DESIGN OF 0.13-µm CMOS 3-STAGE CASCODE DC/DC BUCK CONVERTER FOR BATTERY OPERATED DEVICES

ERIC CHEW CHOON YEAN

UNIVERSITI SAINS MALAYSIA

2017

DESIGN OF 0.13-µm CMOS 3-STAGE CASCODE DC/DC BUCK CONVERTER FOR BATTERY OPERATED DEVICES

by

ERIC CHEW CHOON YEAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

June 2017

ACKNOWLEDGEMENT

I would like to express my deepest and sincere gratitude to my supervisor, Assoc. Prof. Dr. Norlaili Mohd Noh for her valuable contributions to this work, continuous support, enthusiasm, and patience. Her guidance is well-appreciated and I deeply believe that one could not possibly reach this far without such respectable supervision. Throughout the project, I have learnt a lot of priceless lessons from her.

Besides, my utmost thankfulness is expressed to CEDEC Universiti Sains Malaysia for the facility of using the Cadence® tools. I also would like to extend my gratitude to the technical staffs, especially to Mr. Mohd Kusairay Musa, Mr. Mohd Fazlan Md Radzi, and Ms. Nuha A. Rhaffer, who have provided loads of help and guidance.

Likewise, I would also like to extend my gratitude to the School of Electrical and Electronics Engineering, Universiti Sains Malaysia for accommodating me during the conduct of my studies.

Also, I would like to express my deep appreciation to Mr. Nunogawa Yasuhiro and Mr. Chen Yen Wei who have been giving me pieces of unconditional advice and encouragement. Finally, I would like to thank my beloved family and friends for the prayers, support, encouragements and inspiration amidst the challenges.

TABLE OF CONTENTS

Page
ii
iii
viii
XV
xviii
xix
xxiii
XXV

CHAPTER ONE : INTRODUCTION

1.0	Introduction	1
1.1	System Integration And Stability	1
1.2	DC-DC Converter	4
	1.2.1 Linear Regulators	4
	1.2.2 Switching Converters	6
1.3	Problem Statement	7
1.4	Objectives	
1.5	Project Scope	10
1.6	Outline of Thesis	10

CHAPTER TWO : LITERATURE REVIEW

2.0	Introduction		12
2.1	Down Conversion – Buck Converter		
2.2	Control Stage		
	2.2.1	Modulation Method	15
	2.2.2	Feedback and Pulse Generator	19
	2.2.3	Error Amplifier for Feedback Circuit	21
	2.2.4	Bandgap Reference Circuit	24
2.3	2.3 The Power Stage		
	2.3.1	Operating Modes	28
	2.3.2	Dead Time	30
	2.3.3	Gate Driver	30
2.4	Sustai	ning High Power with Low Power Structure	38
	2.4.1	Stacking	38
2.5	The O	utput Filter Stage	48
2.6	Targe	t Design For This Work	50

CHAPTER THREE : DESIGN FUNDAMENTALS, SPECIFICATION AND CIRCUIT

3.0	Introduction		53
3.1	Design	Fundamentals	53
	3.1.1	Current in MOSFET	54
	3.1.2	MOSFET Capacitance in Saturation	55
	3.1.3	Gate Charge and Drive Current	58

	3.1.4	Power Loss	60
		3.1.4(a) Switching Loss	61
		3.1.4(b) Conduction Loss	63
	3.1.5	Relationship between Duty Cycle and Power Loss	65
3.2	Design	Specification and Performance Goal	66
3.3	Design	Circuit	67
3.4	Design	Steps	69
3.5	Design	Methodology	70
	3.5.1	The Main Converter – the Power Stage	71
		3.5.1(a) The Power Stage	71
		3.5.1(b) The Power Stage Parasitic	74
	3.5.2	The Filter Stage	76
3.6	The Co	ontrol Circuit	79
	3.6.1	The Driver	79
		3.6.1(a) Obtaining The Driver Parameters	80
		3.6.1(b) Level Shifting of Driver	84
	3.6.2	The Buffer Circuit	86
		3.6.2(a) Inverter Stage	86
		3.6.2(b) Overlap Prevention Stage	87
		3.6.2(c) Delay Stage	88
		3.6.2(d) Pulse Amplification	91
		3.6.2(e) Supply Source for Buffer Stage	93
	3.6.3	The Feedback Circuit	97
		3.6.3(a) The Error Amplifier	98
		3.6.3(b) The Comparator	99

