 nm CMOS process technology. The designs and implementations 

of the proposed driver involve the design of driver architecture, data controller, 

impedance calibration block with reference generator as well as the layout for critical 

analog circuits i.e. three driver segments for post-layout simulations to ensure the 

parasitic in layout does not has significant effect on driver performances. The driver has 

15 de-emphasis legs that can form 15 de-emphasis voltage levels that capable of 

reducing ISI-induced jitter at high operating frequency. Moreover, high density DDR3 

memory system can deteriorate the far-end eye jitter and eye height that causes 

difficulties in data sampling and recovery. Thus, the driving impedance of the proposed 

driver can be programmed between 20, 30 and 40 Ω to compensate the variability of 

board routing effect in memory system and hence, improving signal integrity. The post-

layout simulations show the proposed driver is capable of reducing 37.3, 37.2 and 32.5% 



xxi 

 

of signal eye jitter for 20, 30 and 40 Ω driving impedance with suitable de-emphasis 

code selected. The overall results obtained with pre-layout and post-layout show good 

agreement with the targeted specifications. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

This chapter gives the introduction and the motivation behind this research. 

Moreover, the objectives, scopes and contributions of this research will be presented.  

 

 

1.1 Background of Study 

In modern computer systems, a computer processor performs any useful tasks by 

copying the corresponding applications from disk drive to system memory for 

processing and executing purposes. Figure 1.1 shows the connection between processor, 

system memory and memory controller. System memory consists of DRAM (Dynamic 

Read Access Memory) chips with memory controller is connected via the memory bus 

that comprises of data bus and address / command bus.  

 

Figure 1.1: Communication of processor to system memory through  

a memory controller (Memory Technology Evolution, 2010). 
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In Figure 1.1, however, the read / write operations in system memory are 

asynchronous as these operations are executed without a memory bus clock. For 

instance, memory controller determines when to assert read command and expects data 

returned from system memory based on absolute number of memory clock cycles and 

this causes longer data transfer delays between memory controller and system memory 

(Campardo, Micheloni and Novosel, 2005). Therefore, JEDEC (Joint Electronic Device 

Engineering Council) developed the SDRAM (Synchronous DRAM) technology to 

reduce the absolute number of memory clock cycles needed for reading or writing data 

with the use of memory bus clock issued by memory controller to synchronize the 

operations in SDRAM chip (Memory Technology Evolution, 2010). This reduces 

processor-to-memory delay and simplifies the design of memory controller since it no 

longer needs to determine the number of memory clock cycles needed for reading or 

writing operations (Balch, 2003). Thus, SDRAM reduces delay during data transferring 

between memory controller and system memory to improve the bandwidth of system 

memory which improves the computer system performances (Jacob, Ng and Wang, 

2007). In addition, the bandwidth of system memory is multiplication of the frequency 

of transferring data in memory bus and the number of data bits in memory bus. Thus, 

the bandwidth of system memory can be improved by increasing the frequency of 

transferring data in memory bus, number of data bits in memory bus or both of them 

(Balch, 2003). Moreover, the need for greater system memory bandwidth to boost 

computer system performance is increasing over the years. This has driven evolution of 

system memory from asynchronous DRAM to SDRAM, RDRAM (Rambus DRAM) 
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and eventually to DDR (Double Data Rate) SDRAM technologies with the increasing of 

memory bus frequency, as shown in Figure 1.2 (Memory Technology Evolution, 2010). 

 

Figure 1.2: System memory evolution from SDRAM to DDR3 technology (Memory 

Technology Evolution, 2010). 

 

The types of memory technology and their features are discussed as follows 

(Memory Technology Evolution, 2010):  

(1) SDRAM Technology 

SDRAM is a memory technology with 3.3 V signaling developed by JEDEC in 

the early 1990s which uses a memory bus clock issued by memory controller to 

synchronize the read and write operations in the memory chip. This reduces delay 

between memory controller and system memory to achieve higher system memory 

bandwidth as compared to DRAM.   

