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KAJIAN KESAN UNSUR SAUH KEATAS KEKUATAN TARIK KELUAR 

JALUR TETULANG DALAM PASIR  

 

 

ABSTRAK 

 

Sudut ricih permukaan di antara dua jenis bahan suatu parameter yang sangat 

penting dalam rekabentuk tanah terstabil mekanikal (MSE) kerana ianya berkait terus 

dengan keupayaan rintangan tarik keluar jalur pengukuh. Dalam penyelidikan ini, 

anggota sauh telah ditambah keatas jalur pengukuh bagi meningkatkan sudut ricih 

permukaan dan keupayaan rintangan tarik keluar. Pasir digunakan sebagai bahan isi. 

Dalam ujian yang dijalankan, satu jalur licin, dua jalur dengan rasuk mudah, dan 

lapan belas jalur beranggota melintang dengan berbagai kedalaman dan bilangan 

telah dikenakan beban tarik keluar dengan tegasan pugak berjulat 50 kPa hingga 100 

kPa. Teorem π-Buchingham dan analisis regresi menggunakan perisian statistik – 

SPSS v.14 – telah juga digunakan bagi menentukan persamaan am yang mengaitkan 

antara keupayaan rintangan tarik keluar dengan parameter jalur, dan membandingkan 

diantara kekuatan anggaran dengan keputusan sebenar ujian. Hasil kajian mendapati 

bahawa kaedah baru melibatkan anggota sauh boleh memberi penjimatan 

penggunaan jalur atau rekabentuk MSE tertentu yang sesuai digunakan bagi ruangan 

sempit, lantaran peningkatan rintangan tarik keluar bagi setiap jalur boleh 

mengurangkan panjang keseluruhan atau jumlah bahan yang diperlukan dalam setiap 

projek. Dalam kajian ini juga, radas ujian rich terus telah digunakan bagi 

menentukan rintangan ricih permukaan diantara sampel pamsir tergred baik dengan 
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plat keluli tergalvani. Akhir sekali, pemodelan unsur terhingga telah dijalankan bagi 

melengkapkan analisis. Keputusan ujian tarik keluar yang digabungkan dengan 

keputusan pemodelan didapati sangat berguna bagi jurutera menentukan rekabentuk 

terbaik struktur tanah terkukuh.  
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INFLUENCE OF TRANSVERSE ELEMENTS ON THE PULLOUT 

CAPACITY OF METAL STRIP REINFORCEMENT IN SANDY SOIL 

 

 

 

ABSTRACT 

 

Interface friction angle between different materials is a very important parameter 

in the designs of mechanically stabilized earth (MSE) as it corresponds directly to 

pull out capacity of a reinforcement strip. In this research, anchorage elements have 

been added to normal reinforcement strip in order to increase interface friction angle 

and thus the pull out capacity. Sand was used as fill material. In the tests, one plain 

strip with smooth surface, two strips with simple ribs, and eighteen strips with 

transverse members of various depths and counts were subjected to pull out forces 

with normal stresses ranging from 50 kPa to 100 kPa applied. Also, π-Buchingham 

theorem and regression analysis using statistical software - SPSS v.14 - were used to 

obtain general equations relating pull out capacity to strip parameters and compare 

predicted strength values to actual outcomes of the tests. The results of the study 

indicate that the new method involving transverse members could generally offer 

saving of strip material or provide particular design criteria for MSE of limited 

construction space, since the increased capacity of each reinforcement strip would 

reduce the total length or amount of strips required in a project. Also in this research, 

direct shear apparatus used for soil testing was employed to measure the interface 
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shear resistance between well graded sand samples and galvanized steel plates. 

Finally, finite element computer modelling with Plaxis V 8.2 software was carried 

out to complete the analyses. The results from pull out tests combined with results 

from the modelling were found to be very useful for engineers to design better 

reinforced earth structures.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Since the first installation of MSE by Vidal in 1961, the structure which is also 

known as either reinforced retaining wall, reinforced embankment, or reinforced soil, 

depending on the application, has been widely used in geotechnical projects where it 

provides a low-strain, strong, and durable solution for stabilization of fill or original 

material of the site (Bergado et al., 1987). Reinforced earth (Gurung, 2001) is made 

by reinforcing the soil with tension member like bar, steel plate, galvanized stripes, 

and geo-membranes. Reinforcement materials are categorized as either extensible 

such as the geotextiles and the geogrids or inextensible such as the metal strips and 

the metal grids; tests and analyses have been carried out involving both  ( Ochiai et 

al.,1996; Khedkar and Mandal, 2009 and Balunaini and Prezzi, 2010). Interface 

friction angles between reinforcement materials and soils have been determined, the 

effects of various geometrical arrangements have been evaluated, and efforts have 

been made at having the reinforcement strips shortened while maintaining the 

required pull capacity such as by having the strips corrugated instead of plain 

(Potyondy, 1961; Zhang et al., 2008;  and Racana et al., 2003).  
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Design of the MSE wall component of an MSE wall system should consider: 

