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SALIRAN BANDARAN CUCI DIRI DENGAN PENGGUNAAN PINTU 

SIMBAH MENDAPAN BERDASARKAN PERGERAKAN AMBANG 

 

ABSTRAK 

 

Mendapan di dalam saliran bandaran air ribut konkrit terbuka telah 

menyebabkan banyak masalah seperti banjir kilat dan pencemaran alam sekitar. 

Kajian ini bertujuan untuk memberi cadangan untuk mengurangkan pemendapan 

dalam saliran bandaran air ribut konkrit terbuka. Untuk memahami ciri-ciri fizikal 

pemendapan, pensampelan telah dilakukan dari 57 lokasi di bandar Kuching, 

kawasan bandar sekitar bandar Kuching dan juga Pulau Pinang. Sampel-sampel 

tersebut diambil dari kawasan kediaman, komersil dan juga industri untuk tujuan 

analisis ayakan. Keputusan ayakan telah menunjukkan kebanyakan sampel adalah 

bukan organik dan tidak jeleket. Kandungan sampel tersebut mengandungi pasir 

sebagai komponen utama; diikuti kelikir, tanah liat serta kelodak. Untuk 

mendapatkan kriteria reka bentuk yang lebih baik, eksperimen pergerakan 

ambang telah dijalankan di dalam flum dengan kelebaran 0.6 m menggunakan 

pasir dengan saiz 50d  0.81 mm, 1.53 mm dan 4.78 mm. Dengan menggabungkan 

keputusan eksperimen pergerakan ambang tersebut dengan hasil penyelidik 

terdahulu yang menggunakan flum dengan kelebaran 0.3 m, regresi linear 

berganda telah dilakukan untuk mendapatkan persamaan yang terbaik bagi 

pendekatan tegasan ricih kritikal dan juga pendekatan halaju kritikal. Satu carta 

reka bentuk cuci diri yang menghubungkan kecerunan minimum saliran dengan 

kadar alir reka bentuk minimum untuk saiz saliran piawai juga dicadangkan. 

Untuk meningkatkan lagi keupayaan cuci diri dalam saliran air ribut konkrit 

terbuka, pintu simbah telah direka dan dipasang di dalam saliran air ribut konkrit 
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terbuka di Taman Pekaka, Nibong Tebal, Pulau Pinang. Pemantauan pintu simbah 

tersebut telah dilakukan selama empat bulan dari 14 November 2012 hingga 15 

Mac 2013. Keputusan menunjukkan pintu simbah tersebut berkesan dalam 

mengurangkan jumlah isipadu mendapan yang terkumpul secara semulajadi di 

dalam saliran air ribut tersebut. Eksperimen untuk menentukan ciri-ciri pintu 

simbah dan juga prestasi simbahan telah dijalankan di dalam makmal 

menggunakan dua flum yang mempunyai dimensi berbeza. Hasil eksperimen 

daripada flum pertama menunjukkan bahawa sudut bukaan pintu simbah dan 

masa operasi simbahan mempunyai kesan ke atas prestasi simbahan dan sudut 

bukaan pintu simbah mempunyai kesan yang lebih ketara dibandingkan dengan 

masa operasi simbahan. Eksperimen di dalam flum kedua secara amnya 

menunjukkan bahawa bilangan simbahan yang diperlukan untuk membersihkan 

mendapan pasir sejauh 1 m dari tempat asal mendapan tersebut diletak meningkat 

secara purata dua kali apabila ketebalan mendapan pasir ditingkatkan dengan dua 

kali ganda. Satu persamaan yang mengaitkan bilangan simbahan yang diperlukan 

dengan sudut bukaan pintu simbah dan ketebalan mendapan telah diterbitkan. 

Garis panduan untuk reka bentuk dan pemasangan pintu simbah di dalam saliran 

air ribut konkrit terbuka juga dicadangkan.  
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SELF-CLEANSING URBAN DRAIN USING SEDIMENT FLUSHING 

GATE BASED ON INCIPIENT MOTION 

 

ABSTRACT 

 

Sediment deposition in urban open concrete storm drain has caused many 

adverse effects to the drainage system such as flash flood and environmental 

pollution. This study aimed to provide recommendations for the purpose of 

sedimentation mitigation in urban open concrete storm drain. To understand the 

physical characteristics of sediment deposition; sampling was taken from 57 

locations in Kuching city, surrounding towns outside Kuching city and Penang 

consisting of residential, commercial and industrial areas and subjected to sieve 

analysis. Results showed that the samples were mainly inorganic and non-

cohesive with sand as the major component followed by gravel and silt and clay 

for most of the samples. To improve the design criteria, incipient motion 

experiments were conducted in a 0.6 m wide flume for sediment with 50d sizes of 

0.81 mm, 1.53 mm 4.78 mm. Combining the results from the current incipient 

motion experiments with the results from an earlier researcher for a 0.3 m wide 

flume, multiple linear regression were performed and the best equations for each 

of the critical shear stress and critical velocity approach were developed. A design 

chart relating the self-cleansing design relationship between drain minimum slope 