 

(2)  RDRAM (Rambus DRAM) Technology 

RDRAM is a memory technology introduced in the late 1990s to achieve higher 

memory bandwidth than SDRAM with same signaling voltage at 3.3 V. However, the 
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cost of RDRAM is higher since it utilized high-speed serial link to transfer data between 

system memory and memory controller, which needs special memory bus design as 

compared to SDRAM chips.  

 

(3) DDR1 (Double Data Rate 1) SDRAM Technology 

DDR SDRAM has similar design with conventional SDRAM, but it has faster 

bandwidth and lower costs to replace RDRAM in computer system. DDR1 is the first 

generation of DDR SDRAM technology which uses 2.5 V low-voltage signaling as 

compared to 3.3 V in SDRAM. This improves heat dissipation due to lower power 

consumption. Moreover, DDR1 transfers data using both the rising and falling edges of 

each memory clock cycle without increasing the memory clock frequency. This 

effectively doubles the data rate as compared to SDRAM and RDRAM that transfers 

one data by only using the rising edge of memory clock cycle.  

 

(4) DDR2 SDRAM Technology 

The DDR2 is the second-generation of DDR SDRAM technology. DDR2 

achieves lower power consumption by using 1.8 V signaling and gives higher 

performance via faster clocks up to 400 MHz with memory bandwidth of 6400 MB / s.  

 

(5) DDR3 SDRAM Technology 

Besides, DDR3 is the third-generation of DDR SDRAM technology which 

further improves power consumption and memory bandwidth. As compared to DDR2, 

DDR3 with 1.5 V signaling has reduces the power consumption up to 30 % at same 
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memory clock frequency. Also, DDR3 can operate at memory clock frequency from 

400 MHz to 1200 MHz (not shown in Figure 1.2) to achieve higher bandwidth from 

6400 MB / s up to 19200 MB / s to boost the computer system performance.  

 

 As the system memory bandwidth increases with memory clock frequency, the 

major performance limiting factor in computer system with DDR3 memory is the ISI 

(Inter-Symbol Interference) at memory bus (Mishra et al., 2011). ISI is a phenomenon 

where a digital symbol on the memory channel is corrupted by its previous symbol 

traveling on the same channel (Dally and Poulton, 1997; Zhang et al., 2007).  

 
(a) 

 

 
(b) 

Figure 1.3: ISI effect on a digital signal. (a) Original signal with isolated pulses, 

(b) Attenuation on isolated pulses at receiving-end (Dally and Poulton, 1997). 
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In high speed communication systems, ISI is most pronounced when a single 

isolated high frequency pulse is transmitted to transmission channel. In Figure 1.3 (a), 

there are two single isolated high frequency pulses. Due to ISI in lossy channel, un-

attenuated low frequency signal (non-transition signal) before single isolated high 

frequency pulse can cause it to hardly reach the receiver threshold of the signal swing, 

resulting very low probability of correct detection as shown in Figure 1.3 (b) (Dally and 

Poulton, 1997 ).  

 

  Therefore, the impacts of ISI are difficulties in detection and recovery of 

corrupted symbol. As a consequence, the performance of computer system with DDR3 

memory become bottleneck due to ISI impacts as the memory clock frequency is 

increasing to achieve greater memory bandwidth (Lee, Lee and Nam, 2010; Mishra et 

al., 2011; Nam, Dreps, Mandrekar and Nanju, 2010). Thus, the work in this research is 

dedicated to investigate the ISI at high frequency in computer system with DDR3 

memory and propose the approaches to minimize the ISI impacts. 

 

 

1.2 Problem Statements 

Performance of modern computer system is increasingly restricted from greater 

memory bandwidth due to the existence of ISI on memory channel (Mishra et al., 2011). 