• Internal stability of the reinforced soil mass with regard to rupture and pullout of 

reinforcing elements such as pullout rupture of reinforcement and interface friction 

angle. 

• External stability along the MSE wall/shoring wall interface such as friction 

between soil and MSE wall. 

• Bearing capacity and settlement of the MSE wall foundation materials. 

• Global stability of the composite SMSE wall system. 

Generally speaking, the generic term ‘reinforced earth’ or ‘reinforced soil’ is 

used to describe all types of earth structures strengthened by reinforcements. 

However, in the industry, a large majority of reinforced earths has come under the 

more formal name category known as the mechanically stabilized earth or in short, 

MSE. Henry Vidal has been said as the inventor of the MSE (Haeri et al., 2000). 

Since the first installation of MSE by Vidal in 1961, the structure which also refers to 

reinforced retaining wall, reinforced embankment, and reinforced soil, depending on 

the application, has been widely used in geotechnical projects where it provides a 

low-strain, strong, and durable solution for stabilization of fill or original material of 

the site. In a MSE structure, reinforcement strips which are either metallic or 

synthetic, and plain or ribbed, are placed horizontally in the midst of layers of 

granular soil that is normally used as backfill or embankment material. Recent 

experiments and experiences involving MSE have been reported by many 

researchers (Varuso et al., 2005;  Bathurst et al., 2005; Skinner and Rowe 2005; 

Hufenus et al., 2006; Nouri et al., 2006; Chen et al., 2007; Bergado and 
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Teerawattanasuk, 2008;  Li and Rowe, 2008; Sieira et al., 2009; Palmeira, 2009;   

Abdelouhab et al., 2010). 

 

Figure 1.1 is profile of a MSE as commonly installed today for road 

embankments where they apply. Inside the failure wedge, the reinforcement 

improves tension weaknesses in the soils, while across the potential slip surface, in 

the adjacent anchoring ground, the reinforcement holds the wedge against sliding or 

translational failure by having strips extended into the ground. For getting design 

parameters, pull-out tests are normally carried out. The pullout mechanisms of 

various reinforcement strips have been investigated not only by full-scale and 

laboratory model tests, but also by numerical methods (Palmeira and Milligan, 1989; 

Alagiyawanna et al., 2001; Gurung, 2001; Moraci and Cardile, 2009; Abdi and 

Arjomand, 2011; Goodhue et al., 2001; Sugimoto, 2003; Desai and Hoseiny, 2005; 

Moraci and Gioffre', 2006;  Subaida et al., 2008;  Su et al., 2008; Yin et al., 2008; 

Abdi et al., 2009;  Zhou et al., 2011; Moraci and Cardile, 2012). 
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Figure 1.1: A profile of a commonly installed mechanically reinforced 

earth.(Sawicki, 2000) 

 

1.2 Applications in Malaysia and abroad 

  

The application of reinforced soil went back to ancient time, but since 1966 the 

method has been reinvented for design of reinforced retaining wall (Shukla et al., 

2009). In the international arena of modern times, the use of reinforced retaining wall 

intensified in the 1980s and 1990s (Walls, 2009). In Malaysia, where soil 

reinforcement methods have been widely used in geotechnical projects, the use of 

reinforced earth for various geotechnical structures has become very popular in 

recent years. They can provide a low-strain, strong, and durable solutions for the 

stabilization of soils. From the front, outside of the reinforcement volume, view like 

shown in Figure 1.2 has become common sights in the country.  
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Figure 1.2: A view of MSE from the front showing decorative facing. 

 

Inside the reinforcement volume, the interface friction angle between different 

materials is a very important factor in the design. The interface frictions between 

sand and galvanized steel is less than those between sand and sand because of the 

smooth surface of galvanized steel. Potyondy and Eng (1961) used smooth and rough 

materials, such as steel, wood, and concrete, to determine the interface friction 

between soil and these materials, restricting the moisture content and different 

normal loads between material and soil to find the interface friction of surfaces. The 

roughness of the steel, grain size of SW, and type of SW has been found to have an 

important effect on friction between two materials (Vesugi and kishida, 1981). 