with the design minimum flow rate and the respective standard drain size was 

also developed. To further improve the self-cleansing capability of open concrete 

storm drain, a tipping flush gate was designed and installed on site at Taman 

Pekaka, Nibong Tebal, Penang and subjected to monitoring for four months 

between 14
th

 November 2012 and 15
th

 March 2013. Results showed that the 
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tipping flush gate was effective in reducing the total volume of naturally 

accumulated sediment in the monitored drain section. Experiments on the gate 

characteristics and flushing performance were conducted in the laboratory with 

two flumes of different dimensions. Results from the first flume showed that both 

the gate opening angle and duration of flushing have effect on the flushing 

performance with the gate opening angle slightly more significant. Experiments 

in the second flume generally showed that the number of flushes required to 

totally remove the sediment bed from the 1 m where the bed was initially laid 

increased by an average of two times as the sediment bed thickness doubled. An 

equation relating the number of flushes required with the angle of gate opening 

and sediment deposition thickness was developed. Guidelines on the design and 

installation of tipping flush gate on site have also been presented.  



1 

 

1 CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

Open concrete drain systems are frequently used in developing (Geiger, 1990) 

and less developed countries to convey storm water runoff. Though closed conduits 

are more hygienic and aesthetic; the construction and maintenance of closed conduits 

are more costly than open channels and need special equipment or trained staff. Due 

to this, open channels are still favoured in spite of the benefits of closed conduits. 

Open concrete storm drain system could be quite efficient in rapid removal of 

surface runoff; however, sediment deposition tends to build up in the drain after a 

period of time (Figure 1.1). Sediment deposition in urban open concrete storm drains 

had caused many adverse effect to the drainage system itself such as reduction in 

hydraulic capacity (which had been identified as one of the cause of flash flood) and 

environmental pollution due to the high pollutant concentrations that might be 

released during the erosion of these deposition (Ashley et al., 1992a; Schellart et al., 

2010; Rodríguez et al., 2012). 

Generally, only limited data and works were available in the literature for 

sediment in storm drain for developing and less developed countries as compares to 

European countries (Ashley et al., 2004). Though some data on sediment for 

developing countries exist in unpublished literature such as consulting reports; these 

data are difficult to obtain, the measurement procedures are not always known and 

the variability from one study to another is great (Ashley et al., 2004). Hence is still a 

lack of understanding of the sediment properties commonly found in urban open 

drain especially in developing and less developed countries. 
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Figure 1.1: Sediment deposition in open concrete drain 

 

To reduce sediment deposition, open drain has been designed to have self-

cleansing properties. Many designers prefer to use the adoption of a single minimum 

constant value of velocity or shear stress since these criteria are easier to use, 

especially for a simple or small drainage system and sewer network. In Malaysia, to 

prevent sedimentation in lined open drain; a minimum average flow velocity of not 

less than 0.6 m/s has been recommended in “Urban Stormwater Management Manual 

for Malaysia” (DID, 2000) which was replaced later by “Urban Stormwater 

Management Manual for Malaysia – 2
nd

 Edition” (DID, 2012). Older design manual, 

namely “Planning and Design Procedures No.1: Urban Drainage Design Standards 

and Procedures for Peninsular Malaysia” (DID, 1975) had recommended a minimum 

velocity of 0.9 m/s. The adoption of a minimum constant velocity might have shown 

some success; however the disadvantage is it does not properly taken into account 

the characteristics and concentration of sediment and also the hydraulic aspects of 

the drain (Butler et al., 2003; Vongvisessomjai et al., 2010; Campisano et al., 2013). 



3 

 

Thus, instead of using directly a minimum velocity or shear stress directly from 

design manual, a more viable approach for self-cleansing design is through the use of 

incipient motion equations which incorporate some aspect of the sediment and 

channel characteristics. For this purpose, the Shields diagram (Shields, 1936) was 

widely used to predict incipient motion of granular particles especially for loose 

boundary channel such as alluvial channel (Vongvisessomjai et al., 2010). However, 

the boundary conditions found in sewers and storm drain which are of rigid boundary 

could be quite different (Ashley et al., 2004). For a rigid boundary channel, there is a 

limitation in terms of depth of sediment and source of new sediment for transport 

(Butler et al., 1996a). Study by Novak and Nalluri (1975) on rigid smooth bed 

channels has shown that the incipient motion value was substantially lower than for 

loose boundary channels for any particle size. Nevertheless, since majority of the 

literature on incipient motion was on loose boundary channel than rigid boundary 

channel (Novak and Nalluri, 1984); the Shields diagram has been applied in a 

number of studies on sewer and storm sewer (Laplace et al., 1992; Verbanck et al., 

1994; Almedeij, 2012) despite the difference in boundary conditions. 