As a stream of digital symbol transmitted through a memory channel, a symbol can be 

corrupted by another symbol traveling on the channel at an earlier time. This inter-

symbol interference occurs when the energy of earlier symbol being stored in the 
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channel sums with the later unrelated symbol, resulting in later symbol corrupted (Dally 

and Poulton, 1998). ISI can be caused by signal reflection due to termination 

mismatches between memory channel with driver or receiver. Moreover, the existence 

of frequency-dependent skin-effect resistance in channel which combines with 

capacitances along memory channel can form a LPF (Low-Pass Filter) that attenuates 

high frequency components of a symbol. Thus, ISI happens when the attenuated high-

frequency signal components in the lossy channel are overwhelmed by the un-

attenuated low-frequency components (Heidar, Dessouky and Ragaie, 2007). This 

degrades signal noise margins and increases signal jitter which causes data detection 

and recovery at receiving-end become very challenging. A non-optimal option to 

minimize ISI is reducing the maximum frequency at which the memory can operate; but, 

this limits the memory bandwidth and computer performance. Therefore, ISI in lossy 

channels must be compensated to ensure received signal has good signal integrity for 

correct data detection and recovery to achieve low BER (Bit Error Rate) (Liu and Lin, 

2004).  

 

Driver de-emphasis techniques have been widely used for applications in chip-

to-chip communication to compensate ISI and improve the received signal quality for 

correct clock and data recovery (Liu and Lin, 2004). As mentioned previously, skin-

effect resistance in a lossy channel attenuates high frequency components of a signal 

and causes ISI. Thus, de-emphasis is a technique to attenuate low frequency 

components of a signal by a factor similar to high frequency attenuation in lossy 

channel so that all frequency components of a signal are attenuated by similar factor 
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after the lossy channel (Dally and Poulton, 1997). Figure 1.4 (a) shows a signal with 

amplitude of low frequency components (non-transition signal) is de-emphasized or 

reduced before transmitted to channel. In addition, Figure 1.4 (b) shows the received 

signal at receiver-end. It can be observed that the single isolated pulses and high-

frequency segments are centered on the receiver threshold, providing adequate eye 

openings for data detection. 

 

(a) 

 

 

(b) 

Figure 1.4: (a) Signal with de-emphasis applied to attenuate low frequency components, 

(b) Received signal with high frequency components are centered on the  

receiver threshold (Dally and Poulton, 1997). 
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Therefore, this work focuses on the circuit design, analysis and layout 

implementation of driver de-emphasis for DDR3 memory interface to overcome ISI at 

high data rates (i.e. high memory clock frequency) to achieve greater memory 

bandwidth and boost the performance of computer system with DDR3. 

 

 

1.3 Research Objectives 

The following objectives are set to this research: 

(1) To design a driver with adjustable de-emphasis scheme to compensate ISI. 

Adjustable de-emphasis scheme provides a range of de-emphasis settings that 

can be selected to effectively compensate ISI.       

 

(2) To design and integrate the adjustable impedance scheme into the proposed 

driver. Adjustable impedance scheme provides a range of output impedance that 

can be selected to adjust signal swing and improve signal noise margin.  

 

 

1.4 Scope of Research 

This research focuses on the design and implementation of de-emphasis driver 

for DDR3 SDRAM memory interface. The proposed driver is designed using 45 nm 

CMOS process technology. The implementation of the design is from schematic to 

layout. The software / tools used for the purpose of simulation are: Virtuoso Schematic 

Editor from Cadence, PRESTO simulator for pre and post-layout simulation and 

GeneSys Layout Editor from Eagleware for layout design. 
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1.5 Research Contribution 

This research contributes to the knowledge in high-speed I / O design 

particularly in DDR3 memory system. The design and development of the proposed 

driver architecture is anticipated to be one of the pioneering attempts in providing new 

trend of designing a low power driver with adjustable de-emphasis to effectively reduce 

ISI-induced jitter and improve signal integrity. This research contributes to knowledge 

in the following specific areas:  

(1) Contributes to the knowledge in the R & D (Research and Development) of 

high-speed I / O (Input / Output) design by presenting systematic circuit design 

like high-speed driver design, impedance control and output slew rate control 

technique. In addition, comprehensive design analysis and performance 

discussion on impedance matching and output slew rate across PVT (Process, 

Voltage and Temperature) variations are presented. 

