THE EFFICACY OF HERBAL PLANTS EXTRACT AGAINST INFECTION OF <u>AEROMONAS HYDROPHILA</u>, <u>STAPHYLOCOCCUS XYLOSUS AND</u> <u>STREPTOCOCCUS AGALACTIAE</u> IN SNAKEHEAD (<u>CHANNA STRIATA</u>) FISH

AZIRAH BINTI AKBAR ALI

UNIVERSITI SAINS MALAYSIA

2014

THE EFFICACY OF HERBAL PLANTS EXTRACT AGAINST INFECTION OF <u>AEROMONAS HYDROPHILA</u>, <u>STAPHYLOCOCCUS XYLOSUS</u> AND <u>STREPTOCOCCUS</u> <u>AGALACTIAE</u> IN SNAKEHEAD (<u>CHANNA STRIATA</u>) FISH

by

AZIRAH BINTI AKBAR ALI

Thesis submitted in fulfilment of the requirements for the degree of Master of Sciences

February 2014

KEBERKESANAN EKSTRAK TUMBUH-TUMBUHAN HERBA TERHADAP PENYAKIT <u>AEROMONAS HYDROPHILA</u>, <u>STAPHYLOCOCCUS XYLOSUS</u> DAN <u>STREPTOCOCCUS</u> <u>AGALACTIAE</u> PADA IKAN HARUAN (<u>CHANNA STRIATA</u>)

oleh

AZIRAH BINTI AKBAR ALI

Tesis yang diserahkan untuk memenuhi keperluan bagi Ijazah Sarjana Sains

Februari 2014

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the Most Gracious, Most Merciful thus this thesis has been possible.

With great honour, my deepest appreciation to my supervisor, Dr. Zary Shariman Yahaya, for his excellent guidance, unlimited support and motivation, patience, willingness of time in sharing ideas and knowledge and also his Do'a. Thank you very much Dr.

A special thanks goes to Mr. Sinan Al-Hakeem for his assistance, suggestion, and patience. Not forgotten thanks to Ms. Ainul Farhana, in helping me a lot during at laboratory time, collecting the plants samples, being patience and supportive.

I would like to convey my heartfelt thanks to all my friends, Kak Amelia and Nahid for their support and help during in fish trials experiment, lab 418 members (Kak Shamim, Kak Khairiah, Firdaus, Rajiv, Keat Lay, Boon Aun, Julian, Gaikling, Sally and others) and also Nik aisyah, and Mimi for their word inspiration and encourage.

Finally, I express my sincere gratitude to my beloved parents, sister and brothers for their prayer, patience, trust, untiring support in every way, valuable motivation, constant love, inspiration and made my dream come true.

Last but not least, I would like to thank Universiti Sains Malaysia (USM), Penang for providing the necessary facilities especially Staffs in Biology School. Not forgotten thanks to government which provide me the financial support during my study and also project grant which able the project to carry on.

Azirah Akbar Ali, February 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENT	PAGES ii
TABLE OF CONTENTS	iii
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF PLATES	XV
LIST OF ABBREVIATIONS	xvii
ABSTRAK	xix
ABTRACT	xxi

CHAPTER ONE: INTRODUCTION

1.1 Problem Statement.	2
1.2 Research objectives	3

CHAPTER TWO: LITERATURE REVIEW

2.1 Aquaculture	4
2.1.1 Aquaculture in Malaysia	5
2.2 Snakehead fish	7
2.2.1 Taxonomy and Synonymy of Snakehead fish	7
2.2.2 Snakehead fish (Channa straita)	8
2.2.2. (a) Taxonomy and distribution	9
2.2.2. (b) Biology of <i>C. striata</i>	9
2.2.2. (c) Morphology of <i>C. striata</i>	10
2.2.2. (d) Importance medicinal properties of <i>C. striata</i>	11
A. Amino acids	12

B. Fatty acids	12
2.2.2. (e) Traditional health treatment	13
2.2.2. (f) Pharmacological properties of <i>Channa striata</i>	13
A. Post-partum and energy booster meal	14
B. Wound healing	14
C. Anti-pain	14
D. Anti-inflammatory and anti-pyretic	15
E. Anti-oxidants	15
F. Anti-fungal and anti-bacterial	15
G. Cardiological effect	16
H. Haematological treatments	16
I. Neurology and neurophysiology	16
J. Skin disease	16
K. Platelet-aggregation	17
L. Antinociceptive properties	17
M. Other uses	17
2.3 Fish diseases	18
2.3.1 Types of fish diseases	19
2.3.1(a) Microbial diseases	19
2.3.1. (a).1Viral	19
2.3.1. (a).2 Bacteria	20
2.3.1. (a).3 Fungi	22
2.3.1. (a).4 Protozoa	23
2.4 Bath treatments for sick fish	24
2.4.1 Types of bath treatment	24

2.4.1(a) Dip Bath	24
2.4.1(b) Short Bath	24
2.4.1(c) Prolonged Bath	24
2.4.2 Types of Chemotherapeutants used in Malaysia and Singapore	25
2.5 Phytotherapeutics in Aquaculture	27
2.5.1 Role of phytotherapeutic in aquaculture	29
2.5.1. (a) Growth promoter	29
2.5.1. (b) Immunostimulants	29
2.5.1. (c) Antibacterial, Antiviral and Antifungal agents	30
2.5.1. (d) Anti-stress agent	31
2.5.1. (e) Appetite stimulators	31
2.6 Plants used in present study	32
2.6.1 Senna spectabilis	32
2.6.2 Jacaranda filicifolia	33
2.6.3 Samanae saman	36
2.6.4 Tamarindus indica	37
2.6.5 Carica papaya	39
2.6.6 Andira inermis	40
2.6.7 Morinda elliptica	41
2.6.8 Coleus aromaticus benth	42
2.6.9 Citrus hystrix	44
2.6.10 Milletia pinnata	45
2.6.11 Cymbopogon nardus	47
2.6.12 Cymbopogon citratus	48
2.6.13 Polyalthia longifolia	49

CHAPTER THREE: MATERIALS AND METHODS

3.1 Flow chart	51
3.2 Plant materials	52
3.3 Preparation of water plants extract	54
3.4 Antimicrobial activity screening of the crude plants extracts	54
3.4.1 Microorganisms	54
3.4.2 Antimicrobial activity test (Well Diffusion Method)	55
3.4.2. (a) 1. Nutrient Agar preparation	55
3.4.2. (a) 2 Mueller-Hinton Agar preparation	55
3.4.2. (b) Water plants extract preparation	55
3.4.2. (c) Bacteria suspension preparation	56
3.4.2. (d) Well Diffusion Method	56
3.5 Minimum Inhibitory Concentration (MIC)	56
3.5.1 Justification of using three plants extract	56
3.5.2 Mueller-Hinton Broth Preparation	57
3.5.3 Water plants extract preparation	57
3.5.4 Bacteria suspension preparation	57
3.5.5 Microtitre Plate Assay	57
3.6 Brine Shrimp toxicity test	58
3.6.1 Artificial seawater preparation	58
3.6.2 Artermia salina hatchings and collection	58
3.6.3 Water plants extract preparation	59
3.6.4 Toxicity test Assay	59
3.6.5 Toxicity test determination	59

