## EXPLORATORY LONGITUDINAL STUDIES ON CEREBRAL SMALL VESSEL DISEASE (CSVD) IN APPARENTLY ASYMPTOMATIC INDIVIDUALS WITH NEUROPSYCHOLOGICAL, NEUROIMAGING AND MICROPARTICLES PROFILING

BY

# CHE MOHD NASRIL BIN CHE MOHD NASSIR

Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Neuroscience

**APRIL 2018** 

# KAJIAN PENEROKAAN TERHADAP PENYAKIT PEMBULUH DARAH KECIL BAGI INDIVIDU ASIMPTOMATIK MELALUI PROFIL NEUROPSIKOLOGI, NEUROPENGIMEJAN, DAN MIKROPARTIKEL.

OLEH

# CHE MOHD NASRIL BIN CHE MOHD NASSIR

Tesis diserahkan bagi memenuhi sebahagian keperluan bagi ijazah Doktor Neurosains

**APRIL 2018** 

#### ACKNOWLEDGEMENT

للله ألرَّحْمَد إلرَّجيم

May the peace, mercy, and blessing of Allah SWT be with you,

I am deeply indebted to Assoc. Prof. Dr. Muzaimi Mustapha for introducing me to this important and interesting field of neurosciences. His constant encouragement, helpful comments, moral and financial supports and supervision enabled me to accomplish my doctorate study.

My deepest appreciation to my supervisory team, Prof. Mandava Rajeswari (Computer Sciences), Prof. Wan Zaidah Abdullah (Haematology), Dr. Suhaila (Family Medicine), Dr. Salmah @ Win Mar (Radiology), Dr. Eric Ho Tatt Wei (CISIR, UTP) and also Dr. Fermi Pasha (Computer Sciences), for their supervision, support and constructive criticism since the beginning of my doctorate year.

I wish to express my sincere appreciation to all the participants for giving up their valuable time to take part in this research and making it what it is.

My profound gratitude to my beloved colleagues and teammates, Madam Mazira, my brother Usman Jaffer, Madam Aimi, Madam Salmi, Miss Amanina, Miss Jia Hui and the wonderful teams from Integrated Neurosciences Programme (INP) and from Department of Neurosciences, for their assistance and support, and with whom I exchange excellent ideas during the period of my doctorate and INP life.

I wish to thank to all lecturers and staff from Department of Neurosciences, for their assistance, support and teaching me.

My deepest appreciation also goes to the radiographers Madam Wan Nazyrah and Madam Affidah for their assistant during MRI scanning, staff nurse from Neuro-ICU (2 Delima Ward), Madam Norina for her support during blood taking, and finally to science officer and lab technologist from Haematology Lab, Miss Ang and Madam Suhana respectively for their helpful support.

Finally, I wish to acknowledge to the Fundamental Research Grant Scheme (FRGS), File No: 203/PPSP/61771193 for funding this research.

To all I say thank you and Allah S. W. T. bless.

## Dedication

This work is dedicated to:

My mom, Kamariah, who brought me the world of love

My dad, Che Mohd Nassir, who brought me the world of words

My siblings, Nasrul, Nazlin, Nazdlia, Nasran and Nazatul, for bringing me the world

My nieces, nephews and other family members for bringing me joy

To all I say,

Alhamdulillah, Thank You Very Much and May Allah S. W. T. bless.

# TABLE OF CONTENTS

# Page

| ACKNOW     | VLEDGEMENT                                                | iii   |
|------------|-----------------------------------------------------------|-------|
| TABLE C    | DF CONTENTS                                               | vi    |
| LIST OF    | TABLES                                                    | xiii  |
| LIST OF    | FIGURES                                                   | xix   |
| LIST OF    | ABBREVIATIONS                                             | xxiii |
| ABSTRA     | К                                                         | xxix  |
| ABSTRA     | СТ                                                        | xxxi  |
| СНАРТЕ     | R 1: INTRODUCTION                                         | 1     |
| 1.1 Ba     | ckground of The Study                                     | 1     |
| 1.2 Pro    | blem Statement and Study Rationale                        | 5     |
| 1.3 Ob     | jectives of the study                                     | 7     |
| 1.3.1      | General objective                                         | 7     |
| 1.3.2      | Specific objectives                                       | 7     |
| 1.3.3      | Research questions                                        | 8     |
| 1.3.4      | Research hypothesis                                       | 9     |
| СНАРТЕ     | R 2: LITERATURE REVIEW                                    | 10    |
| 2.1 Lit    | erature Search Strategy                                   | 10    |
| Part 1: Co | erebral Small Vessel Disease (CSVD)                       | 11    |
| 2.2 Ce     | rebral White Matter                                       | 11    |
| 2.3 Ce     | rebral Small Vessels (Blood Supply)                       | 15    |
| 2.4 CS     | VD: Definition and Pathophysiology                        | 17    |
| 2.5 Wł     | nite Matter Hyperintensities (WMHs)                       | 19    |
| 2.6 Ae     | tiology and Consequences of WMHs                          | 20    |
| Part 2: Co | erebrovascular Disease Risk and Risk Prediction           | 22    |
| 2.7 Ris    | k Factors for Cerebrovascular Disease                     | 22    |
| 2.8 Ca     | rdio-cerebrovascular Risk Prediction Assessment by QRISK2 | 23    |
| Part 3: No | europsychology Correlates of CSVD                         |       |
| 2.9 Ne     | uropsychological Assessments                              | 26    |
| 2.9.1      | Wechsler Adults Intelligence Scale-IV (WAIS-IV)           |       |
| 2.10 Wł    | nite Matter hyperintensities and Cognitive Function       | 32    |
| Part 4: No | euroimaging                                               | 34    |
| 2.11 Int   | roduction                                                 |       |
| 2.12 Ma    | gnetic Resonance Imaging (MRI)                            |       |
| 2.12.1     | Basic principle of MRI                                    |       |

| 2.12.2                                                                                                                                                                                                                                                                                             | MRI pulse sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 2.12.3                                                                                                                                                                                                                                                                                             | MRI as a standard tool to study CSVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                                                                                                   |
| 2.13 Diffu                                                                                                                                                                                                                                                                                         | sion tensor imaging (DTI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                   |
| 2.13.1                                                                                                                                                                                                                                                                                             | General concept of DTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                   |
| 2.13.2                                                                                                                                                                                                                                                                                             | Diffusion Tensor Tractography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54                                                                                                   |
| 2.13.3                                                                                                                                                                                                                                                                                             | Application of DTI and CSVD correlates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56                                                                                                   |
| Part 5: Cont                                                                                                                                                                                                                                                                                       | ribution of Micro-thrombogenic Microparticles in CSVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58                                                                                                   |
| 2.14 Histo                                                                                                                                                                                                                                                                                         | rical context of microparticles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58                                                                                                   |
| 2.14.1                                                                                                                                                                                                                                                                                             | Types of vesicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                   |
| 2.15 Micro                                                                                                                                                                                                                                                                                         | particles (MPs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61                                                                                                   |
| 2.15.1                                                                                                                                                                                                                                                                                             | Formation of MPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                   |
| 2.15.2                                                                                                                                                                                                                                                                                             | MPs subpopulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                   |
| 2.15.3                                                                                                                                                                                                                                                                                             | Method of detection for characterization of MPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69                                                                                                   |
| 2.15.4                                                                                                                                                                                                                                                                                             | Role of MPs as micro-thrombotic agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76                                                                                                   |
| 2.15.5                                                                                                                                                                                                                                                                                             | Role of MPs as in CSVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79                                                                                                   |
| 2.16 Sumr                                                                                                                                                                                                                                                                                          | nary of Literature Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86                                                                                                   |
| CHAPTER                                                                                                                                                                                                                                                                                            | 3: METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                                                                                                   |
| 3.1 Introd                                                                                                                                                                                                                                                                                         | luction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                                                                                   |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 00                                                                                                 |
| Part 1: Ethi                                                                                                                                                                                                                                                                                       | cs Approval, Sample Size Estimation and Subject Recruitmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt89                                                                                                 |
| 3.2 Ethic                                                                                                                                                                                                                                                                                          | s Approval, Sample Size Estimation and Subject Recruitmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt89<br>89                                                                                           |
| 3.2 Ethic<br>3.3 Samp                                                                                                                                                                                                                                                                              | es Approval, Sample Size Estimation and Subject Recruitments<br>Approval and Funding<br>le Size Calculation and Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt89<br>89<br>89                                                                                     |
| 3.2 Ethic<br>3.3 Samp<br>3.4 Subje                                                                                                                                                                                                                                                                 | cs Approval, Sample Size Estimation and Subject Recruitments<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2).                                                                                                                                                                                                                                                                                                                                                                        | nt89<br>89<br>89<br>90                                                                               |
| 3.2 Ethic<br>3.3 Samp<br>3.4 Subje<br>3.5 Inclus                                                                                                                                                                                                                                                   | cs Approval, Sample Size Estimation and Subject Recruitments<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria                                                                                                                                                                                                                                                                                                                                        | nt89<br>89<br>89<br>90<br>93                                                                         |
| 3.2 Ethic<br>3.3 Samp<br>3.4 Subje<br>3.5 Inclus<br>3.5.1                                                                                                                                                                                                                                          | cs Approval, Sample Size Estimation and Subject Recruitments<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria                                                                                                                                                                                                                                                                                                                  | nt89<br>89<br>                                                                                       |
| Part I: Ethic           3.2         Ethic           3.3         Samp           3.4         Subje           3.5         Inclus           3.5.1         3.5.2                                                                                                                                        | cs Approval, Sample Size Estimation and Subject Recruitments<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria                                                                                                                                                                                                                                                                                            | nt89<br>89<br>90<br>93<br>93<br>93                                                                   |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5.1         3.5.2         3.6 Study                                                                                                                                                                | cs Approval, Sample Size Estimation and Subject Recruitments<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria                                                                                                                                                                                                                                                                                            | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>94                                                       |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5.1         3.5.2         3.6 Study         3.7 Statis                                                                                                                                             | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures                                                                                                                                                                                                                                                                               | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>93                                                 |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5.1         3.5.2         3.6 Study         3.7 Statis         Part 2: Neuronal                                                                                                                    | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis                                                                                                                                                                                                                                                        | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>93<br>94<br>95<br>96                               |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5.1         3.5.2         3.6 Study         3.7 Statis         Part 2: Neur         3.8 Introd                                                                                                     | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>topsychological Assessment<br>huction to Neuropsychological Assessment                                                                                                                                                                              | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>94<br>95<br>96<br>96                               |
| Part 1: Ethic         3.2       Ethic         3.3       Samp         3.4       Subje         3.5       Inclus         3.5.1       3.5.2         3.6       Study         3.7       Statis         Part 2: Neur       3.8         3.8.1       Introd                                                 | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>tical Data Analysis<br>uction to Neuropsychological Assessment<br>WAIS-IV operational definition                                                                                                                                                    | nt89<br>89<br>90<br>90<br>93<br>93<br>93<br>93<br>93<br>94<br>95<br>96<br>96                         |
| Part 1: Ethic         3.2       Ethic         3.3       Samp         3.4       Subje         3.5       Inclus         3.5.1       3.5.2         3.6       Study         3.7       Statis         Part 2: Neur       3.8.1         3.9       Meas                                                   | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>tical Data Analysis<br>huction to Neuropsychological Assessment<br>WAIS-IV operational definition<br>uring Cognitive and Memory Index using WAIS-IV                                                                                                 | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>94<br>95<br>96<br>96<br>96<br>96                   |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5 Inclus         3.5.1         3.5.2         3.6 Study         3.7 Statis         Part 2: Neur         3.8 Introd         3.8.1         3.9 Meas         3.9.1                                     | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>topsychological Assessment<br>luction to Neuropsychological Assessment<br>WAIS-IV operational definition<br>uring Cognitive and Memory Index using WAIS-IV<br>Perceptual Reasoning Index (PRI)                                                      | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>93<br>94<br>96<br>96<br>96<br>96<br>99             |
| Part 1: Ethic         3.2 Ethic         3.3 Samp         3.4 Subje         3.5 Inclus         3.5.1         3.5.2         3.6 Study         3.7 Statis         Part 2: Neur         3.8 Introd         3.8.1         3.9 Meas         3.9.1                                                        | cs Approval, Sample Size Estimation and Subject Recruitmer<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>tical Data Analysis<br>uction to Neuropsychological Assessment<br>WAIS-IV operational definition<br>uring Cognitive and Memory Index using WAIS-IV<br>Perceptual Reasoning Index (PRI)<br>a) Block Design (BD)                                       | nt89<br>89<br>90<br>93<br>93<br>93<br>93<br>93<br>93<br>94<br>95<br>96<br>96<br>96<br>99<br>99<br>99 |
| Part 1: Ethic         3.2       Ethic         3.3       Samp         3.4       Subje         3.5       Inclus         3.5.1       3.5.1         3.5.2       3.6         3.6       Study         3.7       Statis         Part 2: Neur       3.8.1         3.9       Meas         3.9.1       3.9.1 | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding<br>le Size Calculation and Estimation<br>cts Recruitment and Cardiovascular Risk Prediction (QRISK2) .<br>sion and Exclusion Criteria<br>Inclusion criteria<br>Exclusion criteria<br>Procedures<br>tical Data Analysis<br>topsychological Assessment<br>luction to Neuropsychological Assessment<br>WAIS-IV operational definition<br>uring Cognitive and Memory Index using WAIS-IV<br>Perceptual Reasoning Index (PRI)<br>a) Block Design (BD)<br>b) Matrix Reasoning (MtR) | 11                                                                                                   |
| Part 1: Ethic         3.2       Ethic         3.3       Samp         3.4       Subje         3.5       Inclus         3.5.1       3.5.2         3.6       Study         3.7       Statis         Part 2: Neur       3.8.1         3.9       Meas         3.9.1       3.9.1                         | cs Approval, Sample Size Estimation and Subject Recruitment<br>s Approval and Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                   |
| Part 1: Ethic         3.2       Ethic         3.3       Samp         3.4       Subje         3.5       Inclus         3.5.1       3.5.2         3.6       Study         3.7       Statis         Part 2: Neur       3.8.1         3.9       Meas         3.9.1       3.9.1                         | <b>CS Approval, Sample Size Estimation and Subject Recruitmen</b><br>s Approval and Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                   |