For most developing and less developed countries, removal of sediments from 

open storm drains often involves manual handling which is costly (see Figure 1.2). In 

European countries, besides designing for self-cleansing, various techniques have 

been developed to aid in removal of sediment deposition in sewer system. Of the 

various techniques; the one based on hydraulic effects mainly consist of creating a 

flushing effect by discharging a volume of water during a short period of time. The 

flushing effect could be created by storing water in upstream chambers and 

discharged through a gate, tipping bucket located above water level or mobile tipping 

plates like Hydrass gate (Chebbo et al., 1996; Lorenzen et al., 1996). These devices 
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allow production of successive flushing waves to scour and transport sediments and 

represent an automated cost-effective solution for sewer cleansing. Experimental 

studies on the scouring effect and numerical analysis had been carried out to 

understand the operation of flushing gates (Campisano et al., 2004; Guo et al., 2004; 

Bertrand-Krajewski et al., 2005). Long term monitoring of sewer sediment to study 

the effectiveness of flushing gate had also been done (Bertrand-Krajewski et al., 

2006). Though various literatures exist on flushing devices for sewer or combined 

sewer systems, it is still a new concept yet to be tested for open storm drain 

especially for developing and less developed countries. 

 

 

Figure 1.2: Removing sediment deposition in open concrete storm drain manually 

 

1.2 Problem Statement 

Sediment deposition in urban open storm drain is a serious problem especially 

in highly populated urbanised area due to negative effects that it might caused such 

as flash flooding (due to reduction of channel carrying capacity) and pollution from 

the pollutant existed in the sediment. However, only limited data on sediment and its 
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characteristics in storm drain for developing and less developed countries could be 

found in the literature. For many years, urban open concrete storm drains have been 

designed so as to have self-cleansing properties by adopting a single recommended 

minimum velocity or shear stress values or by using incipient motion criteria. Yet, 

the adoption of a minimum constant velocity or shear stress does not properly take 

into account the characteristics and concentration of sediment and also the hydraulic 

aspects of the drain. Thus sedimentation in concrete drains still remains as a problem 

and frequent manual sweeping and cleaning of open concrete drain is required. This 

study aimed to provide recommendations for the purpose of sedimentation mitigation 

in urban open concrete storm drain. This was done through determining the 

characteristics of sediment commonly found in Malaysian open concrete drain; 

development of incipient motion equations and design chart for self-cleansing 

criteria and testing the feasibility and ability of sediment removal using  tipping flush 

gate. 

 

1.3 Objectives of Study 

The objectives of this study are as follows: 

a) To establish the typical physical characteristics of sediments in urban areas. 

b) To establish the incipient motion (initiation of motion) characteristics for different 

size sediment, sediment thickness and channel slopes under uniform flow 

conditions for the development of self-cleansing design criteria for open drains. 

c) To identify the significant characteristic parameters for critical shear stress and 

critical velocity equations. 

d) To design a tipping flush gate capable of removing deposited sediment for use in 

urban drains. 
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1.4 Scope of Study 

The field data collection to determine the physical characteristics of sediment 

was limited to the urban areas in Kuching city, towns surrounding Kuching city 

(Kota Samarahan, Bau and Serian) and Penang (both the island and mainland). 

Samplings were done for residential, commercial and industrial areas in those 

locations. As for the establishment of incipient motion characteristics, the 

experimental work was limited to a rectangular flume with dimensions of 6.3 m (L) x 

0.6 m (W) x 0.4 m (D) which is already available in the Physical Modelling 

Laboratory of River Engineering and Urban Drainage Research Centre (REDAC), 

Universiti Sains Malaysia (Engineering Campus). The sediment samples used for the 

experimental work consisted of three different mixtures namely; Mixture 1 (uniform 

sand with 50d =0.81 mm); Mixture 2 (slightly non-uniform mixture of sand and 

gravel with 50d =1.53 mm) and Mixture 3 (uniform gravel with 50d  = 4.78 mm) with 

four different thickness ( st 50d , 5 mm, 10 mm and 24 mm) and four differing 

slopes of the channel (0.005, 0.00286, 0.002 and 0.001). Another set of incipient 

motion data was obtained from the work by Salem (1998). To test the capability of 

removing deposited sediment in urban drains, a tipping flush gate was designed and 

installed in a selected site in Taman Pekaka, Nibong Tebal, Penang and monitored 

for four months. Models of the self automated tipping flush gate were also tested in 

two experimental flumes. The first flume with dimensions of 11.0 m (L) x 1.2 m (W) 

x 0.8 m (D) was used to test and simulate as close as possible the condition and 

operation of the gate on site in terms of opening duration and also the effect of gate 

opening angle on the changes of sediment bed profile.  For the second flume with the 

dimensions of 6.30 m (L) x 0.60 m (W) x 0.49 m (D), a scale down of 1:2 model of 

the gate opening dimensions for the tipping flush gate used on site was installed in 
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the flume to determine the effect of sediment size, angle of gate opening, sediment 

thickness and distance of sediment from the gate on the flushing ability.  