3.7 Scanning Electron Microscope (SEM)	60
3.7.1 Justification of using <i>S. saman</i> water extract	60
3.7.2 Bacteria preparation	60
3.7.3 Water extracts preparation	60
3.7.4 Sample preparation for SEM	61
3.8 Phytochemical test of water plants extract of S. saman	62
3.8.1 Alkaloids test	62
3.8.2 Saponins test	62
3.8.3 Flavonoids test	62
3.8.4 Tannins and Polyphenolic test	63
3.8.5 Triterpenes or Steroids test	63
3.9 Gas chromatography and Mass-spectrum (GC-MS) of S. saman	63
3.9.1 Samanae saman extract preparation	63
3.9.2 Gas chromatography and Mass-spectrum for S. saman	63
3.10 Pathogenicity test	64
3.10.1 Justification of using gram positive bacteria	64
3.10.2 Bacteria suspension preparation for injection	64
3.10.3 Snakehead fish	65
3.10.3. (a) Collection and storage experimental animal	65
3.10.3. (b) Challenging fish pathogens	65
3.11 Therapeutic investigation of S. saman extracts in-vivo	66
3.11.1 Preparation of pathogenic bacteria and injection	66
3.11.2 Collection and storage of experimental animals	67
3.11.3 Treatment protocol	67
3.11.4 Preparation of <i>S. saman</i> water extract	67

3.11.5 Bath treatment	67
3.11.6 Exposure design experimental	68
3.12 Molecular identification and confirmation of <i>S. xylosus</i>	68
3.12.1 Bacteria preparation	68
3.12.2 DNA extraction from bacteria	68
3.12.3 Polymerase Chain Reaction (PCR)	69
3.12.4 Agarose gel electrophoresis	71
3.12.4. (a) Agarose gel preparation	71
3.12.4. (b) Agarose gel running	71
3.12.4(c) Agarose gel visualizing	71
3.12.5 Purification of DNA	71
3.12.6 Sequencing and Analysis	72
3.13 Confirmation of <i>S. xylosus</i> using API STAPH test kit	72
3.13.1 Bacteria suspension preparation	72
3.13.2 API STAPH method	73
3.13.3 API STAPH analysis	73

CHAPTER FOUR: RESULTS

4.1 Antimicrobial activity test (Well Diffusion Method)	75
4.2 Minimum Inhibitory Concentration (MIC)	78
4.3 Brine Shrimp Toxicity Test	80
4.4 Scanning Electron Microscope (SEM)	83
4.5 Phytochemical test of Samanae saman	85
4.6 Gas chromatography and Mass spectrum (GC-MS) of S. saman	85
4.7 Pathogenicity test	87

4.8 Therapeutic treatment	89
4.8.1 Day One	89
4.8.2 Day Two	89
4.8.3 Day Three	90
4.8.4 Day Four	91
4.8.5 Day Five	91
4.8.6 Day Six	92
4.8.7 Day Seven	92
4.8.8 Day Eight	93
4.8.9 Day Nine	93
4.8.10 Day Ten	94
4.8.11 Day Eleven	94
4.8.12 Day Twelve	95
4.8.13 Day Thirteen	95
4.8.14 Day Fourteen	96
4.8.15 Day Fifteen	96
4.9 Molecular identification and confirmation of <i>S. xylosus</i>	99
4.10 Confirmation of S. xylosus using API STAPH test kit	100

CHAPTER FIVE: DISCUSSIONS

5.1 Antimicrobial activity test (Well Diffusion Method)	103
5.2 Minimum Inhibitory Concentration (MIC)	105
5.3 Brine Shrimps Toxicity test	106
5.4 Scanning Electron Microscope (SEM)	109
5.5 Gas chromatography and Mass spectrum(GC-MS) of Samanae saman	110

5.6 Phytochemical test of Samanae saman	111
5.7 Pathogenicity test	114
5.8 Therapeutic treatments	116
5.9 Molecular identification and API STAPH of S.xylosus	119

CHAPTER SIX: CONCLUSION

6.1 Conclusions	120
6.2 Recommendations for further research	121

REFERENCES	122
APPENDIX	148

LIST OF TABLES

PAGES

Table 2.1	Fish capture production in Asia and the Pacific region	5
Table 2.2	Species recognized for the family Channidae	8
Table 2.3	Important amino acids and fatty acids in different sources of <i>Channa striata</i> extract	11
Table 2.4	Bacterial pathogens present in Fresh water and Marine water	21
Table 2.5	Occurrence of fungi on fishes	22
Table 2.6	Protozoa detected in infected blood and organs of Oreochromis niloticus and Clarias gariepinus	23
Table 2.7	Chemotherapeutants used in aquaculture sector in Malaysia and Singapore	26
Table 2.8	List of plants herbal against fish and shell fish pathogen diseases administrated through oral, injection or bath treatments	28
Table 2.8	The activity on the crude extracts of <i>Jacaranda</i> species on various bacteria pathogens	35
Table 3.1	List of plants samples used in the study	53
Table 3.2	List of microorganisms used in the study	54
Table 3.3	Instruments temperature	64
Table 3.4	Grading for fish lesion	66
Table 3.5	Primers used in the study	70
Table 3.6	Components used in PCR	70
Table 3.7	PCR profiles used	70
Table 3.8	Reading table for API STAPH	74
Table 4.1	Antimicrobial screening of 13 species of plants extracts against three pathogenic bacteria	76
Table 4.2	MIC values of three plants extracts against three	78

pathogenic bacteria

	pathogenic bacteria	
Table 4.3	Artemia nauplii tested with three plants extracts	81
Table 4.4	Phytochemical results of Samanae saman	85
Table 4.5	Lesion and cumulative mortality induced by S. xylosus and	87
	S. agalactiae on Snakehead (Channa striata)	
Table 4.6	Lesion and cumulative mortality induced by S. xylosus in	89
	Day one post injection	
Table 4.7	Lesion and cumulative mortality induced by S. xylosus in	90
	Day two post injection	
Table 4.8	Lesion and cumulative mortality induced by S. xylosus in	90
	Day three post injection	
Table 4.9	Lesion and cumulative mortality induced by S. xylosus in	91
	Day four post injection	
Table 4.10	Lesion and cumulative mortality induced by S. xylosus in	91
	Day five post injection	
Table 4.11	Lesion and cumulative mortality induced by S. xylosus in	92
	Day six post injection	
Table 4.12	Lesion and cumulative mortality induced by S. xylosus in	92
	Day seven post injection	
Table 4.13	Lesion and cumulative mortality induced by S. xylosus in	93
	Day eight post injection	
Table 4.14	Lesion and cumulative mortality induced by S. xylosus in	93
	Day nine post injection	
Table 4.15	Lesion and cumulative mortality induced by S. xylosus in	94
	Day ten post injection	
Table 4.16	Lesion and cumulative mortality induced by S. xylosus in	94
	Day eleven post injection	
Table 4.17	Lesion and cumulative mortality induced by S. xylosus in	95
	Day twelve post injection	
Table 4.18	Lesion and cumulative mortality induced by S. xylosus in	95
	Day thirteen post injection	
Table 4.19	Lesion and cumulative mortality induced by S. xylosus in	96
	Day fourteen post injection	