|             | b) Letter-Number Sequencing (LN)                   |     |
|-------------|----------------------------------------------------|-----|
| 3.9.3       | Processing Speed Index (PSI)                       |     |
|             | a) Symbol Search (SS)                              |     |
|             | b) Coding (COD)                                    |     |
| 3.10 Data   | Analysis                                           | 111 |
| 3.10.1      | Statistical data analysis                          | 111 |
| 3.10.2      | Concluding remarks                                 | 111 |
| Part 3: Hae | matological Assessment                             |     |
| 3.11 Expe   | rimental Design                                    |     |
| 3.12 Mate   | erials                                             | 114 |
| 3.12.1      | Chemicals and reagents                             | 114 |
| 3.12.2      | Scientific equipments                              | 114 |
| 3.12.3      | Disposable items                                   | 114 |
| 3.12.4      | Preparation of materials                           | 114 |
| 3.13 Ident  | ification and Selection of Surface Markers for MPs |     |
| Subp        | oopulations                                        | 115 |
| 3.14 Pre-A  | Analytical Steps                                   |     |
| 3.14.1      | Blood collection                                   |     |
| 3.14.2      | Centrifugation                                     | 119 |
| 3.14.3      | Sample staining for flow cytometry                 |     |
| 3.15 Anal   | ytical Steps                                       |     |
| 3.15.1      | Flow cytometer threshold                           |     |
| 3.15.2      | Gating strategies                                  |     |
| 3.15.3      | Data collection and display                        |     |
| 3.15.4      | Calculation of MPs percentage                      |     |
| 3.16 Data   | Analysis                                           |     |
| 3.16.1      | Statistical data analysis                          |     |
| 3.16.2      | Concluding remarks                                 |     |
| Part 4: Neu | roimaging Assessments                              |     |
| 3.17 MRI    | Brain Image Acquisition and Protocols              |     |
| 3.17.1      | Subjects preparation                               |     |
| 3.17.2      | MRI acquisition and protocols                      |     |
|             | a) Structural images acquisitions                  | 136 |
|             | b) DTI acquisitions                                |     |
| 3.18 Imag   | e Visualization and Analysis                       |     |
| 3.18.1      | Visualization                                      | 141 |
| 3.18.2      | Detection and evaluation of WMHs                   |     |

| 3.19 Imag   | ge Pre-Processing                                                                     | 144          |
|-------------|---------------------------------------------------------------------------------------|--------------|
| 3.19.1      | Eddy Current Correction (ECC)                                                         | 144          |
| 3.19.2      | Brain extraction                                                                      | 145          |
| 3.20.3      | White Matter Lesion Segmentation                                                      | 145          |
| 3.20 Imag   | ge Processing                                                                         | 147          |
| 3.20.1      | Brain Masking and Tensor Estimation                                                   | 147          |
| 3.20.2      | Whole Brain Tractography                                                              | 148          |
| 3.20.3      | Region of Interest (ROI) analysis and tractography                                    | 150          |
| 3.21 Data   | Analysis                                                                              | 154          |
| 3.21.1      | Statistical Data Analysis                                                             | 154          |
| 3.21.2      | Concluding remarks                                                                    | 154          |
| 3.23 Su     | Immary of Chapter 3                                                                   | 155          |
| CHAPTER     | 4: RESULTS                                                                            | 158          |
| 4.1 Introd  | uction                                                                                | 158          |
| Part 1:Dem  | ographic Data                                                                         | 159          |
| 4.2 Base    | eline and Follow-up Sample Size and Demographic Data                                  |              |
| Part 2: Car | diovascular Risk Prediction by QRISK2                                                 |              |
| 4.3 QRI     | SK2 Profile in relation with Age at T <sub>0</sub>                                    |              |
| 4.4 Corr    | relation of QRISK2 and Age (T <sub>0</sub> )                                          |              |
| 4.5 QRI     | SK2 Profile in relation with other demographic variables                              | 166          |
| 4.4.1       | QRISK2 vs Gender                                                                      | 166          |
| 4.4.2       | QRISK2 vs Ethnicity                                                                   | 167          |
| 4.4.3       | QRISK2 vs Smoking                                                                     |              |
| 4.4.4       | QRISK2 vs Hypertension                                                                |              |
| 4.4.5       | QRISK2 vs Family history of coronary heart disease in degree relatives under 60 years | first<br>170 |
| 4.4.6       | QRISK2 vs Level of Education                                                          | 171          |
| 4.5.7       | QRISK2 vs ratio of total serum cholesterol: high density lipoprotein vs age           |              |
| Part 3:Neu  | ropsychological Assessments Findings                                                  | 174          |
| 4.6 Base    | eline ( $T_0$ ) and Follow-up ( $T_{12}$ ) WAIS-IV Cognitive and Memor                | ry           |
| Dom         | nains                                                                                 | 174          |
| 4.7 Base    | eline $(T_0)$ and Follow-up $(T_{12})$ WAIS-IV Cognitive and Memor                    | ry           |
| Indic       | ces                                                                                   |              |
| 4.8 Corr    | elation of WAIS-IV Cognitive and Memory Indices with Age                              |              |
| Part 4: Hae | ematological Assessment Findings                                                      |              |
| 4.9 Base    | eline (T <sub>0</sub> ) and Follow-up (T <sub>12</sub> ) MPs Enumerations             |              |
| 4.10 Corr   | relation of MPs Counts with Age                                                       |              |

| 4.11   | Correlation of MPs Count with QRISK2                                                                                                          | .194  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4.12   | 2 Correlation of MPs Count with WAIS-IV Cognitive and Memory                                                                                  |       |
|        | Indices                                                                                                                                       | . 195 |
| Part 5 | : Neuroimaging Findings                                                                                                                       | . 196 |
| 4.13   | Detection and Evaluation of WMHs                                                                                                              | . 196 |
| 4.14   | White Matter Lesion Segmentation Results                                                                                                      | .200  |
| 4.15   | Whole Brain Tractography                                                                                                                      | .203  |
| 4.16   | 6 Region of Interest (ROI) Analysis and Tractography                                                                                          | .208  |
| 4.     | 15.1 Right Anterior Corona Radiata (RACR)                                                                                                     | .209  |
| 4.     | 15.2 Left Anterior Corona Radiata (LACR)                                                                                                      | .216  |
| 4.     | 15.3 Right Superior Corona Radiata (RSCR)                                                                                                     | .223  |
| 4.     | 15.4 Left Superior Corona Radiata (LSCR)                                                                                                      | .229  |
| 4.     | 15.5 Right Superior Longitudinal Fasciculus (RSLF)                                                                                            | .235  |
| 4.     | 15.6 Left Superior Longitudinal Fasciculus (LSLF)                                                                                             | .242  |
| 4.17   | Comparison of White Matter Integrity between WMH <sup>+</sup> and WMH <sup>-</sup>                                                            |       |
|        | Subjects                                                                                                                                      | .249  |
| Part 6 | : Multimodal Correlation with Neuroimaging Findings                                                                                           | .251  |
| 4.18   | <sup>3</sup> Correlation of QRISK2, WAIS-IV Cognitive and Memory profiles, MPs<br>Profiles and Fazekas Scale with Number and Volume of Lesion | .251  |
| 4.19   | Comparison of QRISK2 Profiles Among WMH <sup>+</sup> and WMH <sup>-</sup> Subjects                                                            | .253  |
| 4.20   | Comparison of WAIS-IV Cognitive and Memory Indices Profiles among WMH <sup>+</sup> and WMH <sup>-</sup> Subjects                              | .254  |
| 4.21   | Comparison of Mean Percentage of Microparticles (MPs) Subpopulations and Total MPs among WMH <sup>+</sup> and WMH <sup>-</sup> Subjects       | .256  |
| 4.22   | 2 Correlation of QRISK2 with White Matter Integrity                                                                                           | .260  |
| 4.23   | Correlation of Age with White Matter Integrity                                                                                                | .261  |
| 4.24   | Correlation of WAIS-IV Cognitive and Memory Indices with White<br>Matter Integrity                                                            | .262  |
| 4.25   | Correlation of Total MPs and MPs Subpopulations with White Matter                                                                             |       |
|        | Integrity                                                                                                                                     | .265  |
| CHAI   | PTER 5: DISCUSSION                                                                                                                            | .269  |
| 5.1    | Introduction                                                                                                                                  | .269  |
| Part 1 | : QRISK2 Cardiovascular Risk Prediction                                                                                                       | .270  |
| 5.2    | QRISK2 as Cardio-cerebrovascular Risk Predictor                                                                                               | .270  |
| 5.3    | QRISK2 Profile in Relation with Age                                                                                                           | .271  |
| Part 2 | : Neuropsychological Study                                                                                                                    | .274  |
| 5.4    | WAIS-IV Cognitive and Memory Domains                                                                                                          | .274  |
| 5.5    | Correlation of WAIS-IV Cognitive and Memory Indices and Age                                                                                   | .275  |