 

1.5 Structure of Thesis 

This thesis is divided into 7 chapters. Chapter 1 gives brief introduction and 

discussion on the issue of sediment deposition in open concrete drains, the current 

trend in sediment deposition management, the objectives and scope of study. Chapter 

2 gives reviews from the literature on the source of sediment, classification of 

sediment, sediment characteristics in sewer and storm drain. A review from the 

literature of existing study on incipient motion and flushing devices for sediment 

control are also included in Chapter 2. Chapter 3 gives the methodology used in the 

current study and basically divided into three parts, namely the sampling of sediment 

from urban open concrete storm drain, incipient motion experiment and tipping flush 

gate experiments for both site monitoring and laboratory. Chapter 4 presents the 

results in terms of the physical characteristics from the sediment sample collection 

from 57 locations for the current study. Chapter 5 presents the results from the 

incipient motion experiment and also the development of critical shear stress and 

critical velocity equations from the data of the current study. Design chart for the 

purpose of self-cleansing design of open concrete drain is also presented in Chapter 

5. Chapter 6 presents the results from tipping flush gate experiments for both the site 

monitoring and also experimental work in laboratory. Design guidelines on 

installation of tipping flush gate on site are also given in Chapter 6. Chapter 7 

presents the important findings from the current study and also research outlook for 

the future. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Sediment deposits in urban open concrete storm drains had been known to 

have adverse effects on the hydraulic performance of the system and also on the 

environment. Losses of hydraulic capacity due to sediment deposition have been 

identified as one of the factors of flash flooding in urban areas (Ab. Ghani et al., 

2008; Liew et al., 2012; Rodríguez et al., 2012). Sediments originate from rooftops, 

streets and highways, construction sites, commercial and industrial parking lots and 

runoff (Fan et al., 2003). Sediment deposition could be because of structural causes 

due to design where deposits will probably occur at certain locations and accidental 

causes due to entry into networks of various foreign objects (Chebbo et al., 1996). 

Traditionally sediment deposits were removed manually and could be costly due to 

the periodic maintenance (Pisano et al., 2003; Lange and Wichern, 2013). 

Design of urban open drains according to self-cleansing criteria and the use of 

recent techniques based on hydraulic devices such as what have been done in 

European countries for their sewer system might be able to reduce sediment 

deposition. However, the commonly used self-cleansing approach in terms of a 

constant minimum critical shear stress ( c ) or critical velocity ( cV ), could not 

properly represent the ability of drain flows to transport sediment due to non-

relational of the constant value to the characteristics of the sediment or to other 

aspects of the hydraulic behaviour of the drain (Butler et al., 2003). The 

determination of critical shear stress ( c ) or critical velocity ( cV ) through incipient 

motion criteria might be a more viable approach since most of the incipient motions 
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criteria in the literature incorporated some aspects of the sediment and drain 

characteristics. However, most of the available incipient motion criteria available in 

the literature were for loose boundary channel which is very different with the 

boundary conditions found in open concrete drain which is of rigid boundary. 

Despite the difference in boundary condition, findings of incipient motion from loose 

boundary studies (such as the Shields diagram) are widely used in the study and 

design of sewer and storm drain (Ashley et al., 2004). 

The use of hydraulics devices such as flushing gates have been found to be 

able to further reduce sediment deposition in sewers in European countries beside 

designing the sewer according to self-cleansing criteria. Conversely, the literature is 

still lacking on the usage of these devices in open drain. Thus, studies are needed to 

test the feasibility of these devices to be used for sediment removal and also the 

problems that might be faced by installing such devices in open drain. 

 

2.2 Sediment 

Sediment can be defined as any settleable particulate material which is able to 

form bed deposits in the drainage/sewerage system (Butler et al., 1996a). In storm 

sewers, sediments are mainly inorganic and non-cohesive; while sediments in 

sanitary sewers have cohesive like properties (Butler et al., 2003). In combined 

sewers, the sediments tend to be a combination of the two types. 

 

2.2.1 Source of Sediment and Deposition 

The main sources of sediment in urban drainage had been identified as from 

the atmosphere, the surface of the catchment, domestic sewerage, industrial and 

commercial effluents and solids from construction site (Tranckner et al., 2008). Ab. 
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Ghani et al. (2001) carried out sediment samplings in drainage systems of five cities 

in Malaysia and has noted that the main source of sediments are mainly from ingress 

of surrounding areas, construction works, road surfacing materials and road works 

(see Figure 2.1).  

Several factors had been identified to have effects on sediment transport and 

thus its deposition such as sediment characteristics (size, sediment concentration) 

and drain characteristics (size, slope and roughness) (Ab. Ghani et al., 2000). A 

preliminary study at Sungai Raja drainage system in Alor Setar, Kedah, Malaysia has 

established the effect of larger sediment deposition volume occurs with mild slopes 

and small drain capacity (Ab. Ghani et al., 2001). Other factors that might affect 

sediment deposition are tidal effect, litter, drain alignment and size uniformity (Ab. 

Ghani et al., 2000). 