Table 4.20	Lesion and cumulative mortality induced by S. xylosus in	97
	Day fifteen post injection	
Table 4.21	Comparison of three groups of treatment using S. saman to	97
	control mortality and reduce per cent of severity on	
	Snakehead (C. striata)	
Table 4.22	Identification of strain using BLAST analysis	99
Table 4.23	Confirmation of S. xylosus using API STAPH test kit	100
Table 4.24	Identification of Staphylococcus species using apiweb	101

LIST OF FIGURES

PAGES

Figure 2.1	Interaction between host, pathogens, environment and the	19
	outbreak of diseases	
Figure 3.1	Overall flow chart	51
Figure 4.1	Mortality percentage of Artemia nauplii against variety	82
	concentration of Jacaranda filicifolia within 6 Hours	
Figure 4.2	Mortality percentage of Artemia nauplii against variety	82
	concentration of Samanae saman within 24 Hours	
Figure 4.3	Presence of bioactive compound in Samanae saman extract	86
Figure 4.4	Fingerprint of the spectrum	86

LIST OF PLATES

PAGES

Plate 2.1	Snakehead fish, Channa striata	11
Plate 2.2	Senna spectabilis, local name Kasia Kuning	33
Plate 2.3	Jacaranda filicifolia, local name Jambul Merak	34
Plate 2.4	Samanae saman, local name Pukul Lima	37
Plate 2.5	Tamarindus indica, local name Asam Jawa	38
Plate 2.6	Carica papaya, local name Betik	40
Plate 2.7	Andira inermis local name Brown Heart	41
Plate 2.8	Morinda elliptica, local name Mengkudu kecil	42
Plate 2.9	Coleus aromaticus benth, local name Lemuju	43
Plate 2.10	Citrus hystrix, local name Limau Purut	45
Plate 2.11	Milletia pinnata, local name Mempari	46
Plate 2.12	Cymbopogon nardus, local name Serai Wangi	47
Plate 2.13	Cymbopogon citratus, local name Serai	49
Plate 2.14	Polyalthia longifolia, local name Asoka	50
Plate 4.1	Antimicrobial activity of certain plants extracts against	77
Plate 4.2	Staphylococcus xylosus bacteria MIC values of <i>T. indica</i> , <i>J. filicifolia</i> , and <i>S. saman</i> against <i>A. hydrophila</i>	79
Plate 4.3	MIC values of <i>T. indica</i> , <i>J. filicifolia</i> and <i>S. saman</i> against <i>S. agalactiae</i>	79
Plate 4.4	MIC values of <i>T. indica</i> , <i>J. filicifolia</i> and <i>S. saman</i> against <i>S. xylosus</i>	80
Plate 4.5	SEM of S. agalactiae treated with S. saman extract	83
Plate 4.6	SEM of S. xylosus treated with S. saman extract	84

Plate 4.7	Extensive blanching lesion with furuncle-like ulcerated	
	core on Day three post-injection of S. xylosus pathogens	
Plate 4.8	The rapeutic treatments on Day three post injection of S .	98
	xylosus pathogens	
Plate 4.9	Agarose gel 1% stained with Ethidium bromide (EtBr)	99
Plate 4.10	API STAPH strip results	101

LIST OF ABBREVIATIONS

ppm	Part per million	
ppt	Part per thousand	
rpm	Rotation per minutes	
BLAST	Basic Local Alignment Search Tool	
BSE	Bovine Spongiform Encephalopathy	
СРК	Creatine phosphokinase	
CTF II	CArdiotoxic factor II	
CFU	Colony forming unit	
CNS	Central Nerve System	
DDS	Department Delivery System (DDS)	
DNA	Deoxyribonucleic acid	
DOF	Department of fisheries	
DHA	Decosahexaenoic acid	
EtBr	Ethdium Bromide	
EPA	Eicosapentaenoic acid	
FRIM	Forest Research Institute Malaysia	
GC-MS	Gass Chromatography and Mass Spectrum	
HMDS	Hexamethyldisilazane	
IHNV	Infectious Haematopoietic Necrosis Virus	
LC ₅₀	Lethal Concentration that kill half of sample population	
MIC	Minimum Inhibitory Concentration	
MG	Mycotic Granulomatosis	

MOA Ministry of Agriculture and Agro-based industry

- PCR Polymerase chain reaction
- RBC Red Blood Cell
- SFSE Shol fish skin extract
- SEM Scanning electron microscope
- SVCV Spring Viremia Carp Virus
- TEM Transmission electronmicroscope
- TAE Tris-Acetate-EDTA
- VHSV Viral Haemorrhagi Septicaemia Virus
- WBC White Blood Cell
- ZIA Aquaculture Zone Industry

KEBERKESANAN EKSTRAK TUMBUH-TUMBUHAN HERBA TERHADAP PENYAKIT Aeromonas hydrophila, Staphylococcus xylosus DAN Streptococcus agalactiae PADA IKAN HARUAN (Channa striata)

ABSTRAK

Ujian saringan telah dilakukan untuk 13 spesis tumbuhan tergolong dalam 9 jenis famili seperti Senna spectabilis, Jacaranda filicifolia, Samanae saman, Tamarindus indica, Carica papaya, Andira inermis, Morinda elliptica, Coleus aromaticus benth, Citrus hystrix, Milletia pinnata, Cymbopogon nardus, Cymbopogon citratus dan Polyalthia longifolia untuk mencari aktiviti antibakteria terhadap tiga patogen ikan seperti; Aeromonas hydrophila, Staphylococcus xylosus dan Streptococcus agalactiae. Kepekatan perencatan minimum (MIC) menunjukkan, S. xylosus direncat oleh S. saman dengan kepekatan terendah iaitu 0.625 mg/ml berbanding dengan T. indica dan J. filicifolia; 2.5 mg/ml. Tamarindus indica dan J. filicifolia menunjukkan aktiviti terhadap semua patogen yang diuji. Ujian ketoksikan dengan udang air masin telah dijalankan ke atas tiga ekstrak tumbuhan dengan menggunakan nauplii Artemia salina sebagai sampel ujian dan keputusan menunjukkan, T. indica dan J. filicifolia adalah sangat toksik dan S. saman menunjukkan ketosikan yang terendah (> 1.0 mg/ml) ; dengan nilai LC50, 2.22 mg/ml. Mikroskop imbasan elektron (SEM) digunakan ke atas dua sel patogen; S. xylosus dan S. agalactiae yang di rawat dengan ekstrak daun S. saman dan menunjukkan kerosakan struktur pada permukaan sel. Di samping itu, analisis fitokimia dilakukan untuk melihat komponen kimia yang hadir dalam ekstrak daun S. saman; menunjukkan kewujudan Alkaloid, Flavonoid, Tanin dan Sebatian Polifenolik. Kromatografi Gas dan Spektrum Jisim (GC-MS) dijalankan ke atas