| 5.6        | Correla             | ation of WAIS-IV Cognitive and Memory Indices and                                            |           |
|------------|---------------------|----------------------------------------------------------------------------------------------|-----------|
|            | QRISK               | 2                                                                                            | 279       |
| Part 3     | : Haem              | atological Study                                                                             | 281       |
| 5.7        | MPs Su              | ubpopulation and Total MPs Enumeration                                                       | 281       |
| 5.8        | MPs Su              | ubpopulations and Total MPs Enumeration in Aging                                             | 285       |
| 5.9        | MPs Su<br>Cardio    | ubpopulations and Total MPs Enumeration and Relation with vascular Risk Defined by QRISK2    | 288       |
| 5.10       | MPs Su<br>WAIS-     | ubpopulations and Total MPs Enumeration and Relation with<br>IV Cognitive and Memory Indices | 289       |
| Part 4     | : Neuro             | imaging                                                                                      | 291       |
| 5.11       | Detection           | on and Evaluation of WMHs                                                                    | 291       |
| 5.12       | WMHs                | Number of Lesion and Lesion Volume                                                           | 292       |
| 5.13<br>WM | Relation            | nship of Cardiovascular Risk Prediction QRISK2 with Prevalence                               | of<br>296 |
| 5.14<br>WM | Relation            | nship of WAIS-IV Cognitive and Memory Indices with Prevalence                                | of<br>298 |
| 5.15       | Relation            | nship of Circulating MPs with Prevalence of WMHs                                             | 301       |
| 5.         | 15.1                | Roles of circulating MPs with prevalence of WMHs                                             | 303       |
| 5.16       | Diffusio<br>Relatio | on Tensor Tractography Study for Whole Brain White Matter in n to WMHs                       | 307       |
| 5.         | 16.1                | Whole brain white matter tractography                                                        | 307       |
| 5.         | 16.2                | Correlation of whole brain white matter integrity with age                                   | 309       |
| 5.         | 16.3                | Correlation of whole brain white matter integrity with QRISK2                                | 309       |
| 5.         | 16.4                | Correlation of whole brain white matter integrity with WAIS-IV indices                       | 311       |
| 5.         | 16.5                | Correlation of whole brain white matter integrity with MPs                                   | 312       |
| 5.17 D     | oiffusion           | Tensor Tractography to Study White Matter Integrity in ROI                                   | 313       |
| 5.         | 17.1                | Anterior Corona Radiata (ACR)                                                                | 315       |
| 5.         | 17.2                | Superior Corona Radiata (SCR)                                                                | 318       |
| 5.         | 17.3                | Superior Longitudinal Fasciculus (SLF)                                                       | 321       |
| CHAF       | TER 6:              | CONCLUSION                                                                                   | 325       |
| 6.1 I      | Limitatio           | on of The Study                                                                              | 329       |
| 6.2 I      | Recomm              | nendations for Future Research                                                               | 331       |
| REFF       | ERENC               | CES                                                                                          | 333       |
| APPE       | NDICE               | S                                                                                            | 375       |
| App        | endix A             |                                                                                              | 376       |
| App        | endix B             |                                                                                              | 379       |
| App        | endix C             |                                                                                              | 381       |

| Appendix D |  |
|------------|--|
| Appendix E |  |
| Appendix F |  |
| Appendix G |  |

# LISTS OF TABLES

|            |                                                                                                                  | Page |
|------------|------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1  | Summary of the comparison between QRISK1 and QRISK2                                                              | 25   |
| Table 2.2  | Examples of commonly used neuropsychological tests                                                               | 27   |
| Table 2.3  | Comparison of tools that are currently used to deliberate<br>on CSVD - their unique advantages and disadvantages | 35   |
| Table 2.4  | General characteristic of intercellular particles                                                                | 60   |
| Table 2.5  | Pros and Cons of multiple techniques for MPs measurements                                                        | 75   |
| Table 2.6  | Trigger stimuli for MPs formation their origin and antigen and correlation with CSVD                             | 83   |
| Table 3.1  | Demographic and clinical collection                                                                              | 91   |
| Table 3.2  | The three indices of WAIS-IV and their seven subtests                                                            | 110  |
| Table 3.3  | Different subpopulations of cell derived MPs and their antigens                                                  | 118  |
| Table 3.4  | Staining combination for MPs detection by flow-<br>cytometry and conjugated fluorochromes                        | 122  |
| Table 3.5  | Staining protocol                                                                                                | 124  |
| Table 3.6  | MRI sequences and acquisition protocols                                                                          | 138  |
| Table 3.7  | MRI sequences routinely used at Department of Radiology HUSM                                                     | 138  |
| Table 3.8  | Overview of the visual rating scales for the assessment of WMHs                                                  | 143  |
| Table 4.1  | Distribution of demographic variables in the study                                                               | 159  |
| Table 4.2  | Distribution of demographic variables in the study                                                               | 160  |
| Table 4.3  | QRISK2 profile                                                                                                   | 162  |
| Table 4.4  | Tests of Normality for each group                                                                                | 163  |
| Table 4.5: | Mann-Whitney U Test Statistics                                                                                   | 164  |

| Table 4.6  | Correlation between QRISK2 and Age                                                                                                   | 165 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.7  | QRISK2 profile of Gender variable and the significant different within variables through Mann-Whitney U test                         | 166 |
| Table 4.8  | QRISK2 profile of Ethnic variable and the significant different within variables through Kruskal-Wallis test                         | 167 |
| Table 4.9  | QRISK2 profile of smoking status variable and the significant different within variables through Kruskal-Wallis test                 | 168 |
| Table 4.10 | QRISK2 profile of Hypertension treatment variable and<br>the significant difference within variables through Mann-<br>Whitney U test | 169 |
| Table 4.11 | QRISK2 profile of family history variable and the significant different within variables through Mann-Whitney U test.                | 170 |
| Table 4.12 | QRISK2 profile of Level of Education variable and the significant different within variables through Kruskal-Wallis test             | 171 |
| Table 4.13 | Pearson correlation between QRISK2 and CHO: HDL                                                                                      | 173 |
| Table 4.14 | Baseline ( $T_0$ ) and Follow-up ( $T_{12}$ ) WAIS-IV cognitive and memories domain mean scores among subjects                       | 175 |
| Table 4.15 | Independent Samples T-test for significance mean difference between YA and MA for cognitive and memories domains at $T_0$            | 178 |
| Table 4.16 | Mann-Whitney U test for significance mean difference between YA and MA for cognitive and memories domains at $T_0$                   | 178 |
| Table 4.17 | Independent Samples T-test for significance mean difference between YA and MA for cognitive and memories domains at $T_{12}$         | 179 |
| Table 4.18 | Mann-Whitney U test for significance mean difference between YA and MA for cognitive and memories domains at $T_{12}$                | 179 |
| Table 4.19 | Paired samples T-test for mean difference at $T_0$ and $T_{12}$ for each domain                                                      | 180 |
| Table 4.20 | Baseline ( $T_0$ ) and Follow-up ( $T_{12}$ ) WAIS-IV cognitive and memories indices mean scores among subjects                      | 181 |

| Table 4.21  | Independent-samples T-test for significance mean difference between YA and MA for cognitive and memories indices at $T_0$          | 183 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.22  | Independent-samples Ttest for significance mean difference between YA and MA for cognitive and memories indices at $T_{12}$        | 183 |
| Table 4.23  | Paired samples T-test for mean difference at $T_0$ and $T_{12}$ for each index                                                     | 184 |
| Table 4.24  | Pearson correlation between WAIS-IV cognitive and memory indices with age                                                          | 185 |
| Table 4.25  | Baseline $(T_0)$ and Follow-up $(T12)$ MPs and MPs subpopulation enumeration mean percentage among subjects                        | 189 |
| Table 4.26  | Mann-Whitney U test for significance mean difference between YA and MA for MPs/subpopulation enumeration at $T_0$ and $T_{12}$     | 190 |
| Table 4.27  | Paired samples T-test for mean difference at $T_0$ and $T_{12}$ for MPs subpopulations                                             | 191 |
| Table 4.28: | Pearson correlation matrix of MPs and Age                                                                                          | 193 |
| Table 4.29  | Pearson Correlation of QRISK2 and MPs                                                                                              | 194 |
| Table 4.30  | Pearson correlation of MPs count with, PRI, WMI and PSI                                                                            | 195 |
| Table 4.31  | Mean and standard deviation of age among subjects of with and without WMH at $T_0$ and $T_{12}$                                    | 197 |
| Table 4.32  | Comparison of number and volume of lesion between YA and MA with WMH <sup>+</sup> at $T_0$ and $T_{12}$                            | 200 |
| Table 4.33  | Comparison of whole brain tractography among subjects at $T_0$ and $T_{12}$                                                        | 204 |
| Table 4.34  | Significant mean differences whole brain tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 205 |
| Table 4.35  | Changes of whole brain tractography parameters between                                                                             | 206 |
|             | $T_0$ and $T_{12}$ among subjects                                                                                                  |     |

| Table 4.37 | Significant mean differences RACR tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 214 |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.38 | Changes of RACR tractography parameters between $T_0$ and $T_{12}$ among subjects                                           | 215 |
| Table 4.39 | Comparison of LACR tractography parameters among subjects at $T_0$ and $T_{12}$                                             | 217 |
| Table 4.40 | Significant mean differences LACR tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 221 |
| Table 4.41 | Changes of LACR tractography parameters between $T_0$ and $T_{12}$ among subjects                                           | 222 |
| Table 4.42 | Comparison of RSCR tractography parameters among subjects at $T_0$ and $T_{12}$                                             | 225 |
| Table 4.43 | Significant mean differences RSCR tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 226 |
| Table 4.44 | Changes of RSCR tractography parameters between $T_0$ and $T_{12}$ among subjects                                           | 227 |
| Table 4.45 | Comparison of LSCR tractography parameters among subjects at $T_0 \mbox{ and } T_{12}$                                      | 231 |
| Table 4.46 | Significant mean differences LSCR tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 232 |
| Table 4.47 | Changes of LSCR tractography parameters between $T_{\rm 0}$ and $T_{\rm 12}$ among subjects                                 | 233 |
| Table 4.48 | Comparison of RSLF tractography parameters among subjects at $T_0 \mbox{ and } T_{12}$                                      | 236 |
| Table 4.49 | Significant mean differences RSLF tractography between WMH <sup>+</sup> and WMH <sup>-</sup> subjects at $T_0$ and $T_{12}$ | 240 |
| Table 4.50 | Changes of RSLF tractography parameters between $T_{\rm 0}$ and $T_{\rm 12}$ among subjects                                 | 241 |
| Table 4.51 | Comparison of LSLF tractography parameters among subjects at $T_0 \mbox{ and } T_{12}$                                      | 243 |
| Table 4.52 | Significant mean differences LSLF tractography between $WMH^+$ and $WMH^-$ subjects at $T_0$ and $T_{12}$                   | 247 |