 

(2) Exhibits the critical issues and challenges behind the design and development of 

the proposed driver. As the CMOS semiconductor process continuously scaling 

down, CMOS device dimension becomes smaller and gate-oxide has becomes 

thinner. When these devices are used in designing driver for 1.5 V DDR3 

memory interface, the high-voltage overstress on the gate oxide can lead to gate 

destruction since the CMOS devices are operating at voltage higher than their 

nominal voltage. Thus, special design techniques are demonstrated in this work 

to avoid device gate over-stressed and reliability issues. 
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(3) Contributes to the knowledge in memory industry by providing new 

methodology in the design of driver with adjustable de-emphasis for DDR3 

SDRAM memory interface. Moreover, the adjustable de-emphasis scheme 

provides a range of de-emphasis level that allows the most suitable de-emphasis 

output to be selected to accurately compensate ISI losses for achieving large 

signal eye opening at far-end. Consequently, receiver architecture will be less 

complexity and more power efficient in DDR3 SDRAM memory. 

 

 

1.6 Thesis Organization 

This thesis contains five chapters and is organized as follows: 

Chapter 1 gives the introduction and the motivation behind this research. This 

chapter also includes the research objectives and contribution to the knowledge of 

science and engineering.  

 

Chapter 2 provides the overview of driver circuit design. Different types of 

driver architecture and their pros and cons are discussed. This chapter also discusses 

various techniques to overcome ISI impacts. 

 

Chapter 3 discusses the design methodology and implementation of the 

proposed driver. Moreover, the circuit design of adjustable de-emphasis control and 

impedance control scheme is also presented. 

 



12 

 

Chapter 4 includes the pre- and post-layout simulation results of the proposed 

driver design. Detail analysis and discussion on the performance of the proposed design 

are given. 

 

Chapter 5 concludes the findings of the work in this project. It also includes the 

future works that can be performed to further develop the research on driver circuit in 

SDRAM industry. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 This chapter focuses on the reviews of literatures for different types of driver 

circuit and discusses the basic operation, pro and con of each driver. Moreover, the 

equalization techniques to overcome ISI-induced jitter are presented. In addition, 

special design technique to avoid gate-oxide reliability issue in driver that is designed 

using thin gate transistor will be discussed. Lastly, slew rate control, impedance control 

and pad capacitance reduction technique that helps in improving driver performance 

also will be presented.    

 

 

2.1 Driver Circuit 

 A driver can transmit information by converting data into either current or 

voltage form over a transmission line (Dally and Poulton, 1998). In this section, two 

basic types of driver circuit will be discussed, namely voltage-mode driver and current-

mode driver. 

 

2.1.1 Voltage-Mode Driver 

The simplest voltage-mode driver is a push-pull driver implemented by using a 

simple CMOS inverter, as depicted in Figure 2.1 (a). Due to the ease of implementation 
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and low power consumption, push-pull drivers were popular in the early days of CMOS 

ICs (Dally and Poulton, 1998). They have very low output impedance and are 

implemented using large transistor operating in linear region. When the input VIN is 

switching from logic low to high, the PMOS transistor is turned-off and NMOS 

transistor is turned-on to pull the output node VOUT from VDD towards ground and 

vice versa. Figure 2.1 (b) shows the pull-down I-V characteristic (NMOS is activated). 

It can be noticed that the IOUT in non-linear when VOUT is pulled from VDD towards 

ground, which implies a non-constant output impedance (∆VOUT / ∆IOUT) across 

operating voltages. This has caused signal reflection problem due to the impedance 

mismatched between push-pull driver and transmission line, especially at high operating 

frequency (Bartolini et al, 2007).  