sampel ekstrak *S. saman* dan menunjukkan kehadiran aktif kompaun hidrazin, 1-etil-1-(1-methylpropyl). Potensi *S. xylosus* dan *S. agalactiae* untuk menyebabkan jangkitan penyakit pada *C. striata* disiasat melalui ujian patogen secara *in-vivo*. Suntikan intra-muskular dilakukan ke atas sirip ikan dengan kepekatan 10^9 , 10^7 dan 10^5 /CFU larutan anggaran bakteria. Ikan disuntik dengan kepekatan 10^9 *S. xylosus* menunjukkan bisul seperti luka dengan erosi dan juga bisul seperti luka dengan pembentukan ulser, pada hari ke-3 selepas suntikan. Manakala, ikan yang disuntik dengan kepekatan 10^9 *S. agalactiae* menunjukkan sedikit bengkak pada hari pertama dan sembuh dengan lebih cepat. Keberkesanan ekstrak daun *S. saman* terhadap penyakit yang disebabkan oleh patogen *S. xylosus* diuji secara in-vivo dalam ikan haruan. Ikan dibahagikan kepada tiga kumpulan, Kumpulan 1 (dua kali rawatan), Kumpulan 2 (empat kali rawatan) dan Kumpulan 3 (kawalan tanpa rawatan). Daripada keputusan yang diperolehi, Kumpulan 2 (empat kali rawatan) menunjukkan bilangan kematian dan peratusan tahap keterukan iaitu 1 dan 5%, berbanding kawalan, 4 dan 25%.

THE EFFICACY OF HERBAL PLANTS EXTRACT AGAINST INFECTION OF Aeromonas hydrophila, Staphylococcus xylosus AND Streptococcus agalactiae IN SNAKEHEAD (Channa striata) FISH

ABSTRACT

Preliminary screening was done for 13 plants species belonging to member of nine families such as Senna spectabilis, Jacaranda filicifolia, Samanae saman, Tamarindus indica, Carica papaya, Andira inermis, Morinda elliptica, Coleus aromaticus benth, Citrus hystrix, Milletia pinnata, Cymbopogon nardus, Cymbopogon citratus and Polyalthia longifolia were screened to find an antibacterial activity against three common fish pathogens namely Aeromonas hydrophila, Staphylococcus xylosus and Streptococcus agalactiae. Minimum Inhibitory Concentration (MIC) showed, S. xylosus was inhibited by S. saman with lowest concentration at 0.625 mg/ml compared to T. indica and J. filicifolia; 2.5 mg/ml respectively. Tamarindus indica and J. filicifolia showed activity against all pathogens tested. Toxicity test of brine shrimp was conducted on three selected plants extract by using *Artemia salina* nauplii as a test sample and from the results, T. indica and J. filicifolia were highly toxic; and S. saman shows lower toxicity (>1.0 mg/ml); with LC₅₀ value of 2.22 mg/ml. Scanning electron microscope (SEM) were used to observe on two pathogens; S. xylosus and S. agalactiae treated with S. saman leaf extracts and showed structural damage in the treated cells. In addition, phytochemical analysis was conducted to investigate the chemical constitution in S. saman leaf extract; and found presence of alkaloid, flavonoid, tannins and polyphenolic compounds. Gas chromatography and mass spectrum (GC-MS) on S. saman extract samples showed presence of active compounds Hydrazine, 1-ethyl-1-(1-methylpropyl). The potential of the S. xylosus and S. agalactiae to induce disease

infection in *C. striata* were investigated through *in-vivo* pathogenicity test. The intramuscular injection is done into dorsal fin of the fishes with concentration of 10^9 , 10^7 and 10^5 /CFU bacteria suspension. Fish injected with 10^9 of *S. xylosus* suspension showed furuncle like lesion with erosion and also furuncle like lesion with ulcerated core, in day 3 post injections. Fish injected with 10^9 of *S. agalactiae* suspension showed slight swelling in day 1 and healed faster. The efficacy of *S. saman* leaf extract against disease caused by *S. xylosus* pathogens was tested in-vivo in the to Snakehead fish. The experiment of fish were divided into three groups; Group 1 (two times treatment), Group 2 (four times treatment) and Group 3 (control without treatment). From the results obtained, Group 2 (four times treatment) showed lower number in mortality and percentage of severity which is 1 and 5 % compared to the control of 4 and 25 %.

CHAPTER 1

INTRODUCTION

Aquaculture provides big opportunities for the production of wide variety of aquatic foods including fish and shell fish. It provides important sources of protein and also source of food. Consumption of food fish is increasing had risen from 40 million tonnes in 1970 to 86 million tonnes in 1998 and reached 110 million tonnes in 2010 (Sihag and Sharma, 2012). A review on world fishery production showed that, the capture aquaculture production has maintained a level at 90 million tonnes for more than a decade, with fisheries showing an increasement from 34.6 million tonnes in 2001 to 55.7 million tonnes in 2009 (Pridgeon and Klesius, 2012).

Aquatic diseases are the biggest constraint in aquaculture farmed production. Major pathogens been reported in aquaculture sector include: bacteria, fungi, viruses and parasites. In addition, as reported by Shariff and Subasinghe (1993) identified a number of parasitic, bacterial, viral and fungal pathogens common in the Malaysian aquaculture industry. Losses through diseases are considered significant, although hard data are lacking. Bacterial infection is commonly reported in aquaculture production especially in eggs, intestines, skin surface and gills (Cahill, 1990). This is because bacteria can survive in aquatic environment independently of their hosts and become major impediment to aquaculture. In Malaysia, the estimated losses in finfish cultured in floating cages in Peninsular Malaysia due to pathogenic bacteria was reported to have amounted to RM 20 million (Najiah *et al.*, 2011). Recent disease outbreaks reported in Kedah are thought to have caused the industry up to \$10 million (Shariff 1995). The pathogenic bacteria such as *Aeromonas hydrophila*, *Staphylococcus xylosus and Streptococcus agalactiae* are among the common fish pathogens which have infected fish farms and caused mortality (Schaperclaus *et al.*, 1992).

The presence of antibiotic residues in fish farms is increasing due to their extensive used such as in animal feeds, bath treatment, in order to treat animal diseases and promote growth (Pericas *et al.*, 2010). Generally, chemical residues in aquaculture farms can accumulate in fish and could cause chronic health effects to consumers. Among the health problems caused by the chemical residues are cancer, nerve problems and immunological problems. In year 2001, antibiotic residue especially chloramphenicol and nitrofurans again became important issues due to their detection in shrimp farms in China, Vietnam and Thailand. Similarly, in Malaysia, chemical hazards including pesticides and antibiotic residues have been reported occur in freshwater aquaculture fish (Abu bakar *et al.*, 2010).

1.1 Problem Statement

Uses of antibiotics and chemotherapeutic agents for treatment and prophylaxis in aquaculture production have been criticized due to it negative side effect (Cristea *et al.*, 2012). An urgent research on plant-derived based for treatment is needed; which have been reported by various workers; as an antistress, antimicrobial, immunostimulant agents, growth promoter and appetite enhancement (Citarasu *et al.*, 2001; Sivaram *et al.*, 2004; Magdelin,2005). In addition, there is a lack of study done on water-based herbal plants extracts. Although, not many volatile active compounds have been found in these water based extracts, but, it is eco-friendly, safer to use, and also cheaper sources for farmers, which can prepare their own water

extracts with minimal training. Furthermore, this also can help to reduce management cost by not purchasing any chemotherapeutic chemicals.