| Table 4.53 | Changes of LSLF tractography parameters between $T_0$ and $T_{12}$ among subjects                                                                                                 | 248 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.54 | Comparison of white matter integrity between $WMH^+$ and $WMH^-$ subjects                                                                                                         | 250 |
| Table 4.55 | Correlation profile of number and volume of white matter<br>lesion with QRISK2, neurocognitive and memories, MPs<br>and Fazekas scale                                             | 251 |
| Table 4.56 | QRISK2 Profiles among WMH <sup>+</sup> and WMH <sup>-</sup> subjects                                                                                                              | 253 |
| Table 4.57 | Comparison of WAIS-IV indices among subjects at $T_0$ and $T_{12}$                                                                                                                | 254 |
| Table 4.58 | Independent-samples T test for significance mean difference between WMH <sup>-</sup> and WMH <sup>+</sup> for WAIS-IV cognitive and memories indices at $T_0$ and $T_{12}$        | 255 |
| Table 4.59 | One-Way repeated measure ANOVA for mean difference at $T_0$ and $T_{12}$ for each index among WMH <sup>+</sup> and WMH <sup>-</sup> subjects                                      | 256 |
| Table 4.60 | Comparison of MPs and subpopulations among subjects at $T_0 \mbox{ and } T_{12}$                                                                                                  | 257 |
| Table 4.61 | Mann-Whitney U test for significance mean difference between $WMH^+$ and $WMH^-$ for MPs/subpopulation enumeration at $T_0$ and $T_{12}$                                          | 258 |
| Table 4.62 | One-Way repeated measure ANOVA for mean percentage difference at $T_0$ and $T_{12}$ for each MPs subpopulation and total MPs among WMH <sup>+</sup> and WMH <sup>-</sup> subjects | 259 |
| Table 4.63 | Correlation profile of QRISK2 with white matter integrity                                                                                                                         | 260 |
| Table 4.64 | Correlation profile of age with white matter integrity                                                                                                                            | 261 |
| Table 4.65 | Correlation profile of PRI with white matter integrity                                                                                                                            | 262 |
| Table 4.66 | Correlation profile of WMI with white matter integrity                                                                                                                            | 263 |
| Table 4.67 | Correlation profile of PSI with white matter integrity                                                                                                                            | 263 |
| Table 4.68 | Correlation of CD62L vs white matter integrity                                                                                                                                    | 265 |
| Table 4.69 | Correlation of CD41a vs white matter integrity                                                                                                                                    | 265 |
| Table 4.70 | Correlation of CD235a vs white matter integrity                                                                                                                                   | 266 |

| Table 4.71 | Correlation of CD62P vs white matter integrity | 266 |
|------------|------------------------------------------------|-----|
| Table 4.72 | Correlation of CD45 vs white matter integrity  | 266 |

| Table 4 73  | Correlation of CD146 vs white matter integrity | 267 |
|-------------|------------------------------------------------|-----|
| 1 auto 4.75 | Conclation of CD140 vs while matter integrity  | 207 |

## LIST OF FIGURES

|             |                                                                             | Page |
|-------------|-----------------------------------------------------------------------------|------|
| Figure 2.1  | Schematic illustration of cerebral white matter                             | 11   |
| Figure 2.2  | Schematic illustration of major commissural fibres                          | 12   |
| Figure 2.3  | Schematic illustration of major projections fibres                          | 13   |
| Figure 2.4  | Schematic illustration of major association fibres                          | 14   |
| Figure 2.5  | Schematic illustration of blood vessels                                     | 15   |
| Figure 2.6  | Schematic illustration of cerebral vasculature                              | 16   |
| Figure 2.7  | Illustration of general aetiologies of cerebral small vessel disease (CSVD) | 18   |
| Figure 2.8  | STRIVE method of identification and classification of CSVD spectrum         | 20   |
| Figure 2.9  | The four indices of the WAIS-IV and subtests                                | 30   |
| Figure 2.10 | Schematic diagram of protons that spin according to dipole moment.          | 39   |
| Figure 2.11 | Proton precession following Larmor's frequency                              | 40   |
| Figure 2.12 | Application of second electromagnetic wave (pulse) (B <sub>1</sub> )        | 41   |
| Figure 2.13 | Illustration of MRI machine and components                                  | 42   |
| Figure 2.14 | T1 relaxation                                                               | 44   |
| Figure 2.15 | T2 relaxation                                                               | 44   |
| Figure 2.16 | Axial FLAIR obtained from 3T MRI                                            | 45   |
| Figure 2.17 | Example of diffusion weighted imaging (DWI) images from 3T MRI              | 47   |
| Figure 2.18 | MRI-FLAIR with subcortical white matter hyperintensities                    | 48   |
| Figure 2.19 | Coloured FA with directional map                                            | 54   |
| Figure 2.20 | Whole brain tractography                                                    | 55   |

| Figure 2.21 | Schematic representation of three types of particles (vesicles)                                    | 59  |
|-------------|----------------------------------------------------------------------------------------------------|-----|
| Figure 2.22 | Endothelial derived microparticles (EMP)                                                           | 61  |
| Figure 2.23 | Trigger mechanism for MP releases                                                                  | 62  |
| Figure 2.24 | Schematic representation of phospholipid bilayer of plasma membrane                                | 63  |
| Figure 2.25 | Schematic representation of mechanism of MP formation                                              | 65  |
| Figure 2.26 | Schematic diagram of basic principles of Flow Cytometry                                            | 70  |
| Figure 2.27 | Schematic diagram showing involvement and interaction of MPs in coagulation cascade and thrombosis | 76  |
| Figure 2.28 | Schematic illustration of formation and aggregation of thrombus is blood vessel                    | 80  |
| Figure 2.29 | Illustration of gradual rupture of thrombus                                                        | 81  |
| Figure 2.30 | Mechanism of thrombosis by circulating MPs                                                         | 82  |
| Figure 3.1  | Screenshot of QRISK2 interface                                                                     | 92  |
| Figure 3.2  | The study flowchart with longitudinal data collection over one-year follow-up period from baseline | 94  |
| Figure 3.3  | WAIS-IV instruments                                                                                | 98  |
| Figure 3.4  | Example of Block Design item                                                                       | 100 |
| Figure 3.5  | Example of matrices from Stimulus Book 1                                                           | 101 |
| Figure 3.6  | Example of the Visual Puzzle item                                                                  | 102 |
| Figure 3.7  | Wechsler intelligence score                                                                        | 109 |
| Figure 3.8  | Flow chart of experimental design for MPs counts                                                   | 113 |
| Figure 3.9  | Schematic diagram of centrifugation methods to obtained<br>Platelet Free Plasma (PFP)              | 121 |
| Figure 3.10 | Flow cytometer gating strategies for MPs analysis                                                  | 126 |
| Figure 3.11 | Gating strategies for MPs quantification                                                           | 129 |

| Figure 3.12 | Pipeline flow chart of neuroimaging assessment and analysis carried out throughout this study          | 134 |
|-------------|--------------------------------------------------------------------------------------------------------|-----|
| Figure 3.13 | Philip Achieva (Best, The Netherlands) 3.0 Tesla MRI machine                                           | 135 |
| Figure 3.14 | Screenshot of dcm2nii graphical user interfaces                                                        | 140 |
| Figure 3.15 | MeDINria version 2.2 software user interface                                                           | 141 |
| Figure 3.16 | Examples MRI anatomical feature                                                                        | 142 |
| Figure 3.17 | FSL graphical user interface                                                                           | 144 |
| Figure 3.18 | Brain masking for skull stripping in DSI studio                                                        | 147 |
| Figure 3.19 | Brain image with computed diffusion tensor from DSI studio                                             | 148 |
| Figure 3.20 | Axial view of FLAIR, DTI and tractography                                                              | 149 |
| Figure 3.21 | ROI selection and the drawing was done using selection tool                                            | 150 |
| Figure 3.22 | Axial view of region of interest (ROI) tractography output image                                       | 151 |
| Figure 3.23 | Axial view of white matter atlas (shown in Pink colour) of<br>the ROI of WMHs with the tracts involved | 152 |
| Figure 3.24 | General flow of correlational research carried out in this study                                       | 157 |
| Figure 4.1  | The least significant difference method among education levels                                         | 172 |
| Figure 4.2  | Box plot for mean scores for each domain among YA and MA at $T_0 \mbox{ and } T_{12}$                  | 177 |
| Figure 4.3  | Box plot for mean scores for each index among YA and MA at $T_0 \mbox{ and } T_{12}$                   | 182 |
| Figure 4.4  | 2D plot of comparison between $T_0$ and $T_{12}$ for MPs quantification in YA $% T_{12}$               | 187 |
| Figure 4.5  | 2D plot of comparison between $T_0$ and $T_{12}$ for MPs quantification in MA                          | 188 |
| Figure 4.6  | Axial FLAIR images of study subjects at $T_0$ and $T_{12}$                                             | 199 |
| Figure 4.7  | Statistical probable WMHs voxels output from LST                                                       | 202 |

| Figure 4.8  | Whole brain tracts generated from DSI Studio                     | 207 |
|-------------|------------------------------------------------------------------|-----|
| Figure 4.9  | Statistical probable WMHs voxels output from LST for RACR lesion | 209 |
| Figure 4.10 | RACR lesion tractography                                         | 211 |
| Figure 4.11 | Whole RACR tractography from WMH <sup>-</sup> YA                 | 212 |
| Figure 4.12 | Statistical probable WMHs voxels output from LST for LACR lesion | 216 |
| Figure 4.13 | LACR lesion tractography                                         | 218 |
| Figure 4.14 | Whole LACR tractography from WMH <sup>-</sup> YA                 | 219 |
| Figure 4.15 | RSCR WMHs voxels output from LST and lesion tractography         | 223 |
| Figure 4.16 | Whole RSCR tractography from WMH <sup>-</sup> YA                 | 228 |
| Figure 4.17 | LACR WMHs voxels output from LST and lesion tractography         | 229 |
| Figure 4.18 | Whole LSCR tractography from WMH <sup>-</sup> YA                 | 234 |
| Figure 4.19 | Statistical probable WMHs voxels output from LST for RSLF lesion | 235 |
| Figure 4.20 | RSLF lesion tractography                                         | 237 |
| Figure 4.21 | Whole RSLF tractography from WMH <sup>-</sup> YA                 | 238 |
| Figure 4.22 | Statistical probable WMHs voxels output from LST for LSLF lesion | 242 |
| Figure 4.23 | LSLF lesion tractography                                         | 244 |
| Figure 4.24 | Whole LSLF tractography from WMH <sup>-</sup> YA                 | 245 |
| Figure 4.25 | Multimodal correlations among the different study variables      | 268 |