 
                                  (a)                                                       (b) 

Figure 2.1: (a) Push-pull driver circuit. (b) Non-linear I-V characteristic of 

push-pull driver. 
 

On the other hands, source-series terminated (SST) driver is another voltage-

mode driver developed to overcome signal reflection problems faced by conventional 

push-pull driver (Kossel et al., 2008). Figure 2.2 (a) shows the SST driver circuit. It has 

extra resistor R in series with the pull-up and pull-down segment to limit drain-to-
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source voltage of transistors, thereby improving driver linearity. This is one of the 

important aspects in high speed I / O design since the output driver not only transmits 

data, but at the same time it also required to function as a terminator to self-terminate 

any reflected signals (Dally and Poulton, 1998; Kossel et al., 2008; Sang, Young and 

Man, 2008). Figure 2.2 (b) demonstrates the driver’s linearity can be improved by 

increasing the series resistance value.  

 

Figure 2.2: (a) SST driver circuit with series resistor in pull-up and pull-down segment.  

(b) I-V characteristic of SST driver improved by increasing series resistance R. 

 

2.1.2 Current-Mode Driver 

A differential current-mode driver connected with far-end resistive terminators 

is demonstrated in Figure 2.3. Since the impedance of tail current source is very large as 

compared to terminator R, the output impedance looking into VOUT and VOUTB is 

always can be approximated to R (Dally and Poulton, 1998; Li, Kwasnieski, Wang and 

Tao, 2005). The driver uses complementary inputs, VIN and VINB to ensure only one 

side of the differential pair in the driver is conducting at any given time. Therefore, 

from Figure 2.3, the differential inputs can control the current flow from tail current 
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source IT to the desired side of the driver. For instance, when VIN is low and VINB is 

high, the tail current IT is flowing from current source through switch M1 to both the 

near-end and far-end termination resistor R, creating a voltage VOUT = 
�

�
  IT R. The 

other side has no current flow since M2 is OFF and the output voltage VOUTB is equal 

to zero.  

 

Figure 2.3: Differential current-mode driver with terminators at receiving-end. 
 

 

2.2 Equalization Techniques 

Equalization techniques have been commonly used to reduce ISI-induced signal 

level loss and timing jitter by compensating frequency-dependent attenuation at high 

frequency (Liu and Lin, 2004). Equalization circuits are usually integrated with driver 

circuits or receiver circuits to reduce system cost. Thus, there are two types of 

equalization, i.e. receiver equalization and driver equalization (or driver de-emphasis) to 

compensate or equalize the high-frequency attenuations in a transmission channel. 

However, driver equalization is commonly done in communication systems due to the 

ease of circuit implementation. This is because equalization at driver allows the use of 
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simple receiver, but equalization at receiver would require a high performance analog-

to-digital converter (ADC) with high resolution which creates challenges in design and 

implementation (Dally and Poulton, 1998). Furthermore, de-emphasis technique in 

driver circuit is to de-emphasize the amplitude of low frequency components in the 

transmitted signal to equalize the attenuations of lossy channel on high frequency 

components. Driver equalization can be applied into two types of driver namely 

voltage-mode and current-mode driver that will be discussed in the following sub-

sections. 

 

2.2.1 Voltage-mode Driver De-emphasis 

A basic voltage-mode de-emphasis structure is shown in Figure 2.4 (a). It 

consists of main tap driver and post-cursor tap driver. Both drivers can be constructed 

from an identical TX instance, with main tap driver has higher weightage as compared 

to post-cursor tap driver (Heidar et al., 2007; Kudoh, Fukaishi and Mizuno, 2003). For 

instance, in Figure 2.4 (a), main tap driver is constructed using five TX instance while 

post-cursor tap driver is constructed using one TX instance only. Thus, the output 

impedance of main tap driver is five times smaller than that in post-cursor tap driver. As 

both the output of main tap and post-cursor tap driver are connected together, the output 

OUT[n] is depending on the combination ratio of the two output impedances. Moreover, 

the input IN[n] is connected to main tap driver, while the inverted one bit delayed data 

IN[n − 1]������������ is connected to post-cursor tap driver.  
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(a) 

 

(b) 

Figure 2.4: (a) Basic de-emphasis structure constructed with main tap driver and  

post-cursor tap driver, (b) Timing diagram for de-emphasis operation . 