1.2 Research objectives

The aim of the study is:

- i. To determine the effects of the plants extracts such *as Samanae saman*, *Jacaranda filicifolia, Tamarindus indica* and others on the activity of three common pathogenic bacteria namely; *Aeromonas hydrophila, Staphylococcus xylosus* and *Streptococcus agalactiae*.
- ii. To gain a better understanding about herbal plants extracts and to find the efficacy in treating bacterial fish disease *in-vitro* and also *in-vivo*.
- To explore the possibility of using herbal plants extracts as an alternative treatment for Snakehead fish farmers in Malaysia.

CHAPTER 2

LITERATURE REVIEW

2.1 Aquaculture

Asia and the pacific region is the world's largest producer of fish. In 2008, the amount from capture fisheries reached 48.3 million tonnes, which was an increase of 2.9 per cent compared to 2006 (Lymer *et al.*, 2010). Fish production growth in Southeast Asia has also been very high in the past four decades with marine capture production increasing almost linearly throughout this period (Table 2.1) (Lymer *et al.*, 2010). The total capture production in 2006 was 15.4 million tonnes, of which marine capture was 88% while in 2008 was 16.1 million tonnes, which consisted mainly of pelagic marine fish. The increase in marine production in 2004 could be attributed to the increases in production from Myanmar, Indonesia, Vietnam and the Philippines, but slight drop in production occurred in Thailand and Malaysia, 2 and 3% respectively (Lymer *et al.*, 2008). In 2008, aquaculture production in this region recorded an increase, of which ninety-four different species were reported (Lymer *et al.*, 2010).

	China	Southeast	South	Other	Oceania
		Asia	Asia	Asia	
Marine fishes	2103	4868	991	495	60
Marine molluscs	646	80	12	2	4
Marine crustaceans	0	9	81	17	2
Freshwater fishes	1615	1588	1361	13	8
Freshwater molluscs	268	63	0	2	2
Freshwater crustaceans	0	4	80	0	0
Total	4633	6613	2524	529	77
Total capture production	15141	16133	6591	6467	1096
Total contribution (%)	31	41	38	8	7

Table 2.1: Fish capture production in Asia and the Pacific region (by sub region) (x1000 tones)

Source: Lymer et al. (2010)

2.1.1 Aquaculture in Malaysia

Aquaculture is one of the important branches in agriculture. In 1994, the total aquaculture production in Malaysia amounted to 114,114 metric ton of food fish valued at USD 145.8 million and USD 227.8 million aquarium fish valued at USD 17.5 million. Malaysian Department of Fisheries (DOF) has predicted that the aquaculture sector will generate almost USD 400 million (RM 1.39 billion) of revenue per year for the nation. Cage culture is one of the aquaculture systems in Malaysia that have a lot of potentials and can be further developed in the future. Cage culture has been producing more than 22,000 tons of fish per year and the value is about USD 106 millon (RM 371 million) per year (Ahmad Faiz *et al.*, 2010).

In 2010, the total fishery sector showed an increase of 3.77 % in production compared to the year before. According to Department of Statistics Malaysia, the value of gross output generated by the fisheries sub sector was RM 689.6 million in 2008. Out of this, the states of Sabah, Perak and Pahang accounted for more than half of the total values of gross output (54.6%). Department of Fisheries stated that, deep sea fisheries showed an increase in value in a total of RM 1.271 million compared to RM 1.164 million in 2009. On the other hand, revenue from coastal fisheries was RM 5.305 million compared to RM 4.907 million in 2009 (Inside Malaysia, 2012)

The Ministry of Agriculture and Agro-based industry (MOA) through the Department of Fisheries (DOF) has developed an aquaculture industry zone (ZIA) program throughout Malaysia (Ahmad Faiz *et al.*, 2010). The aims of the program are:

- (a) To create permanent areas for Aquaculture Industry Zone
- (b) To increase the production of fish in line with the goal of balance of trade (BoT) plan.
- (c) To increase the net income of aquaculturist to at least USD 850 per month
- (d) To ensure the production of fish and fish products which have high quality and safe for consumption
- (e) To increase private sector participation through the provision of ZIA areas, infrastructure and Department Delivery System (DDS) and
- (f) To create a chain of efficient aquaculture fish production areas.

However, fish disease is considered a serious issue in aquaculture fish farming. Diseases in Malaysia aquaculture have been reported since the 1980s (Anderson, 1988). The common pathogens found in the Malaysia aquaculture industry are parasitic, bacterial, viral and fungal pathogens (Shariff and Subasinghe, 1993).

2.2 Snakehead fish

2.2.1 Taxonomy and Synonymy of Snakehead fish

Snakeheads (family Channidae) have two genera, *Channa* which is native to Asia, Malaysia and Indonesia; while *Parachanna* is endemic to a tropical Africa (Courtenay and Williams, 2004). Currently, Channidae are recognized for 26 species of *Channa* and 3 of *Parachanna* (Table 2.2). According to Nelson (2006), the snakeheads are classified into:

Class	:	Actinopterygii
Subclass	:	Neopterygii
Order	:	Perciformers
Suborder	:	Channoidae
Family	:	Channidae

No	Species	Name	References
1*	Channa amphibeus	Chel snakehead	McClelland,1845
2	Channa argus	Northern snakehead	Cantor,1842
3	Channa asiatica	Chinese snakehead	Linnaeus,1758
4	Channa aurantimaculata	Orangespotted snakehead	Musikasinthorn,2000
5	Channa bankanensis	Bangka snakehead	Bleeker,1852
6	Channa baramensis	Baram snakehead	Steindachner,1901
7	Channa barca	Barca snakehead	Hamilton,1822
8	Channa bleheri	Rainbow snakehead	Vierke,1991
9	Channa burmanica	Burmese snakehead	Chaudhuri,1919
10	Channa cyanospilos	Bluespotted snakehead	Bleeker,1853
11	Channa gachua	Dwarf snakehead	Hamilton,1822
12	Channa harcourtbutleri	Inle snakehead	Annandale,1918
13	Channa lucius	Splendid snakehead	Cuvier,1831
14	Channa maculate	Blotched snakehead	Lacepede,1802
15*	Channa maurulius	Bullseye snakehead	Hamilton,1822
16	Channa marulioides	Emperor snakehead	Bleeker,1851
17	Channa melanoptera	Blackfinned snakehead	Bleeker,1855
18	Channa melasoma	Black snakehead	Bleeker,1851
19*	Channa micropeltus	Giant snakehead ³	Cuvier,1831
20	Channa nox	Night snakehead ¹	Zhang et al., 2002
21	Channa orientalis	Ceylon snakehead	Schneider,1801
22	Channa panaw	Panaw snakehead	Musikasinthorn,1998
23	Channa pleurophthalma	Ocellated snakehead	Bleeker,1851
24*	Channa punctata	Spotted snakehead	Bloch,1793
25	Channa stewartii	Golden snakehead	Playfair,1867
26*	Channa striata	Chevron snakehead	Bloch,1797
27	Parachanna africana	Niger snakehead	Steindachner,1879
28	Parachanna insignis	Congo snakehead	Sauvage,1884
29	Parachanna obscura	African snakehead	Gunther,1861

Table 2.2: Species recognized for the family Channidae

Source: Courtenay and Williams (2004) Note (*): Purpose as Food fish (Haniffa *et al.*, 2013) Highlighted *Channa* spp indicated occurred in Malaysia

2.2.2 Snakehead fish (Channa striata)

Channa striata is well-known as Haruan in Malaysia and is a native freshwater fish of tropical Africa and Asia (Ng and Lim, 1990). It belongs to the family Channidae and is also known as Murrels or Serpent-Headed fish. Some species of snakeheads are highly valued as food fishes, particularly in India, South eastern Asia, and China and to a lesser extent in Africa. Because of its popularity as a food in southern China and adjacent south-eastern Asia, the chevron snakehead (*C. striata*) has been reported as widely introduced into islands from the western Indian Ocean eastward to Hawaii. The northern snakehead (*C. argus*) has been a market leader and cultured in China and Korea. Other snakeheads utilized as food fishes include the Chinese snakehead (*C. asiatica*), Blotched snakehead (*C. maculata*), and Spotted snakehead (*C. punctata*).