# LIST OF SYMBOLS AND ABBREVIATIONS

| °C                    | degree Celsius                   |
|-----------------------|----------------------------------|
| ACD                   | Citric Acid-Dextrose             |
| AD                    | Axial Diffusivity                |
| ADC                   | Apparent Diffusion Coefficients  |
| AFM                   | Atomic Force Microscopy          |
| ANOVA                 | Analysis of Variance             |
| APC                   | Allophycocyanin                  |
| AR                    | Arithmetic                       |
| ATP                   | Adenosine Triphosphate           |
| Bo                    | External Magnetic Field          |
| <b>B</b> <sub>1</sub> | Electromagnetic wave             |
| BB                    | Annexin-V Binding Buffer         |
| BD                    | Block Design                     |
| BET                   | Brain Extraction Tool            |
| BOLD                  | Blood Oxygenated Level Dependent |
| CA                    | Cancellation                     |
| $Ca^{2+}$             | Calcium                          |
| CC                    | Corpus Callosum                  |
| CD                    | Cluster Differentiation          |
| COD                   | Coding                           |
| CI                    | Confidence Interval              |
| CMBs                  | Cerebral Microbleeds             |
| СО                    | Comprehension                    |
| Conc.                 | Concentration                    |
| COW                   | Circle of Willis                 |
| CSF                   | Cerebrospinal Fluid              |
| CSVD                  | Cerebral Small Vessel Disease    |
| СТ                    | Computed Tomography              |
| СТА                   | Computed Tomography-Angiography  |
| DEC                   | Directionally Encoded Colour     |
| df                    | Degree of Freedom                |

| dH <sub>2</sub> O | distilled Water                                             |
|-------------------|-------------------------------------------------------------|
| DICOM             | Digital Imaging and Communications in Medicine (DICOM)      |
|                   | format                                                      |
| DLS               | Dynamic Light Scattering                                    |
| dMRI              | Diffusion Magnetic Resonance Imaging                        |
| DNA               | Deoxyribose-Nucleic Acid                                    |
| DS                | Digit Span                                                  |
| DSC               | Dynamic Susceptibility Contrast                             |
| DSCL              | Deep Subcortical Lesion                                     |
| DTI               | Diffusion Tensor Imaging                                    |
| DWI               | Diffusion Weighted Imaging                                  |
| DWM               | Deep White Matter                                           |
| ECC               | Eddy Current Correction                                     |
| EDTA              | Ethylene Diamine Tetra Acetic Acid                          |
| ELISA             | Enzyme Linked Immunosorbent Assay                           |
| EMP               | Endothelial Cells Derived Microparticles                    |
| ER                | Endoplasmic Reticulum                                       |
| $f^2$             | Effect size                                                 |
| FA                | Fractional Anisotropy                                       |
| FCM               | Flow Cytometry                                              |
| FDT               | FSL Diffusion Toolbox                                       |
| FITC              | Fluorescein Isothiocyanate                                  |
| FLAIR             | Fluid Attenuated Inversion Recovery                         |
| fMRI              | Functional Magnetic Resonance Imaging                       |
| FOV               | Field of View                                               |
| FRGS              | Fundamental Research Grant Scheme                           |
| FSC               | Forward Scatter                                             |
| FSIQ              | Full-Scale IQ                                               |
| FSL               | Functional Magnetic Resonance Imaging of The Brain Software |
|                   | Library                                                     |
| FW                | Figure Weights                                              |
| g                 | Gravity                                                     |
| GAI               | General Ability Index                                       |

| GLA              | Carboxy-Glutamic Acid                                    |
|------------------|----------------------------------------------------------|
| $\mathrm{H}^+$   | Hydrogen atom                                            |
| H <sub>2</sub> O | Water                                                    |
| HRB              | Halstead-Reitan Battery                                  |
| HTML             | Hypertext Mark-Up Language                               |
| HUSM             | Hospital Universiti Sains Malaysia                       |
| ICU              | Intensive Care Unit                                      |
| IN               | Information                                              |
| JEPeM-USM        | Jawatankuasa Etika Penyelidikan Manusia Universiti Sains |
|                  | Malaysia                                                 |
| JHU              | John Hopkins University                                  |
| JPEG             | Joint Photographic Experts Group                         |
| kDa              | kilo Dalton                                              |
| KRK              | Klinik Rawatan Keluarga                                  |
| LACR             | Left Anterior Corona Radiata                             |
| LDL              | Low Density Lipoprotein                                  |
| LEC              | Left External Capsule                                    |
| LGA              | Lesion Growth Algorithm                                  |
| LECAM            | Leukocytes-Endothelial Cell Adhesions Molecules          |
| LMP              | Leukocytes Derived Microparticles                        |
| LN               | Letter-Number Sequencing                                 |
| LSCR             | Left Superior Corona Radiata                             |
| LSLF             | Left Superior Longitudinal Fasciculus                    |
| LST              | Lesion Segmentation Tools                                |
| LV               | Lesion Volume                                            |
| MA               | Mature Adults                                            |
| MATLAB           | Matrix Laboratory                                        |
| MCA              | Middle Cerebral Arteries                                 |
| MCI              | Mild Cognitive Impairment                                |
| MD               | Mean Diffusivity                                         |
| MHz              | Mega Hertz                                               |
| ml               | Millilitre                                               |
| mm               | Millimetre                                               |

| MMSE  | Mini-Mental State Examination                           |
|-------|---------------------------------------------------------|
| MPM   | Monocytes Microparticles                                |
| MPs   | Microparticles                                          |
| MtR   | Matrix Reasoning                                        |
| MR    | Magnetic Resonance                                      |
| MRA   | Magnetic Resonance Angiography                          |
| MRI   | Magnetic Resonance Imaging                              |
| MRS   | Magnetic Resonance Spectroscopy                         |
| msec  | Milliseconds                                            |
| NAWM  | Normal Appearing White Matter                           |
| NIfTI | Neuroimaging Informatics Technology Initiative, (Nifti) |
| nm    | Nanometre                                               |
| NMP   | Neutrophils Microparticles                              |
| NMR   | Nuclear Magnetic Resonance                              |
| NO    | Nitric Oxide                                            |
| NOL   | Number of Lesion                                        |
| NOT   | Number of Tracts                                        |
| OA    | Older Adults                                            |
| PC    | Phosphatidylcholine                                     |
| PCm   | Picture Completion                                      |
| PCT   | Perfusion Computed Tomography                           |
| PDMP  | Platelet Derived Microparticles                         |
| PE    | Phosphatidylethanolamine                                |
| PcE   | Phycoerythrin                                           |
| PerCP | Peridinin Chlorophyll Protein                           |
| PET   | Positron Emission Tomography                            |
| PF    | Platelet Free                                           |
| PFP   | Platelet Free Plasma                                    |
| PLIC  | The Posterior Limb of The Internal Capsule              |
| POI   | Perceptual Organization Index                           |
| PPACK | D-Phenylalanyl-L-Propyl-L-Arginine Chloro-Methyl Ketone |
| PPP   | Platelet Poor Plasma                                    |
| PRI   | Perceptual Reasoning                                    |

| PS              | Phosphatidylserine                                          |
|-----------------|-------------------------------------------------------------|
| Pst             | Polystyrene                                                 |
| PSI             | Processing Speed Index                                      |
| PVL             | Periventricular Lesion                                      |
| PVWM            | Periventricular White Matter                                |
| PWI             | Perfusion Weighted Imaging                                  |
| QRISK2          | Cardiovascular Risk Prediction Score                        |
| RACR            | Right Anterior Corona Radiata                               |
| RBC             | Red Blood Cells                                             |
| rCBF            | relative Cerebral Blood Flow                                |
| rCBV            | relative Cerebral Blood Volume                              |
| RD              | Radial Diffusivity                                          |
| RF              | Radiofrequency                                              |
| RGB             | Red, Green, and Blue                                        |
| RICM            | Reflection Interference Contrast Microscopy                 |
| RMP             | Red Blood Cells Derived Microparticles                      |
| ROCK 1          | 'Rho-Associated' Coiled-Coil Containing Protein Kinase 1    |
| ROI             | Region of Interest                                          |
| RSCR            | Right Superior Corona Radiata                               |
| RSLF            | Right Superior Longitudinal Fasciculus                      |
| SBI             | Silent Brain Infarcts                                       |
| SD              | Standard Deviation                                          |
| Sig.            | Significant Different                                       |
| SI              | Similarities                                                |
| SPM             | Statistical Parametric Mapping Version 12                   |
| SPSS            | Statistical Package for The Social Sciences                 |
| SS              | Symbol Search                                               |
| SSC             | Side Scatter                                                |
| STRIVE          | Standards for Reporting and Imaging of Small Vessel Disease |
| SVD             | Small Vessel Disease                                        |
| Т               | Tesla                                                       |
| T <sub>0</sub>  | Baseline                                                    |
| T <sub>12</sub> | 12-months (One-year) Follow-Up                              |