 

Operations of de-emphasis can be illustrated in Figure 2.4 (b). When there is a 

transition in IN[n] from VSS to VCC at time = t0 and the  IN[n − 1]������������ = VCC due to 

inverted one bit delayed from IN[n], both the main tap driver and post-cursor tap driver 



19 

 

transmit same data, resulting in full voltage swing to VCC. At time = t2, there is 

repeated bit (no transition) in IN[n] = VSS and IN[n − 1]������������ = VCC, the main tap driver 

should pull-down the OUT[n] to VSS while post-cursor tap driver should pull OUT[n] 

up to VCC. However, due to the fact that main tap driver has smaller output impedance 

resulted by five TX instance in parallel, the OUT[n] will be slightly higher than VSS, 

thereby reducing output swing to achieve de-emphasis on the output signal. 

   

Besides, Zhang et al. (2007) proposed a voltage-mode de-emphasis driver to de-

emphasize the low frequency signal components. This driver can reduce signal swing 

and ISI impacts, thereby improving both the power consumption and bandwidth of 

transmission line. As shown in Figure 2.5, this approach comprises of one-tap FIR filter 

with delay cell and one DAC implemented by one un-attenuated driver (P1 / N1) and 

one attenuated driver (P2 / N2). FIR filter checks the current and previous data to 

determine when to turn-on the un-attenuated driver in DAC. The attenuated driver is 

always turned-on with its output swing between Vpre and Gpre. If there is a transition, 

the tri-state un-attenuated driver is turned-on and provides full signal swing at node 

Dout. Otherwise, the output swing is limited at Vpre and Gpre to provide de-emphasis 

on low frequency signal components. However, the output impedance of this driver is 

not constant because the tri-state un-attenuated driver is only activated when there is 

transition and the mismatch between the output impedance and transmission line 

impedance can cause signal reflection problem.    
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Figure 2.5: Voltage-mode driver de-emphasis circuit (Zhang et al., 2007). 

 

Therefore, to avoid output impedance mismatch; Wong, Hatamkhani, Mansuri 

and Yang (2004) introduced a two-tap de-emphasis voltage-mode driver with the output 

impedance matched to transmission line impedance, as shown in Figure 2.6 (a). The 

two-tap de-emphasis driver is implemented as a high-pass filter with the function below: 

 

Y[n] = X[n] – αX[n-1]         (2.1) 

where Y[n] is output of driver, X[n] is input data of driver, X[n-1] is one-bit delayed-

input data and α is de-emphasis ratio.    

 

In this architecture, the de-emphasis driver is decomposed into four binary-

weighted segments to drive an analog output Y[n] specified by equation (2.1). 

Depending on the digital input data, the output driver in each segment either pulls up or 
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down and thus, forming 16 possible outputs with 16 combination of pull-up and pull-

down impedance. The advantage of this architecture is the driver achieves de-emphasis 

and maintains output impedance matching simultaneously with impedance control 

circuit in Figure 2.6 (b). This is because all segments are in parallel resulting in constant 

50 Ω output impedance regardless of the de-emphasis ratio. In addition, this driver has 

slew rate control using pre-driver shown in Figure 2.6 (c) to improve timing 

performance. However, this driver has a fixed de-emphasis ratio which cannot precisely 

compensate the transmission losses if there are variations in transmission line 

fabrication.  The effectiveness of driver de-emphasis can be improved by adjusting 

suitable de-emphasis ratio to compensate transmission losses. This can be achieved by 

current-mode driver since the de-emphasis ratio can be easily adjusted by controlling 

the biasing voltage of current sources. 