 

 

Figure 2.1: Sand and aggregates from road surface material accumulating by the roadside 

which will be washed into roadside open drain when rains 
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2.2.2 Sediment Classification 

The nature of combined sewer sediments was first defined systematically by 

Crabtree (1989). For combined sewers, it is widely accepted to have cohesive 

properties due to the presence of organic substances (Campisano et al., 2008). Initial 

observations of the nature and appearance of combined sewer sediments during 

sampling and prior to the availability of the analytical results suggested five 

distinguished categories of sediment deposit (Crabtree, 1989). These categories were 

based on observations of the provenance, nature and location of deposits within the 

sewerage system as summarised in Table 2.1.  

 

Table 2.1:  Categories of sediment deposit (Crabtree, 1989) 

Type Characteristics 

A coarse, loose, granular, predominantly mineral, material found in the inverts 

of pipes 

B as Type A but concreted by the addition of fat, bitumen, cement, etc. into a 

solid mass 

C mobile, fine grained deposits found in slack flow zones, either in isolation 

or above Type A material 

D organic pipe wall slimes and zoogloeal biofilms around the mean flow level 

E fine-grained mineral and organic deposits found in SSO storage tanks 

 

 

 For storm sewers, it is mainly inorganic and non-cohesive (Butler et al., 

2003). Thus the classification system used in this thesis for non-cohesive sediment 

particle size commonly found in urban open storm drain is based on BS 5930:1999. 

Table 2.2 shows the soil classification system based on BS 5930:1999. 
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Table 2.2:  Soil classification based on BS 5930:1999                                                       

(modified from British Standard Institution (1999)) 

Basic soil type Particle size (mm) 

Boulders >200 

Cobbles 60 – 200 

Gravel 2 – 60 

Sand 0.06 – 2 

Silt and clay <0.06 

 

2.2.3 Sediment Size Distribution 

Sediment sample normally contains a range of sizes. Thus, a grain size 

distribution is an appropriate way to characterize these samples. The conventional 

engineering representation of grain size distribution consists of a plot of 100f  

(percent finer) versus )(log10 d  where a semilogarithmic plot is employed (see 

Figure 2.2 (a)). The same distribution when plotted in sedimentological form 

involving plotting 100f  versus   on linear plot would look like the one in 

Figure 2.2 (b). In sedimentological scale,   is related to grain size diameter d  by the 

following equation: 

 
)(log

2log

1
10

10

d  (2.1) 

It follows that the corresponding grain size in terms of equivalent diameter is given 

by xd , where; 

x

xd


 2  (2.2) 
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                                         (a)                                                                           (b) 

Figure 2.2: Sediment grain size distribution in (a) semilog scale, and                                    

(b) sedimentological scale   (Garcia, 2008) 

 

The value of median diameter 50d  was estimated from the grain size 

distribution. Median diameter 50d  is the size with a 50% passing on the grain 

distribution curve while mode mdd  is the size having the largest percentage retained. 

The mean diameter md  for the sample was calculated using the following expression: 

100




ii

m

d
d  (2.3) 

 

where i  represents any portion of the percentages shown on the vertical axis of the 

cumulative grain size distribution curve and id  represents the mean value of the 

sizes established by the extreme values of the interval i . The standard deviation   

is given by: 

 
2/1

1

1

2













 










j
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j
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f

ddf
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where  id  is the mean size of i th class; md  is the mean size of the sample (see (2.3)); 

if  is the percentage of sample by weight of i th class and j  is the total number of 

classes (Almedeij et al., 2010). The geometric standard deviation σg is given by: 

 2g  (2.5) 

For a perfectly uniform material, 0  and 1g . For practicality, a sediment 

mixture with g  value less than 1.3 is often considered as well-sorted and treated as 

uniform material. When g  values exceed 1.6, the material is considered as poorly-

sorted (Garcia, 2008). 

For samples displaying bimodality characteristics (having 2 modes), the degree 

of bimodality could be quantified according to the criterion proposed by Smith et al. 

(1997). The bimodality degree criterion is determined from: 

 1212* mdmd ffB    (2.6) 

where B* is the bimodality parameter;   is mode grain size in phi units where 

mdd2log  and mdd  is the mode size. The subscript 1 and 2 denotes the primary 

and secondary modes in terms of sediment proportion of sample by weight 

respectively. However, if the two modes are exactly equal values, then subscript 1 

refers to the coarser one. A reference value suggested by this criterion is 

7.1* B (Smith et al., 1997). Any sample with bimodality parameter value above 1.7 

is considered to be bimodal where bimodality characteristic is effective. A sample 

with value below 1.7 is considered as unimodal and would behave as if a unimodal 

material. 
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2.2.4 Sediment Characteristics in Urban Areas 

Ab. Ghani (1997) had given a review of field data study in European countries 

on sediment deposition in both separate and combined sewerage system (see Table 

2.3). Sediment samplings in drainage systems of five cities in Malaysia namely Alor 

Setar, Butterworth, Ipoh, Kota Bharu and Johor Bahru had been carried out by Ab. 

Ghani et al. (2000) and as shown in Table 2.4. A comparison between the drain 

sediment size distribution from developing countries like India (Kolsky, 1998) and 

Malaysia (Ab. Ghani et al., 2000) with European data has shown that sediment in 

India are considerably coarser than those found in Malaysia and European countries 

(Ashley et al., 2004). The sediment data from Malaysia though slightly coarser than 

the European data, shows greater similarity to European sediment due to dumping of 

refuse in open storm drains is almost non-existent in Malaysia as compares to India 

(Ashley et al., 2004).  