		3.6.3(c) The Bandgap Reference	102
3.7	Circuit	Optimization	107
СНА	PTER F(OUR : RESULT AND DISCUSSIONS	
4.0	Introdu	ction	109
4.1	Functio	on Verification	109
	4.1.1	Delay and Dead Time	109
	4.1.2	Stability of the MOS Peaking Biasing circuit	110
		4.1.2(a) Stability against Supply Voltage Variation	111
		4.1.2(b) Stability against Temperature Variation	112
		4.1.2(c) Stability against Supply Current Variation	113
	4.1.3	Buffer Stage with MOS Peaking Biasing Circuit	114
	4.1.4	Bootstrap Driver	121
	4.1.5	PWM Generator and Feedback	122
	4.1.6	Feedback Circuit Accuracy	123
4.2	Perform	nance Analysis	125
	4.2.1	Frequency Variation	126
	4.2.2	Efficiency	129
		4.2.2(a) Efficiency of the Overall Buck Converter	129
		4.2.2(b) Efficiency of the Power Stage	130
	4.2.3	Load Variation	131
		4.2.3(a) Load Variation Effect on V_{out} and I_{out}	132
		4.2.3(b) Load Variation Effect on Efficiency	134
	4.2.4	Supply Voltage Variation	136

	4.2.4(a)	Supply Voltage Variation Effect on V_{out} and I_{out}	136
	4.2.4(b)	Supply Voltage Variation Effect on Efficiency	139
	4.2.5 Temperature	Effect	141
	4.2.5(a)	Temperature Effect on V_{out} and I_{out}	142
	4.2.5(b)	Temperature Effect on Efficiency	145
4.3	Performance Comp	parison	146
4.4	Summary		150

CHAPTER FIVE : CONCLUSION AND RECOMMENDATIONS

5.0	Conclusion	152
5.1	Recommendation	154

REFERENCES 156

APPENDICES

Appendix A : Design Flow
Appendix B : Circuit Used in Cadence® Simulation
Appendix C : Power Stage of Appendix B
Appendix D : Driver Stage of Appendix B
Appendix E : Buffer Stage of Appendix B
Appendix F : Feedback Stage of Appendix B

LIST OF PUBLICATION

LIST OF FIGURES

		Page
Figure 1.1	Illustration of a basic linear converter circuit (Zhang, 2013)	5
Figure 1.2	Illustration of a basic buck converter circuit (Zhang, 2013)	6
Figure 1.3	Illustration of a basic boost converter circuit (Zhang, 2013)	6
Figure 1.4	Illustration of a basic inverting converter circuit (Zhang, 2013)	6
Figure 1.5	Block diagram of a tablet PC (Panasonic Semiconductor, 2016)	8
Figure 1.6	Illustration a typical lithium ion battery voltage vs state of charge	9
Figure 2.1	A basic buck converter circuit showing the control stage, the power stage and the filter stage. (Zhang, 2013)	13
Figure 2.2	Illustration of a basic buck converter circuit showing (a) Charging stage and (b) Discharging stage (Zhang, 2013)	14
Figure 2.3	Illustration of SW1 Gate pulses (for PMOS as shown in Figure 2.1) for 3 load conditions, i.e. Light, Medium and Heavy, under PWM method	16
Figure 2.4	Illustration of SW1 Gate pulse (for PMOS as shown in Figure 2.1) for two loads conditions, i.e. Light and Heavy, under PFM method	16
Figure 2.5	Efficiency comparison between two controlling methods (PWM and PFM) versus load current (Brusev and Hristov, 2008)	17
Figure 2.6	Block diagram of PWM control circuit (Brusev and Hristov, 2008)	18