| T1-relaxation                                                                                                                                                                             | Spin-Lattice Relaxation                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T2-relaxation                                                                                                                                                                             | Spin-Spin Relaxation                                                                                                                                                                                                                                                                                                                                        |
| TE                                                                                                                                                                                        | Echo Time                                                                                                                                                                                                                                                                                                                                                   |
| TF                                                                                                                                                                                        | Tissue Factor                                                                                                                                                                                                                                                                                                                                               |
| TFPI                                                                                                                                                                                      | Tissue factor Pathway Inhibitor                                                                                                                                                                                                                                                                                                                             |
| TI                                                                                                                                                                                        | Inversion Time                                                                                                                                                                                                                                                                                                                                              |
| TL                                                                                                                                                                                        | Tracts Lengths                                                                                                                                                                                                                                                                                                                                              |
| TNF                                                                                                                                                                                       | Tumour Necrosis Factor                                                                                                                                                                                                                                                                                                                                      |
| TR                                                                                                                                                                                        | Repetition Time                                                                                                                                                                                                                                                                                                                                             |
| TV                                                                                                                                                                                        | Tracts Volume                                                                                                                                                                                                                                                                                                                                               |
| VC                                                                                                                                                                                        | Vocabulary                                                                                                                                                                                                                                                                                                                                                  |
| VCI                                                                                                                                                                                       | Verbal Comprehension Index                                                                                                                                                                                                                                                                                                                                  |
| VMWare v12                                                                                                                                                                                | Virtual Machine Workstation                                                                                                                                                                                                                                                                                                                                 |
| VP                                                                                                                                                                                        | Visual Puzzles                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |
| ω <sub>o</sub>                                                                                                                                                                            | Larmor Frequency                                                                                                                                                                                                                                                                                                                                            |
| ω <sub>o</sub><br>WAIS                                                                                                                                                                    | Larmor Frequency<br>Wechsler Adult Intelligence Scale                                                                                                                                                                                                                                                                                                       |
| ω <sub>o</sub><br>WAIS<br>WB                                                                                                                                                              | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain                                                                                                                                                                                                                                                                                        |
| ω <sub>o</sub><br>WAIS<br>WB<br>WBC                                                                                                                                                       | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells                                                                                                                                                                                                                                                                   |
| ω <sub>o</sub><br>WAIS<br>WB<br>WBC<br>WISC                                                                                                                                               | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children                                                                                                                                                                                                                       |
| ω <sub>ο</sub><br>WAIS<br>WB<br>WBC<br>WISC<br>WMHs                                                                                                                                       | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children<br>White Matter Hyperintensities                                                                                                                                                                                      |
| οο<br>WAIS<br>WB<br>WBC<br>WISC<br>WMHs<br>WMI                                                                                                                                            | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children<br>White Matter Hyperintensities<br>Working Memory Index                                                                                                                                                              |
| ω <sub>ο</sub><br>WAIS<br>WB<br>WBC<br>WISC<br>WMHs<br>WMI<br>WMS                                                                                                                         | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children<br>White Matter Hyperintensities<br>Working Memory Index                                                                                                                                                              |
| ω <sub>o</sub><br>WAIS<br>WB<br>WBC<br>WISC<br>WMHs<br>WMI<br>WMS<br>X <sup>2</sup>                                                                                                       | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children<br>White Matter Hyperintensities<br>Working Memory Index<br>Scale<br>Chi-Square                                                                                                                                       |
| ω <sub>ο</sub><br>WAIS<br>WB<br>WBC<br>WISC<br>WMHs<br>WMI<br>WMS<br>X <sup>2</sup>                                                                                                       | Larmor Frequency<br>Wechsler Adult Intelligence Scale<br>Whole Brain<br>White Blood Cells<br>Wechsler Intelligence Scale for Children<br>White Matter Hyperintensities<br>Working Memory Index<br>Wechsler Memory Scale<br>Chi-Square                                                                                                                       |
| <ul> <li>ω₀</li> <li>WAIS</li> <li>WB</li> <li>WBC</li> <li>WISC</li> <li>WMHs</li> <li>WMI</li> <li>WMS</li> <li>X<sup>2</sup></li> <li>Y</li> <li>YA</li> </ul>                         | <ul> <li>Larmor Frequency</li> <li>Wechsler Adult Intelligence Scale</li> <li>Whole Brain</li> <li>White Blood Cells</li> <li>Wechsler Intelligence Scale for Children</li> <li>White Matter Hyperintensities</li> <li>Working Memory Index</li> <li>Wechsler Memory Scale</li> <li>Chi-Square</li> <li>Gyromagnetic Ratio</li> <li>Young Adults</li> </ul> |
| <ul> <li>ω₀</li> <li>WAIS</li> <li>WB</li> <li>WBC</li> <li>WISC</li> <li>WMHs</li> <li>WMI</li> <li>WMS</li> <li>X<sup>2</sup></li> <li>Y</li> <li>YA</li> <li>μl</li> </ul>             | Larmor FrequencyWechsler Adult Intelligence ScaleWhole BrainWhite Blood CellsWechsler Intelligence Scale for ChildrenWhite Matter HyperintensitiesWorking Memory IndexVechsler Memory ScaleChi-SquareGyromagnetic RatioYoung AdultsMicroliter                                                                                                               |
| <ul> <li>ω₀</li> <li>WAIS</li> <li>WB</li> <li>WBC</li> <li>WISC</li> <li>WMHs</li> <li>WMI</li> <li>WMS</li> <li>X<sup>2</sup></li> <li>Y</li> <li>YA</li> <li>μl</li> <li>μm</li> </ul> | Larmor FrequencyWechsler Adult Intelligence ScaleWhole BrainWhite Blood CellsWechsler Intelligence Scale for ChildrenWhite Matter HyperintensitiesWorking Memory IndexVechsler Memory ScaleChi-SquareGyromagnetic RatioYoung AdultsMicroliterMicro Metre                                                                                                    |

# KAJIAN PENEROKAAN TERHADAP PENYAKIT PEMBULUH DARAH KECIL BAGI INDIVIDU ASIMPTOMATIK MELALUI PROFIL NEUROPSIKOLOGI, NEUROPENGIMEJAN, DAN MIKROPARTIKEL.

#### ABSTRAK

Secara lazimnya penyakit pembuluh darah kecil otak (CSVD) yang kelihatan asimptomatik ('senyap') dilihat sebagai hiperintensiti jirim putih (WMHs) pada Pengimejan Resonans Magnetik (MRI). Kajian ini bertujuan untuk meninjau penanda pengganti baru untuk penilaian integriti jirim putih dalam CSVD di kalangan individu yang tidak bersimptom melalui profil neuropsikologi, neuropengimejan dan micropartikel (MPs). Subjek yang direkrut dengan skor ramalan risiko kardiovaskular yang rendah kepada sederhana seperti yang ditakrifkan oleh QRISK2 menjalani imbasan otak MRI, diikuti oleh penilaian neuropsikologi yang mengukur daya pemikiran persepsi (PRI), memori kerja (WMI) dan kelajuan pemprosesan (PSI) menggunakan Weschler Adults Intelligence Scale (WAIS -IV). Sebelum ujian 'flow cytometry' untuk mengira kadar MPs, 18 ml darah (puasa) telah diambil. Prosedur yang sama dijalankan selepas 12 bulan. Pada peringkat awal, 48 orang yang asimptomatik telah direkrut (purata umur:  $38.81 \pm 10.9$ ); 24 orang dewasa muda, YA (purata umur 29.7  $\pm$  4.33) dan 24 orang dewasa tua, MA (purata umur: 47.92  $\pm$  7.01). Lima belas (29.4%) subjek mempunyai WMHs (WMH<sup>+</sup>) telah dikesan, lima daripdanya adalah YA, dan 10 adalah MA. Walau bagaimanapun, selepas 12 bulan, hanya 40 (purata umur:  $39.35 \pm 11.31$ ) dapat menyertai; lapan (20%) subjek tidak kembali menyertai kajian, empat belas (35%) daripada subjek adalah WMH<sup>+</sup> dan 26

(65%) adalah WMH<sup>-</sup>. Umur mempengaruhi kehadiran WMHs, dimana subjek WMH<sup>+</sup> mempunyai risiko CSVD yang lebih tinggi. WMH<sup>+</sup> subjek menunjukkan purata peratusan QRISK2 dan MPs yang lebih tinggi terutamanya MPs platlet (CD41a dan CD62P). Dari segi integriti jirim putih, skor QRISK2 meningkat apabila integriti berkurang (berdasarkan anisotropi fraksional, FA), terutamanya jirim putih seperti superior corona radiata (SCR) dan superior longitudinal fasciculus (SLF). Integrity jirim putih juga berkurang dengan peningkatan umur. Prestasi PRI dan WMI berbeza antara subjek, tetapi PSI secara konsisten lebih rendah dalam kalangan subjek WMH<sup>+</sup>. Tidak ada perubahan temporal yang signifikan terhadap prestasi kognitif dan memori dari kedua-dua kumpulan. FA untuk kesemua jirim putih berkolerasi secara positif dengan profil neuropsikologi. Integriti jirim putih seperti SLF kiri dan ACR kiri adalah berkolerasi dengan MPs darah merah (CD235a) (r= -0.313, p=0.030) dan MPs platlet CD62P (r=0.289, p= 0.047). Kesimpulannya, walaupun dengan saiz sampel yang terhad dan tempoh susulan yang singkat, kajian ini telah membuktikan hubungan antara ramalan risiko kardio-serebrovaskular oleh QRISK2, prestasi indeks neuropsikologi, integriti jirim putih/WMHs dari MRI dan profil MPs sebagai penanda yang berpotensi untuk CSVD dalam individu-individu yang sihat dan asimtomatik.

# EXPLORATORY LONGITUDINAL STUDIES ON CEREBRAL SMALL VESSEL DISEASE (CSVD) IN APPARENTLY ASYMPTOMATIC INDIVIDUALS WITH NEUROPSYCHOLOGICAL, NEUROIMAGING AND MICROPARTICLES PROFILING

#### ABSTRACT

The prevalence of cerebral small vessel disease (CSVD) for asymptomatic ('silent') manifestation is typically obtained from incidental findings of white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI). This study aimed to explore novel surrogate markers for the assessment of white matter integrity in CSVD among apparently asymptomatic individuals with neuropsychological, neuroimaging and microparticles (MPs) profiling. The recruited subjects with low to moderate cardiovascular risk prediction score as defined by QRISK2 underwent MRI brain scan, followed by neuropsychological indices of Weschler Adults Intelligence Scale (WAIS-IV) that measured their perceptual reasoning (PRI), working memory (WMI) and processing speed (PSI). Prior to flow cytometry MPs subpopulations enumerations, 18 ml of fasting blood was collected. Similar procedures were carried out at baseline  $(T_0)$  and at 12 months follow-up  $(T_{12})$ . At baseline, 48 asymptomatic individuals were recruited (mean age: 38.81±10.9); 24 were young adults, YA (mean age 29.7±4.33) and 24 mature adults, MA (mean age: 47.92±7.01). Fifteen (29.4%) had WMHs (WMH<sup>+</sup>) detected, of who five were YA, and 10 were MA. However, after one-year, 40 (mean age: 39.35±11.31) were able to participate; eight (20%) subjects were lost to follow up fourteen (35%) subjects were WMH<sup>+</sup> and 26 (65%) were WMH<sup>-</sup>

. Age influenced the presence of WMHs and WMH<sup>+</sup> subject as having higher risk of CSVD. WMH<sup>+</sup> subjects showed higher mean percentage of QRISK2 and MPs especially platelet derived MPs (CD41a and CD62P). In term of white matter integrity, QRISK2 score increased with reduced integrity (measured by fractional anisotropy, FA) of white matter tracts of superior corona radiata (SCR) and superior longitudinal fasciculus (SLF). White matter integrity was also reduced with advancing age. The PRI and WMI performance varied between subjects, but PSI consistently lower in WMH+ subjects. There were no significant temporal changes on cognitive and memories performances from both groups. FA of all tracts consistently and positively correlated with neuropsychological profiles. The integrity of white matter tracts such as left SLF and left anterior corona radiata were correlated with red blood cell MPs (CD235a) (r= -0.313, p=0.030) and CD62P (r=0.289, p= 0.047), respectively. Although with a relatively small sample size and one-year follow-up period, this study had established the correlations between cardio-cerebrovascular risk prediction by QRISK, neuropsychological indices performance, WMHs/white matter integrity from diffusion MRI and MPs profiling as potential surrogate markers for CSVD in apparently asymptomatic individuals.