Kishida et al. (1987) conducted some tests on the sand–steel interface using a simple 

apparatus and compared the results with those using others conventional apparatuses, 

such as direct shear test, annular shear test, and ring torsion experimental on the 

sand–plates interface; they compared the final results with those of other 
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experiments. The hardness of a material is the amount of surface resistance to the 

permanent indentation and may be considered a measure of the material strength. 

Hardness depends on both the geometry of the indenter and the material properties, 

including yield stress and bulk modulus. Moreover, it is not a true material property 

but rather a measurement. All materials with a low hardness amount have a high 

interface friction angle (Frost et al., 2002). Zhang et al. conducted a triaxial test to 

evaluate the interaction of horizontal-vertical orthogonal elements with sand and 

compared it with the ordinary horizontal type (Zhang et.al, 2008). 

 

1.3 Recent trends in the use of geosynthetics  

 

The recent development in the industry has found increased use of 

geosynthetics – geomembrane, geotextile, geogrids – in replacing more traditional 

reinforcements made of metal strips, timbers, and geofabrics.  

 

When geomembrane is used, soil interface parameter (δ) and shear strength of 

a smooth geomembrane–soil interface are discussed as in many studies by different 

researchers. Interface testing procedures and their effects on measured interface 

strength parameters have been investigated by Takasumi et al. (1991) and Fishman 

and Pal (1994). They gave a comprehensive review of the geomembrane–soil 

interface characteristics (Fleming et al., 2006).  

 

When geotextile and geogrids are used, friction between soil and the 

geosynthetics materials facilitates the simple interface shear resistance of the soil 

against them - soil particles are not really engaged in the small space of the thin 
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geosynthetics sheet. However, the direct shear resistance is more complex for the 

thicker and more gripping geogrid. The wider ribs and soil contact enable greater 

interface shear resistance. At the same time, the friction resistance of soil particles on 

the top and bottom of the geogrid occurs within geogrid apertures. Therefore, the 

shear resistance of the soil–geogrid interface contains at least the shear resistance 

between soil and the surface of geogrids ribs and the internal shear resistance of the 

soil in the spaces of the geogrid. Interface between the granular fills and geogrid strip 

reinforcements in order to measure bearing resistance between the geogrid and soils 

have been studied by other researchers (lin et al., 2005). 

 

 

Yildize wasti et al., (2001) studied the subject by conducting the shearing test 

on PVC geomembranes, smooth and rough HDPE, nonwoven needle-punched 

geotextiles with 5–50 KPa range of normal stress, inclined board tests, and different 

sizes of interface surfaces. The length of reinforcement plate could be decreased by 

increasing the friction between the soil and reinforcement material, reducing the cost 

of soil reinforcing projects. 

  

 

In future, with increased use in geogrid type of geosyhthetics, but with thicker 

diameter threads, the knowledge on how resistance could be increased by having 

protrusions and shear elements is needed. In the study to be described next, the 

interface friction between sand and galvanized steel plate is increased by adding 

extra elements to the galvanized plate. The effect of different sizes and geometries of 
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shearing elements is evaluated using pull out tests, direct-shear tests, and Finite 

element modelling using Plaxis software. 

 

 

1.4 Problem Statement 

 

MSE has been widely used and the future is expected to see more usage 

including for narrow and complicated spaces where limitation of strips length is 

necessarily. Limitation on the use of strips is also caused by economy – the lesser the 

strips, the cheaper would the constructions be in terms of cost. However, with 

smaller number of strips used in an MSE, the force associated with a single strip 

becomes more, which in turn is affecting the mechanisms of tying the strip against 

the segmental concrete crust. In order to increase reinforcement capacity per strip, 

changing the geometry of the strip could be the solution.  

 

In fact, the results of this study indicate that the new method involving 

transverse members could generally offer saving of strip material or provide 

particular design criteria for MSE of limited construction space, since the increased 

capacity of each reinforcement strip would reduce the total length or amount of strips 

required in a project. The test program described in this research was another attempt 

at having shorter or lesser number of strips involving inextensible material. The 

transverse members, also called anchorage elements, with element stiffeners, are part 

of a direct and simple means of improving anchorage through having rigid 

protrusions positioned 90 degrees to the direction of potential movement. The 
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expected outcomes were saving in strip material and new design criteria of MSE for 

narrow or limited construction spaces.  