2.2.2. (a) Taxonomy and distribution

Channa striata is a tropical, freshwater, carnivorous, air-breathing fish species, indigenous to Malaysia and widely distributed within the country. A study by Kajima *et al.*, (1994) and Kumar (1995) on the genetic variability of Snakehead based on fish mitochondrial DNA revealed that this species has been present in Malaysia for more than 600,000 years providing evidence that the fishes are truly Malaysia indigenous species.

2.2.2. (b) Biology of Channa striata

Channa striata is not a good swimmer but with a fast flip action, is quite an efficient predator. It is also known as air-breathing fish that can survive in the environments with low dissolved oxygen and high ammonia contents (Marimuthu and Haniffa, 2007) and stay alive without water as long as its gills remain moist. However, *C. striata* have mostly been found in waters up to 12 meters deep and 4 to 80 meters wide. In addition, *C. striata* is usually found in rivers with salinity about 10 ppt and temperature around 20.7 to 26.4 °C with pH range of 4.3 to 7.9. Although, *C. striata* is known as a hardy fish and able to tolerate to some extend any deterioration of the water quality, it is very sensitive to contamination of its habitat and has developed a unique physiological adaptation namely the ability to move

from pond to pond by crossing on land in order to find suitable and clean water (Mat Jais, 1991). It is carnivorous and feed on frogs, fish, insects, tadpole and earthworms (Muntaziana *et al.*, 2013).

In addition, *C. striata* is not a good swimmer and prefers stagnant, slow running and shallow water not more than two metre deep with dead log and aquatic plants so that it can easily hide and hunt for food (Mat Jais, 2007). The fish has a unique habit of settling itself into bottom mud of ponds during drought season and going deep and deeper into mud during the dry period and only comes out when the situation is better (Rahman *et al.*, 2012).

2.2.2. (c) Morphology of Channa striata

Channa striata possesses an angular head without patches of scales and with large mouth as shown in Plate 2.1. The pectoral fin length is about half the length of the head. The dorsal fin contains 37-46 fin rays; the anal fin has 23-29 fin rays; the pectoral fins bear about 15-17 rays and the pelvic fins with 6 rays, with rounded caudal fin. The colours of snakehead fish can be highly variable or complex but most often the dorsum appears to be dark brown to black (Courtenay and Williams, 2004).

Plate 2.1: Snakehead fish, Channa striata

2.2.2. (d) Importance Medicinal properties of Channa striata

The medicinal effects of C. striata are attributed to two major components,

the amino acids and the fatty acids as described in Table 2.3.

Table 2.3: Important amino acids and fatty acids in different sources of *C. striata* extract

blished data	No published data
pentaenoic	Oleic acid
EPA)	Linoleic acid
ahexaenoic	
OHA)	
idonic acid	
leconoic acid	
eic	
i	EPA) ahexaenoic DHA) donic acid econoic acid

Source: Mohd Shafri and Abdul Manan (2012)

A. Amino acids

Previously, Mat Jais *et al.*, (1994) have conduct the study on amino acid profile in the fillet extract of *C. striata* which found the extract to be rich in glycine, a non-essential amino acid. In addition, amino acid such as glutamic acids, arginine, aspartic acid and glycine have been found in *C. striata*. These amino acids are important in influencing the sense of pain and in healing wounds.

B. Fatty acids

The first study on lipid profiles on *C. striata* was reported by Endinkeau and Kiew (1993) which showed a high level of fat (11- 17%) wet weight and a high ratio unsaturated: saturated (1.2-2.3) and low omega-3 in general. The ability of *C. striata* to produce unsaturated fatty acids such as Eicosapentaenoic acid (EPA) and Decosahexaenoic acid (DHA) (Jaya Ram *et al.*, 2011) in high amounts (Abdul Rahman *et al.*, 1995) showed the efficiency of the fish fatty acids as a wound healing agent. In addition, some of the most abundant fatty acids in *C. striata* are C16 (Palmitic acid), C22:6 (DHA), C18:1 (Oleic acid) and C18:0 (Stearic acid) (Zakaria *et al.*, 2007; Dahlan-Daud *et al.*, 2010).

2.2.2. (e) Traditional health treatment

Channa striata is commonly consumed as a food fish as, freshwater fish consumption in Malaysia provides an important source of protein constituting up to 70% of total protein requirements (Osman et al., 2001) and is also recognised as a source of omega-3 fatty acids (Ng, 2006). In addition, C. striata is also highly valued for its medicinal properties. Among many types of fishes in Malaysia, only the Malaysian Channidae (including C. micropeltes, C. striata and C. gachua), the mudskipper, Periophtalmus spp., and the freshwater eel, Monopterus albus (Abdullah et al., 2010) are known to be used in traditional Malay medicine. Other Southeast Asian countries such as Thailand, Vietnamese and Cambodians as well as the Chinese also use C. striata in the treatment of diseases (Wee, 1982). The popularity of *C. striata* as a therapeutic agent is related to folk belief in its efficacy in treating wounds, relieving pain and boosting energy in the sick and elderly. Mat Jais (1997) reported that C. striata is consumed to fasten healing especially for mothers who underwent caesarean operations and become supplementary among illnesses like diabetic gangrene and cancer.

2.2.2. (f) Pharmacological properties of Channa striata

The snakehead meat has good taste, high nutrient and also has high pharmaceutical medicinal values (Khanna, 1978). In addition, many of its health benefits have been studied and described in detail

A. Post-partum and energy booster meal

There has been a dearth of studies looking at current attitude of post-partum mothers towards *C. striata* as a medicinal food fish. Furthermore, among the Malays, *C. striata* is cooked in the form of curried, spiced, fried or roasted fish, playing the role of functional foods which provide health benefit beyond basic nutrition. Other forms of product such as broth or a tonic of *C. striata* extracts are quite popular. The energy-restoring properties of *C. striata* are also recognised in the Malay society where it is consume for recovery process from minor to major illnesses as well as a diet supplement for elderly people.

B. Wound healing

The uses of *C. striata* as a wound healing agent is thought to be influenced by high level of specific amino acids (e.g. glycine) and fatty acids (arachidonic acid), believed to be involved in the promotion of wound healing by the initiation of a series of reactions involving remodelling of collagen, re-epithelialisation of wound and induction of wound contraction. *Channa striata* extracts also has the ability to cause proliferation of mesenchymal cells and maintain sufficient cell viability for use as a biochemical agent and promoter of healing (Abdul Wahid *et al.*, 2009) which is not limited to dermal wounds but possibly involving other types of organs as well.