## **CHAPTER 1**

## **INTRODUCTION**

### 1.1 Background of The Study

Cerebral small vessel disease (CSVD) is a spectrum of histopathological, clinical and imaging abnormalities linked to the pathology of microvasculature of small penetrating arteries and arterioles in brain irrigating subcortical structures (Lammie, 2005; Pantoni, 2010). In general, it results in a brain parenchyma injury invariably associated with distal leptomeningeal and intracerebral vessel pathology that affects deep cerebral white matter integrity (Ogata *et al.*, 2014). CSVD is characterised by arteriosclerosis and/or micro-atheromatosis of cerebral arteries of small calibre (50-500  $\mu$ m) caused by various pathologies (Lammie, 2005). Current data suggest that CSVD is one of the most prevalent neurological disorders in the ageing society of the developed world (Hachinski, 2008; Thompson & Hakim, 2009). The prevalence of CSVD's seemingly asymptomatic manifestation such as silent brain infarcts (SBI) or white matter hyperintensities (WMHs) is recognised to be higher with advancing age (Gunda *et al.*, 2012).

Generally, the microvasculature health of the small vessels is maintained by normal functioning endothelial cells that lines the vessel wall. However, the formation of microparticles (MPs) have been reported to contribute to the disorganisation of the proper function of endothelium layers. For example, Martinez *et al.*, 2011, have shown that endothelial dysfunction caused by MPs can induce vascular inflammation that potentially leads to a prothrombotic state in arteriolo- and atherosclerosis. Besides, the dysfunction is also demonstrated by the shedding of endothelial MPs that express platelet-endothelial cell adhesion molecule-1 (i.e. CD31) that has been implicated to feature in ischaemic stroke subtypes (Grammas *et al.*, 2011). Aside from endothelial dysfunction, Schreiber *et al.*, 2013, argued about another common pathomechanism of CSVD which is related to the disorganisations of the arterial segmental walls and luminal narrowing. These arose due to accumulations of MPs alongside with cholesterol crystals that caused arteriolosclerosis which may result in hypoperfusion that accompanied infarcts and WMHs (Ogata *et al.*, 2011; Schreiber *et al.*, 2013).

The ischaemic consequences of several manifestation of CSVD such as WMHs, lacunar strokes, cerebral microbleeds, enlarged perivascular spaces, and small subcortical infarcts can be detected using magnetic resonance imaging (MRI) (Lambert *et al.*, 2015; Sorond *et al.*, 2015; Yakushiji *et al.*, 2016; Yakushiji *et al.*, 2018). WMHs are commonly recognized as small 'lacunes' (Latin: for lake) in ageing brain or bright areas of small non-cavitated high signal intensities on fluid attenuated inversion recovery (FLAIR) and T2-weighted MRI sequences. The lesion will increase with age because they evolve over a few months to years (Ovbiagele & Saver, 2006; Valdés Hernández *et al.*, 2015; Wharton *et al.*, 2015).

Although the association between age and WMHs prevalence has been consistently shown across different studies, the correlation of WMHs with other cardiovascular risk factors and clinical proforma remain elusive. Since WMHs is common even in healthy individuals, risk prediction assessment would be beneficial. In addition to as well as a part of the risk assessment, essential clinical algorithms have become useful in the prevention and management of cardiovascular disease (CVD), including cerebrovascular events (Kanjilal *et al.*, 2008). Thus, a tool such as QRISK2 has been developed to assess the cardiovascular risk including cerebrovascular disease such as CSVD. QRISK2 is an online based risk prediction of cardio-cerebrovascular disease (Collins & Altman, 2012).

Moreover, in healthy individuals, executive dysfunction seems to correspond with WMHs (O'Brien *et al.*, 2002). The overall severity of WMHs is known to link with the reduction in speed of information processing and executive performance in patients with subcortical ischemic vascular dementia (Mungas *et al.*, 2001). In contrast, such global cognitive deficits are not seen in those with additional heterogenous vascular dementia (Cohen *et al.* 2002). Also, a significant relationship between WMHs severity and processing speed in older adults (65-80 years of age) has been reported (Nebes *et al.*, 2006). Multiple assessments tools have been developed to assess changes in cognitive performance in diseases and healthy individuals. To date, the Weschler Adults Intelligence Scale (WAIS) is the most widely used and enables assessing cognitive and memories function in terms of the perceptual reasoning index (PRI), the processing speed index (PSI) and also the working memory index (WMI) (Weschler *et al.*, 2008). To date, WMHs are characterised and rated in terms of volume, location, size and number of lesions. Hence, various visual rating scales have been developed in order to assess WMHs, including the Fazekas scale (Fazekas *et al.*, 1987), which provides an overall impression of WMHs presence in the entire brain. Apart from that, the current advancement in neuroimaging technology has enabled various specific algorithmic techniques and tools to be developed which automatically detect the presence of WMHs in terms of number, volume and location. Such tools include lesion segmentation tool (LST) which provide more concise delineation of WMHs (Schmidt *et al.*, 2012).

Finally, although the conventional MRI or even MRI based diffusion-weighted imaging (DWI) offers detailed insights about brain anatomy and pathology, it still remains limited in mapping cerebral white matter, (Wang & Melhem, 2008) and more importantly, in correlating clinical parameters including cognition that has often been only weak to moderate (Patel & Markus, 2011). Therefore, better correlations and reliable lesion surrogates are necessary to improve the assessment of white matter architecture and also connectivity, such as white matter tractography using diffusion based magnetic resonance imaging (dMRI) (Lee *et al.*, 2015; Nitkunan *et al.*, 2008). Diffusion tensor imaging (DTI) is a specific signal modelling technique under diffusion MRI (dMRI). DTI analyses provides important information regarding white matter integrity and health in terms of diffusion indices. Such indices include fractional anisotropy (FA), mean diffusivity (MD), radial and axial diffusivity (RD and AD). Changes in these parameters give an insight regarding the characteristics of specific white matter tracts in relation to certain abnormalities including WMHs.

## **1.2** Problem Statement and Study Rationale

'Silent' or 'asymptomatic' manifestation of CSVD is frequently detected an as incidental finding from brain imaging and is often used as a prognostic marker following a first symptomatic CSVD presentation (van Norden et al., 2011). On MRI, the microchanges in white matter are seen as WMHs that represent discrete lacunar infarcts and/or more diffuse areas of white matter lesion (Smith, 2010). Such changes as seen on a conventional MRI are of limited correlations with clinical parameters including cognition, ranging from weak to moderate (Patel & Markus, 2011). Therefore, more concise correlations and reliable lesion surrogates are needed to improve the assessment of white matter structure, including white matter tractography. Advancement in MRI techniques offer potential new information on disease pathomechanisms as well as surrogate markers of disease onset, progression and new therapy evaluations using newer MR-DTI modalities. The use of DTI offers better insight into white matter integrity in healthy and asymptomatic individuals, hence can serve as a plausible indicator of CSVD onset and progression, and to correlate with the manifestation of CSVD that would otherwise elude conventional MRI (Huynh et al., 2008; Rost et al., 2010).

In addition, and as part of the risk assessment, essential clinical algorithms have become useful in the prevention and management of CVD, including cerebrovascular events (Kanjilal *et al.*, 2008). Hence, a tool such as QRISK2 has been developed to assess the cardiovascular risk as well as cerebrovascular disease such as CSVD. QRISK2 is an online based risk prediction of cardio-cerebrovascular disease (Collins & Altman, 2012). However, correlation with MR-DTI findings in white matter changes with QRISK2 as well as the performance on neurocognitive assessments among healthy and asymptomatic individuals is still insufficient. Moreover, variation in MPs and its subpopulation counts in various diseases indicate their diagnostic importance, particularly in vascular pathologies. However, most of the previous MPs studies are skewed towards diseases populations and do not focus on healthy subjects with prevalence of WMHs. Hence, novel correlations of MPs and its subpopulation counts with an imaging modality, QRISK2 and neuropsychology profiles is need and can serve as potential surrogate markers for the onset and progression of the CSVD spectrum.

## **1.3** Objectives of The Study

### 1.3.1 General objective

To explore novel surrogate markers for the assessment of white matter integrity in cerebral small vessel disease (CSVD) among apparently healthy asymptomatic individuals with neuropsychological, neuroimaging and microparticles profiling.

## **1.3.2** Specific objectives

- To determine the proportion of white matter hyperintensities (WMHs) among the study subjects
- To compare and correlate the QRISK2 cardiovascular risk prediction with longitudinal changes in white matter integrity among subjects with and without the WMHs.
- 3. To compare and correlate the neuropsychological profiles with longitudinal changes in white matter integrity among subjects with and without the WMHs.
- 4. To compare and correlate the microparticles (MPs) and its subpopulations' profiles with longitudinal changes in white matter integrity among subjects with and without WMHs.
- 5. To determine novel multimodal correlation of QRISK2, MPs subpopulations and neuropsychological profiles with neuroimaging parameters.

#### **1.3.3 Research Questions**

- 1. Does QRISK2 cardio-cerebrovascular risk prediction differ with age and is it able to predict the integrity and health of white matter tracts?
- 2. Is there any relationship between QRISK2 cardio-cerebrovascular risk prediction with the prevalence of white matter hyperintensities (WMHs)?
- 3. Does QRISK2 relate to the neuropsychological performance among healthy and asymptomatic individuals?
- 4. Do the neuropsychological profiles among subjects with and without prevalence of WMHs significantly differ?
- 5. Is the prevalence of WMHs affected by age?
- 6. Does neuropsychological performance relate with white matter tracts' integrity?
- 7. Is there any correlation between QRISK2 and the level of circulating microparticles?
- 8. Does MPs and its subpopulations correlate with the number and volume of WMHs lesions in healthy and symptomatic subjects?
- 9. Does the level of circulating MPs influence a subject's performance in cognitive and memories functions?
- 10. Do changes in white matter integrity among healthy and asymptomatic subjects have to do with the level of circulating MPs?

## 1.3.4 Research hypothesis

- 1. There is a significant correlation between QRISK2 with age and changes in white matter integrity.
- 2. There is no significant relationship between cardiovascular risk prediction, level of circulating MPs with a subject's neuropsychology performance.
- There is a significant association between the level of circulating MPs and QRISK2
- 4. The level of certain MPs subpopulations can influence specific white matter tracts' integrity.
- 5. There is a significant relationship between white matter tracts' integrity and QRISK2.
- 6. There is a significant correlation between white matter integrity and a subject's neuropsychology performance
- 7. This study hypothesised that imaging changes of CSVD over time as delineated by DTI studies may serve as surrogate markers of CSVD together with potential novel correlations between a panel of MPs subpopulations, QRISK2 and neuropsychological profiles among healthy and asymptomatic individuals.

## **CHAPTER 2**

#### LITERATURE REVIEW

## 2.1 Literature Search Strategy

The search strategies for relevant literature employed the use of search engines and specific string of keywords within several electronic databases. The databases used included Google Scholar, Science Direct, PubMed, Wiley Online Library, and ISI Web of Knowledge. Only articles published in English were selected. The literature search approach was divided into several parts. The first part included cerebral small vessel disease and silent stroke, using keywords: "cerebral small vessel disease AND silent stroke". The seconds part concerned microparticles, using keywords: "circulating microparticles and strokes", "cell-derived microparticles AND subpopulations". The third focused upon cardiovascular risk in relation with cerebral small vessel disease and also cognitive function using keywords: "cardiovascular risk AND cerebral small vessel disease and also cognitive function", "ischemic stroke AND cognitive". Finally, further search focused upon supplementary research completion.