Figure 2.7	Block diagram of PFM control circuit (Brusev and Hristov, 2008)	18
Figure 2.8	Illustration of Feedback and PWM generator circuit in the control stage of Figure 2.6	19
Figure 2.9	Illustration of the signals V_{SAW} , V_E and V_{PWM}	20
Figure 2.10	Illustration of feedback and PFM generator circuit in the control stage of Figure 2.7	21
Figure 2.11	Illustrate of the signals of V_{out} and V_{PFM}	21
Figure 2.12	Circuit diagram of conventional operational amplifier used as an error amplifier in Figure 2.8 (Chun and Skafidas, 2012)	22
Figure 2.13	Enhanced current mode amplifier (Chen et al., 2012)	23
Figure 2.14	Conventional bandgap reference circuit (Adimulam and Movva, 2012)	25
Figure 2.15	Simplified schematic of bandgap reference circuit with clock signal (Wiessflecker et al., 2012)	25
Figure 2.16	Low power CMOS current mode bandgap reference circuit (Adimulam and Movva, 2012)	26
Figure 2.17	Illustration of a buck converter circuit where two transistors are used, with NMOS SW2 and (a) SW1 is using Power NMOS (b) SW1 is using Power PMOS.	27
Figure 2.18	Illustration of inductor current under CCM for heavy load condition	29
Figure 2.19	Illustration of inductor current under DCM for light load condition	29

Figure 2.20	Illustration of a Gate Signal for SW1 and SW2 with deadtime implementation	30
Figure 2.21	Illustration of MOSFET parasitic capacitance	31
Figure 2.22	Schematic of total parasitic capacitance as seen from the Driver	32
Figure 2.23	Illustration of simplified circuit of Figure 2.21	33
Figure 2.24	Conventional clock driver design (Sheikhaei et al., 2013)	35
Figure 2.25	Reference clock driver (Sheikhaei et al., 2013)	35
Figure 2.26	Illustration of buck converter and clock driver combination (Sheikhaei et al., 2013)	36
Figure 2.27	Buck converter with hi-side N-Type Power MOSFET and the used of bootstrap driver (Zhou et al., 2009)	37
Figure 2.28	Schematic of the bootstrap driver in Figure 2.27 (Zhou et al., 2009)	37
Figure 2.29	Illustration of NMOS in cascode in the power stage of a buck converter (Bradburn and Hess, 2010)	39
Figure 2.30	PMOS in 5-stages cascode at the power stage (Founds et al., 2010)	41
Figure 2.31	Modified cascode at the power stage (Page et al., 2012)	43
Figure 2.32	Illustration of the buck converter power stage for supply voltage (V_{Bat}) up to 5 V based on: (a) High Voltage DMOS, (b) Cascode 2.5 V IO-MOS with gate connected and (c) Cascode 2.5 V IO-MOS devices (Maderbacher et al., 2011a)	44

Figure 2.33	Simulation results of the efficiency of buck converter for 3 topologies: a) High Voltage DMOS, b) Cascode 2.5 V IO-MOS with gate connected, c) Cascode 2.5 V IO-MOS devices (Maderbacher et al., 2011a)	45
Figure 2.34	Adaptive Power Transistor Driver (Nam et al., 2012)	45
Figure 2.35	Designed cascode buck converter (Ostman et al., 2014)	47
Figure 2.36	Illustration of the interleaved buck converter (Lee et al., 2014)	48
Figure 3.1	MOSFET cross section with parasitic capacitance shown (Ytterdal et al., 2003)	58
Figure 3.2	Large signal equivalent circuit of MOSFET (Ytterdal et al., 2003)	58
Figure 3.3	Gate to Source Voltage, V_{gs} versus Gate Charge, Q .	60
Figure 3.4	Typical MOSFET switching condition	61
Figure 3.5	Illustration of switching and deadtime power loss in the inverter circuit consisting of two NMOS as shown in Figure 2.17.	63
Figure 3.6	Comparison between (a) Ideal V_{ds} , and (b) non-ideal V_{ds} during 'ON' condition of a typical NMOS	64
Figure 3.7	Designed switching stack buck DC-DC converter circuit	68
Figure 3.8	The driver circuit	82
Figure 3.9	The simplified circuit of the driver	85