 

1.5 Objectives of the research  

 

1. To develop new strip for narrow place, with more pullout capacity and therefore 

economic benefits for projects. 

2.  To determine optimum depth of anchorage with given anchorage spaces or 

alternatively speaking, optimum anchorage distance for given anchorage depth.  

3. To formulate pullout capacity for various given parameters based on pullout 

experimental results.  

4. To study failure surfaces in soil reinforced with strips of various design and test 

conditions using finite element method (Plaxis software). 

 

 

1.6 Scope of Research  

 

This research proposed to investigate the results to pull out capacity of strips 

with new geometries for mechanically stabilized earth, as would be applicable in 

walls in narrow or complicated spaces. Furthermore this research will utilise strips 

with different geometrise in pullout tests and carry out interface direct shear and 

direct pull out tests with different normal stresses. Statistical analysis and finite 

element modelling are needed to estimate final pull out strengths and investigate 

failure surface and behaviour of anchorage elements in the pullout tests.  
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1.7 Structure of Thesis  

 

This thesis is presented in five (5) chapters. First chapter introduces the 

research, objectives, problem statement, and scope. A review of previous study on 

pullout capacity and interface interactions, interface direct shear tests, past theories 

and experiments, and finite element methods are presented in Chapter 2. Chapter 3 

presents research methodology implemented in this research. In chapter 4, results and 

discussion of tensile tests, pullout tests, interface direct shear tests, triaxial tests, and 

compaction tests are discussed. Finally the conclusion and recommendation for 

future work are presented in chapter five. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

CHAPPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The research and industry of reinforced earth are generally more concerned 

with reinforcement material than with the earth fill material. The reinforcement 

materials, in turn, are comprised of steel and geosynthetics. The related tests carried 

out on these reinforcements are mainly the pull out tests and the direct shear tests. 

Computer modelling is carried out to corroborate the results. Pull out test and direct 

shear test are tow important experimental to investigate on soil and other material 

interface. For active zone of colomb failure surface and passive zone of MSE based 

on Mohr- colomb criteria direct shear test and pullout test are employed. 

 

2.2 Pull out and direct shear tests involving reinforcement material 

 

  

In study by Bakeer et al. (1998b), pull out test and interface shear test on 

geogrids were carried out against light aggregate with different confining pressures. 

In this study, the friction angles from pull out test was 52 degrees while from 
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interface friction test was 48 degrees, as given in Figure 2.1 and 2.2. Also, they 

found that some crushing actually had happened to the reinforced material with 

higher normal loads (Bakeer et al., 1998b). 

 

 

Figure 2.1: Results from pull out tests using geogrid and lightweight aggregate 

(Bakeer et al., 1998b) 

 

Figure 2.2: Results from interface shear tests using geogrid and lightweight 

aggregate (Bakeer et al., 1998b) 
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Boundary condition on pull out results was studied by Palmeira and Milligan 

(1989b). In this study, the results showed that certain friction on the inside of front 

wall of test box made it hard to predict the internal friction angle between soil and 

reinforcement material. They found that a larger scale pull out box and lubricating 

would be better in getting more accurate friction coefficient between materials. 

 

In a study by Bergado et al. (1987), the interaction between soil and geogrids 

by using both direct shear and pull-out tests was investigated and the results were 

applied in a case study.  Two types of Thailand soil - clayey sand and weathered clay 

– were used as backfill together with two types of reinforcement - polymer geogrid 

and bamboo grids. They found that the strength between soil and reinforcement has 

come from two factors: (a) the adhesion between soil and reinforcement on the solid 

surface area of the geogrid; and (b) the bearing withstand of soil in the fronts of the 

transverse members of geogrid that acted as a strip footing embedded in the soil. The 

design procedure for pull-out resistance coincided really well with the laboratory 

pull-out test results. Also their results showed that bamboo grids had higher pull-out 

resistance per unit area than the polymer geogrids. Furthermore, cohesive fills were 

found to be totally effective when used with geogrid reinforcement. Towards the end 

of their study, the results were applied in a design procedure to a case study 

involving an irrigation canal bank being repaired by the Public Works in Thailand. 

With Tensar SS2 geogrids as reinforcement and cohesive soils as backfill, a much 

improved embankment with very satisfactory slope stability was achived.  
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Wilson Fahmy et al. (1994)  carried out an investigations involving extensible 

reinforcement and dense sand in a series of pull out tests. They found that failures 

could take place by either sheet pull out or tension failure in the fill material. They 

have suggested that a great portion of pull out capacity was provided by the 

transverse elements thus the role of junctions in the reinforcement grids was very 

important. Also, the flexural capacity of traverse elements and the longitudinal 

extensibility of reinforcement should be considered as the main factor affecting the 

design involving this type of reinforcement.  