C. Anti-pain

In addition, the anti-nociceptive property of *C. striata* is thought to be due to its glycine and arachidonic acid constituents which are known to be involved in the anti-nociceptive pathway (Kapoor *et al.*, 2006). The extracts of *C. striata* have better antinociceptive properties compared to extracts from other Channidae (Mohd Hasan, 2005) and work in a concentration dependent manner (Zakaria, 2005) in a wide range of temperatures and pH (Dambisya *et al.*, 1999).

D. Anti-inflammatory and anti-pyretic

The anti-inflammatory effect of *C. striata* extracts towards acute and chronic inflammation appears better than other Channidae (Somchit *et al.*, 2004; Mohd Hasan, 2005). It is also used in treating diseases such as osteoarthritis (Michelle *et al.*, 2004). In addition, *C. striata* may have a role in the treatment of joint diseases with a clearer inflammatory component such as rheumatoid arthritis. The anti-inflammatory property may also be the reason behind the observable antipyretic activity of the aqueous extract (Zakaria *et al.*, 2008).

E. Anti-oxidants

Among freshwater fishes, *C. striata* appears to have a medium level of antioxidant activities (Lokman, 2006) possibly contributed by some of the major amino acids and fatty acids which it contains.

F. Anti-fungal and anti-bacterial

The skin and intestinal mucus extract of *C. striata* showed antibacterial activity against *Aeromonas hydrophila* and *Pseudomonas aeruginosa* (Dhanaraj *et al.*, 2009). As reported by Mat Jais *et al.* (2008), antifungal activities of *C. striata* ethanolic extract showed activity on *Neurospora crassa, Aleurisma keratinophilum* and *Cordyceps militaris*.

G. Cardiological effect

Fish oil supplementation is widely regarded as an effective preventative measure against cardiovascular problems. Calo *et al.* (2005) concluded that, fish oil supplementation could be useful in preventing post-operative atrial. The skin extract of *C. striata* known as Shol fish skin extract (SFSE) which, has been found to contain potent active compound, cardiotoxic factor II (CTF-II) (Karmakar *et al.*, 2002), with hypotensive effect and cardiotoxic property that influence the increase in cardiac marker enzyme creatine phosphokinase (CPK) and creatine phosphokinase-MB (CPK-MB) values (Karmakar *et al.*, 2004).

H. Haematological treatments

The cardiotoxic factor II (CTF-II factor) found in SFSE also has bloodmodulating properties. This factor could induce a decrease in haemoglobin, total Red Blood Cells (RBC), White Blood Cell (WBC), and platelet count (Karmakar *et al.*, 2004).

I. Neurology and neurophysiology

The skin extract of *C. striata* could initiate apnoea and irreversible blockade of nerve-muscle preparation (Karmakar *et al.*, 2002) and also influence the serotonergic receptor system which possible role as anti-depressant (Saleem *et al.*, 2011).

J. Skin disease

Channa striata is very useful for treating skin disease problems such as acne, pimples, allergy, psoriasis, sclerosis, infection and other related skin problems. Basically, it is due to the content of fatty acid, Docosahexaenoic acid (DHA) in *C*.

striata which was recognized as a nutraceutical with clinical value in skin problem treatment (Mat Jais *et al.* 1998; Mori *et al.*, 1999).

K. Platelet-aggregation

Aggregation of platelet is one of the steps in blood clotting and wound healing. *Channa striata* extract produced positive results in diabetic patients whom undergoing drug treatments. This is beneficial to those suffering diabetes mellitus and it will also contribute as an alternative treatment for dengue haemorrhagic patients (Mat Jais 2007).

L. Antinociceptive properties

Hydromethanolic fraction of Haruan fillets extracts produces a dosedependent anti-nociceptive property, which also plays a role in the healing process (Mat Jais *et al.*, 1998).

M. Other Uses

Due to high demand for a special diet which increases awareness on the benefits of food from beef products and public concern over bovine spongiform encephalopathy (BSE), the demand for fish meat has increased dramatically, which in turn has led to higher amounts of unwanted fish parts being disposed such as fish skin. Thus, in order to avoid wasteful disposal of fish skin, researchers looked at alternative ways to utilize this valuable food source (Babji *et al.*, 2011). For instance, the production of gelatin has been shown to be comparable to commercial gelatins made from cold-water fishes and bovine skin (See *et al.*, 2010).

2.3 Fish diseases

Aquatic diseases are one of the major problem in aquaculture production. Adding to that, water is a very suitable medium for disease transmission in aquatic animals (Sihag and Sharma, 2012). According to Kinne (1980), a disease may be caused by genetic disorders, physical injury, nutritional imbalance and abiotic factors such as pollution and pathogens. The presence of the disease outbreak are varied due to the complex interaction between the host and the disease-causing situation. The interrelationships between the host organisms, the pathogens and environmental factors are shown in Figure 2.3. The natural balances between these three factors are correlated with unpolluted environment with the normal fluctuations in ambient conditions. However, a reduction in the quality of environment (E), may lead to the frequency and severity of disease (D). In addition, an increase in the host population density may cause an increase in the risk of disease outbreaks and the increase in virulence of the pathogens (P).

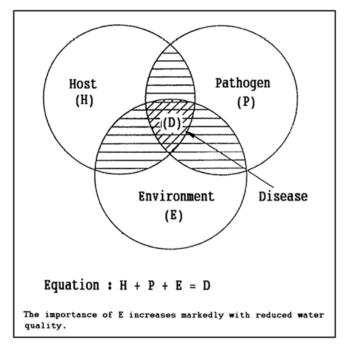


Figure 2.1: Interaction between host, pathogen, environment and the outbreak ofdiseasesSource: Bohl (1989)

2.3.1 Types of fish diseases

2.3.1. (a) Microbial Diseases

The causative agents of diseases are divided into four categories; Viral, Bacteria, Fungi and Protozoa

2.3.1. (a). 1 Viral

Viral diseases in fishes are very serious due to the fact that the diagnosis is difficult and in a significant number of cases they are acute or sub-acute (SANO, 1995). Viral Haemorrhagic Septicaemia Virus (VHSV) and Infectious Haematopoietic Necrosis Virus (IHNV) are caused by viruses of the genus *Novirhabdovirus*, family Rhabdoviridae (Brudesth *et al.*, 2002). According to William *et al.*, (1999), this virus genus can infect Salmonid fish of all ages and cause 80% to 100% mortality. Disease outbreaks are found mainly in fingerlings less than 6 months of age. Infectious pancreatic necrosis virus (IPNV) belongs to family

Birnaviridae, and genus *Aquabirnavirus* (Roberts, 2001). The IPNV and IHNV are both important disease agents and can lead to disease outbreaks with huge losses in fish farming worldwide among wild and cultured salmonid fish (La Patra *et al.*, 2001). Spring Viremia of carp virus (SVCV) belongs to genus *Vesiculovirus*, family Rhabdoviridae which causes severe disease in wild and cultured in the common carp (*Cyprinus carpio*) with very high mortality (Oreshkova *et al.*, 1999).