The results from the sediment sampling in drainage systems in five cities in 

Malaysia had generally shown that for each sample, more than 90% of the 

constituents are in the range of sand and gravel (Ab. Ghani et al., 2000). Sand was 

the major components in most of the samples with the average values for the five 

cities ranging from 61.8% to 87.6%. Gravel had an average values ranging from 

12.2% to 32.0% for the five cities while silt and clay had an average value of 0.0% to 

6.2%. The median size d50 for the five cities had an average value ranging from 0.6 

mm to 0.9 mm (Ab. Ghani et al., 2000). Further sediment sampling in drainage 

system for major cities in Malaysia was done by Kassim (2005) as shown in Figure 

2.3. The median size 50d for the sediment from the major cities in Malaysia ranged 

from 0.35 mm to 2.40 mm with an average value of 0.75 mm (Kassim, 2005). 

Comparing the results for five cities in Malaysia (Ab. Ghani et al., 2000) and major 



16 

 

cities in Malaysia (Kassim, 2005) with a more recent study for 5 residential areas in 

Kuwait; the results from Kuwait had shown that the sediment median size 50d  were 

smaller ranging from 0.13 mm to 0.52 mm for the unimodal (one mode samples) 

(Almedeij et al., 2010). 

 

 Table 2.3:  Sediment characteristics in sewers (Ab. Ghani, 1997) 

Researcher Particle size (mm) Specific gravity Volumetric concentration (ppm) 

Verbanck (1992) 0.20 – 0.50 n/a n/a 

Laplace et al. (1992) 0.30 – 3.00 n/a 25 

Ashley et al. (1992) 0.10 – 0.50 n/a n/a 

CIRIA (1987) 0.10 – 9.00 n/a n/a 

Urcikan (1984) 0.34 – 2.94 n/a n/a 

Broeker (1984) n/a 2.45 n/a 

Macke (1983) 0.06 – 2.00 n/a n/a 

May (1982) 2.50 n/a 20 

Mittelsdadt (1979) n/a n/a 7 - 110 

 

 

Table 2.4:  Sediment characteristics in Malaysian drainage system (Ab. Ghani et al., 2000) 

City Development type Mean sediment size md  (mm) 

Alor Setar Commercial 0.6 – 2.9 

Butterworth Industrial 0.6 – 1.8 

Ipoh Commercial 0.8 – 1.5 

Kota Bharu Housing scheme 0.1 – 2.4 

Johor Bahru Housing scheme 0.5 – 0.7 
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Figure 2.3: Sediment size distribution for major cities in Malaysia (Kassim, 2005) 

 

A study on sediment size distribution characteristics in Hamilton Canada 

(Vermette et al., 1987) found relationship between mean sediment size with traffic 

characteristics and land use. Samples with small mean particle sizes and large 

standard deviations were taken from parking lots in commercial areas and industrial 

areas. These areas experience high traffic volumes that gradually pulverize the 

aggregates and increase the percentage of finer material, though some of the larger 

material still present, thereby increasing the dispersion value. Samples from high 

traffic volume and high traffic speed areas such as commercial areas also exhibit 

greater positive skewness (i.e. towards the larger sizes) and smaller standard 

deviations than samples from lower traffic volume and lower traffic speed such as 

residential areas. This is due to the turbulent wind eddies generated by higher speed 

and traffic volume that can remove finer particles through resuspension; thereby help 

produce a more positive-skewed and better sorted sediment through selective 

transport (Vermette et al., 1987). 
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2.2.5 Sediment Erosion and Deposition Process 

The erosion and deposition processes and characteristics of sediment in 

combined sewer have been well documented in the literatures for European countries 

where there were comprehensive studies been done on various aspects of sediments 

especially in Belgium (Verbanck, 1990), France (Laplace et al., 1992) and the United 

Kingdom (Crabtree, 1989; Ashley et al., 1990; Ashley et al., 1992a; Ashley et al., 

1992b) in the late 80s and early 90s. Earlier studies in Germany have indicated that 

no sedimentation in sewer for average boundary shear stress exceeding 4 N/m
2
 while 

significant deposition occurs for shear stress below 1.8 N/m
2
 (Stotz and Krauth, 

1984; Stotz and Krauth, 1986). Monitoring in Brussels Main Trunk Sewer have 

shown that the total volume of deposition was more influenced by rainfall events 

than human sewer-cleaning practices (Verbanck, 1990). Study in Dundee has shown 

no consistent pattern for erosion or deposition within the sewer lengths as a result of 

storm flows (Ashley et al., 1990). From the study in Marseille, rains have been found 

to cause sudden increase of sediment volume in trunk sewer as well as local erosion 

while dry weather flow grades the surface which overtime becomes steeper with 

deposition (Laplace et al., 1992). Further study in Dundee shown that deposition 

occurs during periods of dry weather and during decelerating flows when storm 

runoff is receding and it is apparent that bed shear about 1.8 N/m
2
 is responsible for 

bed erosion while subsequent reduction in shear allows re-deposition (Ashley et al., 