 

A series of pull out tests have been carried out on extensible reinforcement 

and cohesion less soil by Oostveen et al. (1994). The results emphasized that front 

wall proximity was an important factor for the type of stress distribution on 

reinforcement - as suggested earlier by Palemira amd Miligan (1989).  

 

Geogrids with various specifications and lengths were used in pull out tests 

by Frsman and Slunga (1994) in crushed rock, light clay aggregate, and sand 

material. Their results showed that, in a pull out test, when length of strips was 

increased, the average shear resistance was decreased because of progressive failure 

along the length of geogrid. With longer strip length, the lesser rigid would be the 

strip parts. Their results emphasized the roles of various factors such as strength of 

junction, rigidity of transverse bearing members, reinforcement strength, and 

modulus of deformation, on the pull out-displacement relationship. 
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According to Gurung and Iwao (1999), pull-out tests are widely employed  

to measure the soil-reinforcement interface interaction mechanism. They founded a 

simplified analysis for evaluation of the interaction mechanism in a general pull-out 

test which is proposed for geo-reinforcement. They also have done numerical studies 

for pull-out tests of different strains (large and small) for each type of inextensible to 

extensible reinforcements. They also have made comparison between the steel 

geostrap and polymer strip to verify  the theories on both extensible and inextensible 

reinforcements. These researches have produced experimental and theoretical pull-

out test results for various materials such as geotextiles, polymers, nylon 

geosynthetics and steel strip reinforcements. The predictions of pull out capacities 

were based from the models and their satisfactory comparisons with experimental 

results. The incorporated bi-linear relation allowed prediction of pre and post yield 

deformations, tensile force, and shear stress variations along the required length of 

the reinforcement. 

 

In general, reinforcements are categorized in two major types, inextensible 

and extensible. Galvanized metal strips (straps), rock bolt, steel grids are called 

inextensible while geosynthetics, fibres, and polymers are called extensible 

reinforcement according their large strains resulted in pull out tests, as shown in 

Figure 2.3  (Gurung, 2001). 
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Figure 2.3: Description for inextensible and extensible reinforcements ( Gurung, 

2001)) 

 

Alagiyawanna et al. (2001) carried out pull out tests using extensible geogrid 

with high strain of geometries as shown in Figure 2.4. Their results indicate that in 

case on extensible reinforcement, longitudinal members were more significant 

member in providing the required pull out capacity in comparison to the lateral 

bearing member during the failure phase of the geogrid. In this case, the large 

displacement of reinforcement will limit role of transverse members in providing the 

pull out capacity. Figure 2.5 depicts some results from pull out tests using feasible 

and rigid fronts. 
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Figure 2.4: Geogrids used in pull out tests by Alagiyawanna et al., (2001) 
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Figure 2.5: Results of pull out tests for flexible and rigid reinforcement members by 

Alagiyawanna et al. (2001) 

  

Interface shear strength parameters of Geomembrane–geotextile were studied 

by Wasti and BahadIr Özdüzgün (2001) using 3 types of tests involving, the inclined 

board (tilting table), the standard sized direct shear box (60 mm×60 mm), and the 

large-scale direct shear box (300 mm×300 mm). HDPE, PVC geomembranes with 

Smooth and rough surfaces, and nonwoven needle-punched geotextiles were used in 
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the study. The inclined board tests were done under 5 to 50 kPa normal stresses on 

interface with various areas. The direct shear tests were conducted on normal stresses 

of 25 to 300 kPa for the smaller box and 110 to 400 kPa for the larger box. The 

results are given in Figure 2.6. 

 

Figure 2.6: Results from inclined board test and large direct shear box tests involving 

60 mm×60 mm geomembrane and geotextile interfaces (Wasti and BahadIr 

Özdüzgün, 2001) 

 

The results with cohesion and interface friction angle values by fitting a 

straight line through the plots of interface shear strength versus the normal stresses 

were compared for different tests. They found that the inclined board test both 

smooth and rough HDPE geomembrane–geotextile interfaces had produced 

envelopes with small amount of adhesion. The interface size however was not 

significant factor. For smooth geomembranes, direct shear and inclined board tests 

both gave different interface friction angle and cohesion values. Their results showed 
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that the direct shear adhesion and friction values were markedly higher compared to 

those obtained from the inclined board tests, as given in table 2.1. 