Figure 3.10	Simplified circuit in the buffer block	86
Figure 3.11	Schematic of the NOR circuit	88
Figure 3.12	Schematic of the delay stage in Figure 3.10	89
Figure 3.13	Signal generated at each stage.	90
Figure 3.14	Schematic of the buffer stage.	93
Figure 3.15	Basic MOS Peaking Circuit	94
Figure 3.16	Modified MOS Peaking circuit used	95
Figure 3.17	Feedback circuit block.	98
Figure 3.18	Error amplifier used in this work	98
Figure 3.19	Comparator used for this work	100
Figure 3.20	Illustration of the input and output signal of the comparator	101
Figure 3.21	Bandgap reference circuit used (Berkner, 2007)	103
Figure 4.1	Simulation result of the buffer stage.	110
Figure 4.2	<i>V_{bias}</i> against supply voltage variation	111
Figure 4.3	<i>V_{bias}</i> against temperature variation.	112

Figure 4.4	V_{bias} against supply current variation	113
Figure 4.5	Issues in HI signal generated by overall buffer with MOS peaking biasing circuit	115
Figure 4.6	MOS Peaking with added Capacitors.	116
Figure 4.7	Improvement in V_{bias} voltage drop with modified overall buffer with MOS peaking biasing circuit	117
Figure 4.8	Voltage variation effect on the overall buffer circuit.	118
Figure 4.9	Temperature variation effect on the overall buffer circuit	119
Figure 4.10	Pulse width variation effect on the overall buffer circuit	120
Figure 4.11	Driver output for high side (GH) and low Side (GL).	121
Figure 4.12	Hi side gate drive voltage	122
Figure 4.13	PWM signal generated by the comparator.	123
Figure 4.14	Output voltage, V_{out} , at different reference voltage, V_{ref}	124
Figure 4.15	Output current, I_{out} , at different reference voltage condition	124
Figure 4.16	Output voltage of the buck converter, V_{out} , at different operating frequencies	127
Figure 4.17	Output current, I_{out} , at different operating frequencies	127
Figure 4.18	Efficiency of the buck converter at different operating frequencies	129

Figure 4.19	Efficiency of the power stage at different operating frequencies	130
Figure 4.20	Output voltage, V_{out} , and output current, I_{out} , at different loads	132
Figure 4.21	Efficiency of the buck converter at different loading condition.	134
Figure 4.22	Efficiency of the power stage at different loading condition	135
Figure 4.23	Output voltage, V_{out} , at different V_{dd}	136
Figure 4.24	Output current, I_{out} , at different V_{dd}	137
Figure 4.25	Efficiency of the buck converter at different V_{dd}	140
Figure 4.26	Efficiency of the power stage at different V_{dd} .	141
Figure 4.27	Output voltage, V_{out} , at different ambient temperature condition	142
Figure 4.28	Output current, I_{out} , at different ambient temperature.	143
Figure 4.29	Efficiency of the buck converter at different ambient temperature	145
Figure 4.30	Efficiency of the power stage at different ambient temperature	146