2.3.1. (a). 2 Bacteria

Bacterial pathogen diseases are responsible for heavy mortalities in both cultured and wild shell fish species all over the world (Jakhar et al., 2010a). In addition, certain bacteria have been reported as pathogenic to fish and shell fish. Three gram positive cocci (Micrococcus, Streptococcus and Staphylococcus) and six gram negative rods (Aeromonas. Proteus. Citrobacter. Pseudomonas, Flavobacterium and Chromobacterium) genera of bacteria have been categories as potential pathogens to Aristichthys nobilis and Ctenopharyngdon idella fish fingerlings (Welker et al., 2005; Verma et al., 2006). Dahiya and Sihag (2009) also stated that, three bacteria (viz Vibrio anguillarum, Vibrio alginolyticus and Aeromonas hydrophila) have been reported to cause pathogenicity in the Indian magur (Clarias batrachus L.). In addition, bacterial necrosis in freshwater prawn, Macrobrachium rosenbergii was caused by Aeromonas hydrophila, Pseudomonas flourescens and Enterobacter aerogenes (Jakhar et al., 2010b) while, Micrococcus luteus, Micrococcus varians, Cellabiosococcus scuri, Streptococcus group Q1 and Staphylococcus aureus were found to cause tail rot disease (Jakhar et al., 2010c). Table 2.4 below is a list of all the known pathogenic bacteria species found in fresh water and marine water fish farms around the world.

Taxonomy	Presence in fresh	Presence in Marine
	water	water
Acinetobacter calcoaceticus	+	+
Aeromonas hydrophila	+	
Agrobacterium spp.	+	
Alcaligenes denitrificans	+	
Alcaligenes Faecalis	+	
Alcaligenes Piechaudii	+	
Alteromonas haloplanktis		+
Arthrobacter spp.	+	
Asticaccaulis spp.		+
Bacillus cereus	+	+
Bordetella bronchiseptica	+	
Caulobacter spp.		+
Coryneforms	+	+
Cytophaga spp.	+	+
Cytophaga fermentans	+	+
Cytophaga hutchinsonii	+	
Cytophaga salmonicolor	+	
Enterobacter aerogenes	+	+
Erwinia herbicola	+	+
Erwinia stewartii	+	
Escherichia coli	+	+
Flavobacterium spp.	+	+
<i>Flexibacter</i> spp.	+	+
Hafnia alvei	+	
Hyphomicrobium vulgare		+
Hyphomonas polymorpha		+
Janthinobacterium lividum		+
<i>Klebsiella</i> spp.	+	
Listeria spp.	+	
Lucibacterium harveyi		+
Micrococcus spp.	+	+
Micrococcus roseus	+	
<i>Moraxella</i> spp.	+	
Photobacterium angustum		+
Prosthecomicrobium spp.		+
Pseudomonas fluorescens	+	+
Serratia spp.	+	+
Serratia liquefaciens	·	+
Serratia marinorubra		+
Staphylococcus spp.	+	+
Vibrio alginolyticus	·	+
Vibrio parahaemolyticus		+
Yersinia spp.	+	·
Source: Austin and Austin (1987)	1	

Table 2.4: Occurrence of bacterial pathogens in Fresh water and marine water

Source: Austin and Austin (1987)

2.3.1. (a). 3 Fungi

Fungi, which cause fungal disease, are present in both marine and freshwater fishes. Fungi are commonly known as 'Fish-molds' which attack eggs, fry, fingerlings and adult fishes and usually in the initial stage of infection, the fungal infections starts when the host has been injured. Fungal diseases are easily recognized by relatively superficial, colony of fluffy growth on the skin and gill of fishes. Various workers have reported the mycotic infection in fishes which occurred in India (Srivastava and Srivastava, 1978). Myazaki and Egusa (1973) observed an invasive component in histological sections of ulcerative disease affected as mycotic granulomatosis. *Achyla, Saprolegnia* and *Aphanomyces* were commonly identified from the lesion surface of affected fish (Roberts *et al.*, 1993). Below in Table 2.5 is the list of common fungi species that can cause infection in fish:

Fungus	Scientific name of Fishes
Achlya sp.	Labeo calbasu
	Channa gachua
	Notopterus chitala
	Puntius conchonius
	Labeo bata
	Puntius ticto
	Labeo calbasu
Dictyuchys sterile	Anabas testudineus
	Channa punctatus
	Puntius conchonius
<i>Saprolegnia</i> sp.	Colisa fasciatus
	Channa punctatus
	Cirrhinus mrigala
	Labeo calbasu
	Channa punctatus
	Channa striata
	Anabas testudineus

 Table 2.5: Occurrence of fungi on fishes

Source: Srivastava and Srivastava (1978)

2.3.1. (a). 4 Protozoa

Fishes are hosts for many protozoan parasites. In fish farm, parasitic protozoa may lead to epidemics and mortalities resulting in economic losses (Khalil and Polling, 1997). A study by Neave (1906) reported the presence of *Trypanosomes* in the blood of *Synodontis shall, Bagarus bajad* and *Mugil* species. Studies done by Al Wasila (1976) reported the presence of parasites in Sudan which infect *Oreochromis niloticus* fish. *Trypanosoma alhusaini* and *Myxobolus* sp. are the protozoa that live in freshwater fishes such as *Polypterues sengalus*, *Clarias lazera, Synodontis shall* and *Serrtatus* (Idris, 1986). Below in Table 2.6 shows a list of parasitic protozoa species which can infect the blood and internal organs of both *Oreochromis niloticus* and *Clarias gariepinus*.

Table 2.6: Protozoa detected in infected blood and organs of *Oreochromis niloticus* and *Clarias gariepinus*.

Fish species	Infected blood/organs	Detected protozoan
Oreochromis niloticus	Liver, kidneys and ovaries	<i>Myxobolus</i> sp.
	Liver	Cryptobia sp.
Clarias gariepienus	Blood and livers	<i>Trypanosoma</i> sp.
	Livers, kidneys and ovaries	<i>Myxobolus</i> sp.
	Blood	Haemogregarine sp.
$C_{and} = \frac{1}{2} \left(\frac{1}{2} \right)^{a}$		

Source: Adam et al. (2009)

2.4 Bath treatments for sick fish

2.4.1 Types of bath treatment

The aim of bath treatment is to eliminate the external infections which occur on skin, gills and fins of the fish that may be caused by bacterial, parasite or fungal diseases (Francis-Floyd, 1996). There are three basic of the bath treatments, which are listed below:

2.4.1. (a) Dip bath

The fishes are dipped into concentrated chemical or solution for a short time period which is often less than one minute. The prolonged exposure of fishes in the chemicals at a high concentration would make stressful condition and cause fatality to the fishes.

2.4.1. (b) Short bath

The fishes are subjected into moderate concentration of chemical or solution for time period between 30 minutes to several hours. The duration of exposure to the chemical is determined by the types of chemical used, the concentration used and the facility in which the fish are housed. This is an excellent method for administering many medications to fish which are placed in aquaria, tanks or raceways.

2.4.1. (c) Prolonged bath

Usually, this bath treatment is applied to pond fishes. The small concentration of chemicals used and left in the water without changing or flow through where the chemicals will eventually disappear or break down.