 

Table 2. 1: Different friction angle with different confining pressure (Wasti ,2001)  

 

 

 

Goodhue et al. (2001) conducted pull out test and direct shear test to find 

interaction coefficient (f) between foundry sand, grids and geotextile, and textiles.  

Their results showed that interface friction angles had ranged from 25 to 35 degree, 

with efficiencies amounting to between 0.5 and 0.9. Also, the pull out tests results 

indicated that the interaction coefficient was varied from 0.2 to 1.7. 

Racana et al. (2003), have done pull out tests on vertical, horizontal and 

corrugated strips of different geometries in order to validate their finite element 

      

 

 

 

  Interface 
 

.Giroud et al 
(1990) 

 

 
 

Ϭ=1.1  kPa 

Koubouras 
et al.(1991) 

 

 
 

Ϭ =2.7  kPa 

Girard et 
al.(1990) 

 

 
 

Ϭ =3.7  kPa  

Prescart study 
for 

 

 
 

Ϭ =5or5.5  

kPa 

Giroud et al 
(1990) 

 

 
 

Ϭ =25-160  

kPa 

Koubouras et 
al.(1991) 

 

 
 

Ϭ =30-62  kPa 

Girard et 
al.(1990) 

 

 
 

Ϭ =100-400  

kPa 

Prescart study 
for 

 

 
 

Ϭ =110-400  

kPa 

Smooth 

HDPE-

GT 
— 

δ =19 

 
— 

δ =14-21 

 
 

Ϭ  =2.8  kPa 

δ =10 
— 

Ϭ =0.7-3.3 

Kpa 

δ =12-14 

Rough 

HDPE-

GT δ =45 

 

δ =34 

 
— 

Ϭ  =33-42 

 

Ϭ  =1.1 

Kpa 

δ =15 

 

Ϭ  =17.2 

Kpa 

δ =15 
— 

Ϭ  =13-30 

Kpa 

δ =13-30 

PVC-GT 

— 
δ =22 

 

δ =25 

 

δ =23 

 
— 

Ϭ  =0 Kpa 

δ  =26 

Ϭ  =0 Kpa 

δ =34 

Ϭ  =1-2 Kpa 

δ =24-25.5 



21 
 

equations. They found that if the strain was low, more overall pull out capacity 

would be realized from the system. Their finite element formula also had 23% higher 

pull out capacity in comparison with the results from experimental study, as given in 

Figure 2.7 . 

 

 

Figure 2.7: Strips of different geometries (Recana et al., 2003) 

 

Numerical and experimental study further indicate that the low strain and 

overall increased pull out capacity in corrugated stripe was beneficial in the use 

smaller length of strips in practice as given in Figure 2.8, 2.9, and 2.10.  
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Figure 2.8: Pull out capacity for horizontal strips (Recana et al., 2003) 

 

 

Figure 2.9: Pull out capacity for corrugated strip (Recana et al.,2003) 
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Figure 2.10: Pull out force for straight vertical, straight horizontal, and corrugated 

strip (Recana et al., 2003) 

 

Palmeira (2004) studied on the mobilization of bearing forces in 

reinforcement during pull-out test. In this study, a theoretical model was made to 

describe the effects of having transverse ribs of geogrid in a large scale pull out test. 

Various mechanical and geometrical properties were tried with the model. Also 

investigated were the effects of some parameters such as free reinforcement length 

and test speed. He also found that good fill materials could make for shorter 

anchorage lengths in reinforced walls and slopes. He concluded that the length of 

reinforcement would affect overall stability of the reinforced mass, deformations, 

and final cost. Thus, the interaction between soil and geogrid is very important factor 

in the design of reinforce earth structure. Some results by Palmiera (2004) are given 

in Figure 2.11. 
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Figure 2.11: Cases of bearing strength degradation: (a) Reduction of uniform bearing 

force, (b) Reduction of linear bearing force along grid length, (c) reduction of 

bearing force as a power relation, (d) variable reduction of pull out force along the 

reinforcement (Palmeira, 2004) 

Nejad and Smal (2005) conducted pull out test and direct shear test on 

geogrids and investigated interface and dilatancy angle and property in two types of 

soil. They have also compared the results with those coming from equations by 

Jewell et al. (1984) and Peterson et al. (1980). They results showed that the pull out 

tests showed higher amount of resistance than the direct shear tests – due to presence 