LIST OF TABLES

Table 2.1	Summary of relevant buck converter design from work by others used as benchmark.	Page 52
Table 3.1	Design specification and target performance	66
Table 3.2	Summaries predefined condition used for power stage MOSFET calculation.	73
Table 3.3	Summarized the parameter of the power stage MOSFETs.	74
Table 3.4	Calculation parameters of the PMOS used	83
Table 3.5	Size of MOSFETs used in the inverter circuit of the driver stage.	84
Table 3.6	Size of MOSFETs used in the inverter circuit.	87
Table 3.7	Size of MOSFETs used in the NOR circuit.	88
Table 3.8	Sizes of the MOSFETs in the delay stage of Figure 3.12	91
Table 3.9	Sizes of the MOSFETs of the pulse amplification stage	92
Table 3.10	Parameters of the MOS Peaking used for buffer stage supply source	97
Table 3.11	Sizes of the MOSFETs of the error amplifier	99
Table 3.12	Sizes of the MOSFETs in the comparator comprising of the error amplifier and the inverters	102

Table 3.13	Estimated V_{ref} value generated	106
Table 3.14	Parameters of the BGR	107
Table 3.15	Parameter of the power stage MOSFETs after optimization	108
Table 3.16	Size of MOSFETs used in the inverter circuit of the driver stage after optimization	108
Table 4.1	Condition of the signals before and after the delay stage.	110
Table 4.2	Typical condition of the converter.	126
Table 4.3	Output voltage, V_{out} , and ripple result at different operating frequency	128
Table 4.4	Output current, I_{out} , and ripple result at different operating frequency.	128
Table 4.5	Output voltage, V_{out} , and ripple percentage at different load condition	133
Table 4.6	Output current, I_{out} , and ripple percentage at different load condition.	133
Table 4.7	Output voltage, V_{out} , and percentage of ripple at different V_{dd}	137
Table 4.8	Output current, I_{out} , and percentage of ripple at different V_{dd}	138
Table 4.9	Output voltage, V_{out} , with percentage of ripple at different ambient-temperature condition	144
Table 4.10	Output current, I_{out} , with percentage of ripple at different ambient-temperature condition	144

Table 4.11Summary of the operation condition and the performance of147the converter in this work

LIST OF ABBREVIATIONS

BJT	Bipolar Junction Transistor
ССМ	Continuous Conduction Mode
CMOS	Complementary Metal Oxide Semiconductor
CRM	Critical Conduction Mode
DC	Direct Current
DCM	Discontinuous Conduction Mode
EMI	Electromagnetic Interference
ICs	Integrated Circuits
Li-ion	Lithium Ion
NDR	N-type MOSFET Driver
PDR	P-type MOSFET Driver
PFM	Pulse Frequency Modulation
РТАТ	Proportional to absolute temperature
PWM	Pulse Width Modulation
SiP	System in Package
SoC	System on Chip
SW	Switch
ZVS	Zero Voltage Switching

LIST OF SYMBOLS

A_V	Small-signal AC voltage gain of the MOSFET
C _{db}	Drain and bulk capacitance
C _{ds}	MOSFET drain to source parasitic capacitance
C_{gb}	MOSFET gate and bulk capacitance
C_{gd}	MOSFET gate to drain parasitic capacitance
C_{gs}	MOSFET gate to source parasitic capacitance
C _{iss}	MOSFET input capacitance
Coss	MOSFET output capacitance
Cout	Output Capacitor
C _{OV}	Overlap capacitance
Cox	The oxide layer capacitance of the MOSFET
$C_{p(i)}$	Capacitor in parallel with the MOSFET
C _{rss}	MOSFET reverse transfer Capacitance
C _{sb}	MOSFET source and bulk capacitance
C _{total}	MOSFET total parasitic Capacitance
D	Duty Cycle
D'	Inverse duty cycle
ΔV_{th}	Changed in threshold voltage
η	Efficiency
f	Frequency
i	Number of capacitors