1992b). Ashley et al. (1992b) also observed that there appears to be a declining rate 

of deposition with time which appears to be independent with rainfall except for 

sudden unpredictable changes caused by particularly severe storms. The field study 

in Aalborg, Denmark for a sewer system has established the dry weather flow profile 

as well as the sediment transport processes (Schlutter and Schaarup-Jensen, 1998). 
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More recently, Lange and Wichern (2013) has studied the sedimentation dynamics in 

combined sewer systems so as to optimise the sewer cleaning intervals. It was found 

that as long as a state of sediment deposition equilibrium below a critical value (e.g. 

15% of the pipe diameter) is reached, there is no need to clean the sewers at regular 

intervals of 2 years or less (Lange and Wichern, 2013). 

In Malaysia, a study on the sediment deposition trend for Raja River Drainage 

system which is an open drain system in Alor Setar, Kedah, Malaysia for before and 

after rainy season has resulted in coarser sediment were found in the bed after rainy 

season indicating sediment erosion occur during high flow in rainy season (Ab. 

Ghani et al., 2008). Not much other further study could be found in the literature 

regarding erosion and deposition processes especially during normal daily and 

monthly operations or for long term monitoring of open concrete drain such as the 

one used in Malaysia. 

 

2.3 Self-Cleansing Design 

In the design for storm drainage system for the purpose of self-cleansing, the 

system must be able to transport sediment and the system is free from sediment 

deposit as much as possible.  The Construction Industry Research and Information 

Association (CIRIA), UK defined self-cleansing for sewer design as “An efficient 

self-cleansing sewer is one having a sediment transport capacity that is sufficient to 

maintain balance between the amounts of deposition and erosion, with time-averaged 

depth of sediment deposit that minimizes the combined costs of construction, 

operation and maintenance” (Butler et al., 1996b; Butler et al., 2003). A search in the 

literature for self-cleansing design of sewer will generally categorises the design 

concepts into three groups namely based on non-deposition of sediment; based on 
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moving of existing sediment on sewer bed; and based on energy slope 

(Vongvisessomjai et al., 2010). The design concepts in each group could be 

classified further into smaller groups as shown in Figure 2.4. 

 

 

Figure 2.4: Classification of self-cleansing design concepts from the literature         

(modified from Vongvisessomjai et al., 2010) 

 

2.3.1 Design Concept Based on Non-deposition of Sediment 

In this design concept, conventionally the adoption of experience-based 

hydraulic criteria either minimum critical velocity or minimum critical shear stress is 

used. Minimum critical velocity cV is the most widely used design criteria for self-

cleansing (Butler et al., 1996b). In the UK, two documents relevant to sewer design 

advocate the use of minimum critical velocity, namely “Sewers for adoption” by 

Water Services Association and “BS8005:Part 1: 1987: Sewerage – guide to new 

sewerage construction” by British Standard Institution (Butler et al., 1996b). The 

British Standard; BS8005 recommended a minimum critical velocity of 0.75 m/s for 
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storm sewer and 1.0 m/s for combined sewer. In Malaysia, the minimum average 

flow velocity for open lined drain shall not be less than 0.6 m/s and restricted to a 

maximum of 2 m/s as recommended by “Urban Stormwater Management Manual for 

Malaysia” (DID, 2000) which was replaced later by “Urban Stormwater 

Management Manual for Malaysia – 2
nd

 Edition” (DID, 2012). Earlier design 

manual, namely “Planning and Design Procedures No.1: Urban Drainage Design 

Standards and Procedures for Peninsular Malaysia” (DID, 1975) recommended a 

minimum velocity of 0.9 m/s and restricted to a maximum of 3 m/s. The minimum 

critical velocity value appears to have developed from experience without theoretical 

justification or underlying research (Butler et al., 1996b). The weakness of minimum 

critical velocity criterion is that it take no account of the quantity or type of sediment 

to be transported or of other factors such as sewer size (Butler et al., 1996b; Butler et 

al., 2003). Table 2.5 gives a summary of available design criteria based on minimum 

critical velocity as adopted by different countries. 