 

                      (c)                                               (b)                                         (a) 

Figure 2.6: (a) Voltage-mode driver with two-tap de-emphasis filter, 

(b) Impedance control circuit, (c) Slew rate control circuit (Wong et al., 2004). 
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2.2.2 Current-mode Driver De-emphasis 

Li et al. (2005) proposed a driver with multi-tap FIR (Finite Impulse Response) 

de-emphasis using CML (Current-mode Logic) driver. The driver is implemented using 

5-tap FIR with the tap coefficients controlled by independent current sources. Figure 2.7 

shows the 5-tap FIR pre-emphasis driver with two 50 Ω termination resistor. Due to the 

large impedance of current source, the output impedance is always be approximated to 

50 Ω termination resistor regardless of the number of taps used. This good feature 

allows the use of multiple-tap to increase the effectiveness of driver pre-emphasis 

without facing significant output reflection problem. Moreover, the de-emphasis ratio 

can be easily controlled by adjusting the biasing voltage of current sources. 

 

Figure 2.7: 5-tap FIR Current-mode de-emphasis driver (Li et al., 2005). 

 

However, using independent current sources to control the tap weights has 

caused poor linearity as variations of transistor and channel length modulation effects 

can be different between current sources. Thus, Higashi et al. (2005) proposed a 5-tap 

FIR de-emphasis filter that can improve linearity by using a cascaded current mirror 
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scheme, as demonstrated in Figure 2.8. In this work, the de-emphasis filter provides 

overall amplitude or total current control using the block B with its gate bias voltage 

Vb2. Moreover, the ratio of de-emphasis is determined by the weight control through 

the block A1-A5, where each block consists of a parallel n-channel transistor array with 

bias voltage Vb1. The de-emphasis ratio is independent of total current from block B 

and can be controlled by varying the weight control signal in block A to precisely 

compensate for transmission line losses.   

 

Figure 2.8: The 5-tap FIR Current-mode de-emphasis driver with cascaded current 

mirror scheme (Higashi et al., 2005). 

 

Although the 5-tap FIR current-mode de-emphasis driver proposed by Higashi et 

al. (2005) provided good solution for ISI and reflection problem; but, the use of current-

mode driver has several drawbacks. Current-mode driver has high static power 
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consumption due to the employment of current sources. Also, the symmetric error in the 

current mirror circuit has caused the driver output unable to achieve desired voltage 

level. Although this problem can be solved by supplying more current in the current 

mirror, but this solution increases the power consumption. Another solution is to 

increase the length of current mirror; however, the long channel transistor in current 

mirror is not area efficient (Heidar et al., 2007). Therefore, current-mode topology is 

not suitable in some low-power applications; but, it is very suitable in high performance 

signaling systems due to the flexibility in adjusting de-emphasis ratio in compensating 

ISI and the ease of output impedance control (output impedance is always be 

approximated to termination resistor).    

 

 

2.3 High-voltage Gate-oxide Overstress Protection 

As continuous scaling down of semiconductor process and core supply voltage, 

the device gate-oxide thickness becomes thinner and the core supply voltage has been 

reduced below 1.0 V to reduce the power consumption. Nevertheless, the on-board 

supply is still maintained above 1.0 V for applications like DDR2 (1.8 V) and DDR3 

(1.5 V) (Ker, Chen and Tsai, 2006). In general, when the operating voltage of a CMOS 

transistor is higher than its nominal voltage, there are three problems occur. First, high 

drain-to-source voltage |VDS| can cause hot-electron effect that shortens the device 

lifespan (Chen, Choi and Hu, 1988). Second, very high drain-to-bulk voltage |VDB| can 

cause breakdown on the P-N junction between drain and bulk of a device (Scott, Dumin, 

Hughes, Dumin and Moore, 1996). Lastly, high gate-to-source voltage |VGS| and gate-

to-drain voltage |VGD| can cause high-electrical overstress (EOS) across thin gate-oxide 