I _d	MOSFET drain current
I _{d(max)}	MOSFET maximum drain current
I _{drive}	Driver current
I _{in}	Input current
Iout	Output current
k'	Process trans conductance
L	Inductor
L _{channel}	Length of MOSFET Channel
L_p	Length of P-type MOSFET
L _n	Length of N-type MOSFET
μ _n	The charge carrier effective mobility
n	Number of MOSFETs.
Na	The doping density
P _{in}	Input Power
Pout	Output Power
q	The electron charge
$Q_{gs(on)}$	Gate Charge of MOSFET
Q_{total}	Total Charge of MOSFET
r _{ds}	MOSFET Drain to Source resistance
$R_{DS(on)}$	MOSFET drain to source resistance during turn ON
R_G	Signal line resistance
r_g	Gate electrode parasitic resistance
r_j	The source and drain junction depth

τ	Propagation delay (time constant)
$t_{d(on)}$	The MOSFET turn on delay time.
$t_{d(off)}$	Turn off delay time of MOSFET
t_f	Fall interval of MOSFET current from 90% to 10% of
	max current
t _r	Rise interval of MOSFET current from 10% to 90% of
	max current
t _{ox}	MOSFET gate oxide thickness
V _d	MOSFET drain voltage
V _{dd}	Supply voltage
V _{diode}	Voltage of diode attached to the source and gate of the
	MOSFET
V _{ds(on)}	Drain to Source Voltage of MOSFET during turn ON
V_E	Error Signal representation in voltage
V_{g}	MOSFET gate voltage
V _{in}	Input Voltage
V _{op}	Output voltage from operational amplifier
Vout	Output Voltage
V _{PWM}	PWM representation in voltage
V _{pulse}	Pulse representation in voltage
V _{ref}	Reference Voltage
Vs	MOSFET source voltage
V _{SAW}	Saw Wave representation in voltage

V _{sleep}	Sleep Signal representation in voltage
V _{th}	Threshold voltage of MOSFET
V _{tho}	The ideal device threshold voltage
W	Width of MOSFET Channel
W_n	Width of N-type MOSFET
W_p	Width of P-type MOSFET

REKA BENTUK 0.13-µm CMOS PENUKAR "BUCK" DC/DC KASKOD 3-PERINGKAT BAGI PERANTI BEROPERASIKAN BATERI

ABSTRAK

Selaras dengan perkembangan teknologi, voltan bekalan bagi litar atas cip menjadi semakin kecil. Sebagai contoh ialah bekalan voltan yang terhad kepada 1 V bagi kebanyakan rekabentuk litar 90-nm. Walau bagaimanapun, satu sel bateri ion litium yang digunakan dalam peranti elektronik hari ini mempunyai voltan nominal 3.7V dan mencapai 4.2V pada cas penuh. Oleh itu, penukar turun "buck" DC/DC yang berupaya untuk membekalkan voltan dan arus yang stabil kepada litar adalah diperlukan. Penyelidikan ini adalah berkaitan satu reka bentuk cip 0.13-um CMOS tanpa transistor kuasa tinggi penukar turun "buck" berupaya untuk menukar turun voltan 3.4 V - 4.2 V kepada 1 V. Cabaran dalam melaksanakan reka bentuk ini adalah penggunaan transistor biasa yang tidak mempunyai ketahanan terhadap voltan dan arus yang tinggi dan sebaliknya mempunyai rintangan yang agak tinggi berbanding dengan transistor kuasa tinggi yang digunakan dalam litar penukar turun komersial. Reka bentuk penukar turun "buck" dalam penyelidikan ini adalah berdasarkan Mod Pengaliran Berterusan (CCM) bagi mendapatkan hingar yang lebih rendah dan kecekapan yang lebih baik pada litar yang memerlukan arus tinggi. Di samping itu, transistor dalam bahagian kuasa litar penukar tersebut adalah dalam konfigurasi tindan/kaskod bagi membolehkan penggunaan voltan bekalan yang lebih tinggi daripada voltan runtuhan transistor. Simulasi adalah menggunakan Cadence SpectreRF. Keputusan menunjukkan bahawa penukar "buck" yang direka bentuk menggunakan transistor bukan kuasa tinggi dapat berfungsi secara efektif seperti mana penukar yang menggunakan transistor berkuasa tinggi dengan riak voltan