Minimum critical shear stress value c which is considered to be more closely 

related to the forces causing sediment movement is sometimes used instead of 

minimum critical velocity criterion. Minimum critical shear stress criteria are used in 

some European countries and are also implicit in certain traditional UK criteria 

(Butler et al., 1996b). Same with the case for minimum critical velocity, the use of 

single minimum critical shear stress value is unrelated to the type and quantity of 

sediment entering the sewer. Table 2.6 gives a summary of minimum critical shear 

stress criteria used in various countries. 
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Table 2.5:  Minimum critical velocity criteria (modified from Vongvisessomjai et al., 2010) 

Source Country Sewer type Minimum velocity 

(m/s) 

Pipe flow condition 

ASCE (1970) USA Sanitary 

Storm 

0.6 

0.9 

Full/half full 

Full/half full 

British Standard 

BS8005 (1987) 

UK Storm 

Combined 

0.75 

1.0 

Full 

Full 

Minister of Interior 

(1977) 

France Sanitary 

Combined 

Separate 

0.3 

0.6 

0.3 

Mean daily 

1/10 full flow 

1/100 full flow 

European Standard EN 

752-4 (1997) 

Europe All sewers 0.7 once/day for pipe 

D < 300 mm 

0.7 or more if 

necessary for pipe D 

> 300 mm 

N/A 

Abwassertechnische 

Verreinigung ATV, 

Standard A 110 (1998) 

replaced by ATV-

DVWK-Regelwerk 

(2001) 

Germany Sanitary 

Storm 

Combined 

Depends on pipe 

diameter ranging 

from 0.48 (D = 150 

mm) to 2.03 (D = 

3000 mm) 

0.3 to full for 0.1 to 

0.3, velocity plus 

10% 

Almedeij (2012) Kuwait Storm 0.75 Rectangular open 

channel 

DID (1975) Malaysia Storm 0.9 Lined channel 

DID (2000) replaced by 

DID (2012) 

Malaysia Storm  0.6 Open lined drain 

 

 

Table 2.6:  Minimum critical shear stress criteria (modified from  

Vongvisessomjai et al., 2010) 

Source Country Sewer type Minimum shear 

stress (N/m
2
) 

Pipe flow 

condition 

Lysne (1969) USA  2.0 – 4.0  

ASCE (1970) USA  1.3 – 12.6  

Yao (1974) USA Storm 

Sanitary 

3.0 – 4.0 

1.0 – 2.0 

 

Maguire rule (CIRIA 

1986) 

UK  6.2  Full/half full 

Lindholm (1984) Norway Combined 

Separate 

3.0 – 4.0 

2.0 

 

Scandiaconsult (1974) Sweden All 1.0 – 1.5 1.5 if sand is 

present 

Macke (1982) Germany Sanitary 

Storm 

Combined 

Depends on 

transport capacity 

and concentration 

0.1 to full typical 

combined sewers 

under long term 

conditions 

Brombach et al. (1992) Germany Combined 1.6 to transport 90% 

of all sediments 
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 Rather than just using a single value, the non-deposition design concept was 

further modified to use more parameters in the 1990s which resulted in the without 

deposition design criteria and with limited deposition design criteria 

(Vongvisessomjai et al., 2010). 

 

2.3.1.1 Without Deposition Design Criteria 

This is a conservative design criterion where the sewer is designed with no 

sediment deposit. In this design criterion, the mode of transport must be identified; 

either as suspended load or bed load in order to use an existing self-cleansing 

equation (Vongvisessomjai et al., 2010). Suspended load travels at almost the same 

velocity with surrounding water and the shape of the vertical profile depends on the 

parameter sWu /* where sW  is the fall velocity of the sediment [m/s] and *u  is the 

shear velocity of the flow [m/s] defined as: 













 cu*  (2.7) 

where c  is the critical shear stress [N/m
2
] and   is the density of liquid [kg/m

3
]. 

For flow conditions and sediment particles that give values of 75.0/* sWu , the 

movement will be mainly as bed load; while for 75.0/* sWu , the sediment moves 

in suspension (May et al., 1996). The point of transition is termed limit of deposition. 

For bed load transport, May et al. (1996) combined seven formulas from 

different experimental laboratory test and obtained: 
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where vC  is volumetric sediment concentration [ppm]; D is pipe diameter  [m]; 

50d is median particle size larger than 50% by mass [m]; LV is self-cleansing velocity 

[m/s]; y is water depth [m]; and cV is critical velocity [m/s]. May et al. (1996) 

claimed Equations (2.8) and (2.9) are best fit for 332 individual laboratory tests. The 

laboratory tests conditions covered by the data included: pipe diameters from 77 mm 

to 450 mm; sediment size from 160 µm to 8300 μm; flow velocities from 0.24 m/s to 

1.5 m/s; proportional flow depth 








D

y
from 0.16 m to 1 m; and sediment 

concentrations from 2.3 ppm to 2110 ppm. During bed load transport, sediment 

particles move much slower relative to the flow than those carried in suspension. A 

study on particle velocity in sediment transport over clean fixed bed has shown that 

the sediment particle velocity, even for the fastest moving particle is as low as about 

half of the mean flow velocity (Ota and Perrusquia, 2013). 

For suspended load, Equation (2.10)  was plotted by Macke (1982) with data 

from other studies (Durand, 1953; Einstein and Chein, 1955; Robinson and Graf, 

1972).  
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where vC  is volumetric sediment concentration [ppm]; 0 is the Darcy-Weisbach 

friction factor; sW is the fall velocity [m/s]; A is flow area cross-section [m
2
]; and 

LV is self-cleansing velocity [m/s]. Equation (2.10) is based on experiments for 

sediment diameter from 0.16 mm to 0.37 mm; pipe diameters of 192 mm, 290 mm 