## Part 1: Cerebral Small Vessel Disease (CSVD)

## 2.2 Cerebral White Matter

White matter is the term used to reflect glistening "white" fatty myelin sheath derived from oligodendrocytes that encircle many axons (Figure 2.1). Neuronal axons can be unmyelinated, lightly myelinated or heavily myelinated. Proportion of myelinated fibres (groups of axons) increases following phylogenetic, embryologic and developmental growth. The conduction capacity of axons differs according to unmyelinated slow-conducting and myelinated fast conducting (Wang *et al.*, 2008).



Figure 2.1: Schematic illustration of cerebral white matter. Left: diagrammatic representation of a neuron in which axon wrapped with oligodendrocytes forming myelin sheaths. Right: cerebral hemisphere, noted the different in white matter and grey matter. (image source for cerebral hemisphere adapted from: Baker & Haris, 1892, retrieved from http://etc.usf.edu/clipart/8100/8166/human\_brain\_8166.htm).

There are three major cerebral white matter fibres: commissural, projection and association. The commissural fibres, connects the two cerebral hemispheres across the midline, hence regarded as bi-hemispheric fibres (Nieuwenhuys *et al.*, 2008) (Figure 2.2). There are two types of commissural fibres: homotopic and heterotopic fibres. The former connects corresponding region of two hemisphere. The latter connects one cortical area with non-corresponding areas of contralateral hemisphere. Examples of commissural fibres includes corpus callosum, anterior/posterior commissure and also hippocampal commissure (Standring *et al.*, 2008).



Figure 2.2: Schematic illustration of major types of commissural fibres (image source: https://neupsykey.com/cerebral-cortex-3/. Retrieved on 14<sup>th</sup> March 2018)

In contrast, the projection fibres, interconnect and transmit impulses from cerebral cortex to spinal cord, brain stem and subcortical regions (Figure 2.3). Thus, frequently regarded as uni-hemispheric fibres. Major example of projection fibres includes corticospinal tracts (CST), thalamic radiations, optic radiations, and also fornix (Nieuwenhuys *et al.*, 2008). Tracts are defined as groups of axons that have

similar corresponding functions. Radiations are defined as white matter fibres that fanned out together from or towards one target (Standring *et al.*, 2008).



Figure 2.3: Schematic illustration of major projections fibres (A-H) which interconnect cerebral cortex with other regions such as midbrain, subcortical regions and also spinal cord (Image source adapted from: Newell & Ernst, 1917, retrieved from http://etc.usf.edu/clipart/ 44000/44026/44026\_cerebrum.htm on 14<sup>th</sup> March 2018)

The next major white matter fibre is the association fibres which also known as uni-hemispheric fibres. These fibres interconnect multiple cerebral region in one particular hemisphere (Figure 2.4). Short U-fibres is the most prominent that interconnect adjacent gyri or long tracts that span the hemisphere (i.e. cingulum bundles, superior/inferior longitudinal fasciculus, arcuate fasciculus and also extreme capsule). Fasciculus is the term used for microscopically determinable fibres' groups (Nieuwenhuys *et al.*, 2008). Whilst, capsules are sheet of fibres that curved and partially surround the grey matter (Standring *et al.*, 2008).



Figure 2.4: Schematic illustration of major association fibres, noted the superior longitudinal fasciculus and uncinate fasciculus (Image source adapted from: Sobatta, 1907; retrieved from http://etc.usf.edu/clipart/36300/36301/brain\_36301\_lg.gif, on 14<sup>th</sup> March 2018).

Therefore, cerebral white matter consists of fibres pathways that transmit information in the form of impulses through link of interconnected axons from one cerebral cortical areas to another including subcortical areas that form neural circuits (Schmahmann *et al.*, 2008). From total brain volume, 60% are represented by circuits of white matter tracts.

#### 2.3 Cerebral Small Vessels (Blood Supply)

The deep white matter, receives blood supply from the penetrating small vessel. The inner layer of these vessels is generally covered by endothelium monolayer with total area of  $350m^2$  (in human) (Pries *et al.*, 2000). The microvasculature health of the small vessel is maintained by normal functioning endothelial cells (Figure 2.5).



Figure 2.5: Schematic illustration of blood vessels. Left: larger vessels (vein and artery), with multiple layer covering the vessels; Right: representation of small vessel, noted that it is surrounded by endothelial cells monolayer and associated with pericytes (image source adapted from: Cleaver & Melton, 2003).

Current accepted definition of small vessels refers to all the vascular structures (small arteries, arterioles, capillaries, venules, and small veins) that are located in the brain parenchyma or in the subarachnoid space (Pantoni & Gorelick, 2014). Terminal arterioles including pial and medullary arterioles (4-5 cm long) are formed from cortical arteries that perpendicularly penetrate white matter (Martorella *et al.*, 2012) (Figure 2.6). Branches of short cortical arteries (3-4 mm) also supply juxta-cortical arteries white matter (U-fibres). Multiple anastomoses were established by cortical arteries

provide the cerebral cortex with rich arteriolar network. As the arteries penetrated deep into white matter they establish few more capillary anastomoses alongside pial arterioles forming relatively independent arteriolar metabolic units (Martorella *et al.*, 2012) (Figure 2.6). Apart from that, shorter deep sub-ependymal arteries that arise from choroid arteries also supply white matter. Moreover, basal ganglia are penetrated by another terminal branch of sub-ependymal arteries including thalamic and lenticulostriate perforating arteries originating from the larger vessel, middle cerebral artery (MCA). These penetrating arterioles are hardly anastomosed with each other thus parenchyma located at the adjacent of them are less vascularized. This is in contrast to superficial penetrating arteries which are more vascularized.



Figure 2.6: Schematic illustration of cerebral vasculature. Right: Different branches of cerebral arteries and their territories that supply cerebral white matter. Left: penetrating arteries and arterioles into deep white matter, from the image (1) represent cortical arteries (2) pial arterioles that supply deep white matter (2.1) short branches (3) anterior choroidal arteries that branch into sub-ependymal arteries (4) arterioles of sub-ependymal (5) MCA branches into thalamic and lenticulostriate perforating arteries that supply basal ganglia (adapted from: Martorella *et al.*, 2012).

#### 2.4 CSVD: Definition and Pathophysiology

One of the predominant types of strokes that resulted from occlusion (ischaemia) of small blood vessel deep within the brain is ischaemic stroke (Rouhl *et al.*, 2009; Smith, 2017). In ischemic or lacunar stroke, around up to 30% thought to be due to CSVD (Heye *et al.*, 2015; Patel & Markus, 2011; Rouhl *et al.*, 2009).

It is generally accepted that small vessel disease (SVD) is a term used to describe the pathologic consequences of SVD on the brain parenchyma rather than the underlying diseases of the vessels (Wardlaw *et al.*, 2013). Thus, the term CSVD is preferred to describe a brain injury that resides in poorly collateralized subcortical grey and deep white matter due to several of vasculo-pathologic processes that affect and cause occlusion to the perforating cerebral capillaries and arteries (mostly branches of MCA) that penetrate and supply the brain subcortical region (Benjamin *et al.*, 2015; Novakovic, 2010) (Figure 2.7).



Figure 2.7: Illustration of general aetiologies of CSVD. The picture shows branches of MCA that penetrates subcortical region of white matter and also grey matter. Embolus or thrombus may accumulate and cause occlusion (atheroma) upon parent MCA and penetrating arteriolar. The occlusion of perforating arteriolar can cause ischemia and eventually lacunar infarct may have formed. The core infarcts might affect surrounding tissue (penumbra). Diffused disruption of blood brain barrier following intrinsic CSVD also happened at arteriolar level indicating that certain plasma component invasion and deposited in vessel wall (adapted from: Shi & Wardlaw, 2016).

Therefore, in general the term CSVD is used to describe a complex and heterogeneous disorder to indicate brain parenchymal injury associated with distal leptomeningeal and intracerebral vessel pathology (Ogata *et al.*, 2014; de Bresser *et al.*, 2018) through clinical, radiological, or pathological phenomena with various aetiologies that affect the pathologies of small arteries, arterioles, venules, and capillaries of the brain (Sorond *et al.*, 2015; Yakushiji *et al.*, 2018).

#### 2.5 White Matter Hyperintensities (WMHs)

The ischaemic consequences of several manifestation of CSVD such as WMHs, lacunar strokes, cerebral microbleeds, enlarged perivascular spaces, and small subcortical infarcts can be detected using MRI (Lambert *et al.*, 2015; Sorond *et al.*, 2015; Yakushiji *et al.*, 2016; Yakushiji *et al.*, 2018). WMHs are commonly recognized as small '*lacunes*' (Latin: for lake) in ageing brain or bright areas of small non-cavitated high signal intensity on FLAIR and T2-weighted MRI parameters. The lesion will increase with age because they evolve over a few months to years (Ovbiagele & Saver, 2006; Valdés Hernández *et al.*, 2015; Wharton *et al.*, 2015). Recognising the expanding CVSD manifestations from MRI imaging (symptomatic and asymptomatic), Wardlaw and colleagues proposed what is known as Standards for Reporting and Imaging of Small Vessel Disease (STRIVE) for the methods of visual identification and classification CSVD spectrum (Wardlaw *et al.*, 2013) (Figure 2.8).

In addition, WMHs are also regarded as an ischaemic white matter demyelination and can manifest as symptomatic or silent (asymptomatic) brain parenchyma lesion. Interestingly, this so-called 'silent' manifestation of CSVD is frequently reported as incidental finding from brain imaging of individuals who never experienced any symptom of stroke more frequently among the elderly (Valdés Hernández *et al.*, 2015). It is also been proposed as a prognostic marker following a first symptomatic CSVD presentation, for instance acute lacunar stroke (van Norden *et al.*, 2011).

|                   | Recent small subcortical<br>infarct | White matter<br>hyperintensity | Lacune                           | Perivascular space                      | Cerebral microbleed                               |
|-------------------|-------------------------------------|--------------------------------|----------------------------------|-----------------------------------------|---------------------------------------------------|
| Example image     |                                     |                                | b                                |                                         |                                                   |
| Schematic         | DWI                                 | FLAIR                          | FLAIR                            |                                         | • •<br>• •                                        |
| Usual diameter    | ≤20 mm                              | Variable                       | 3–15 mm                          | ≤2 mm                                   | ≤10 mm                                            |
| Comment           | Best identified on DWI              | Located in white matter        | Usually have<br>hyperintense rim | Most linear without<br>hyperintense rim | Detected on GRE seq.,<br>round or ovoid, blooming |
| DWI               | t                                   | +                              | ↔/(↓)                            |                                         | <b>↔</b>                                          |
| FLAIR             | 1                                   | t                              | ł                                | 1                                       |                                                   |
| T2                | t                                   | t                              | 1                                | t.                                      | $\leftrightarrow$                                 |
| T1                | Ţ                                   | ↔/(↓)                          | l                                | 1                                       | <b>+</b>                                          |
| T2*-weighted GRE  |                                     | 1                              | ↔ (‡ if haemorrhage)             |                                         | 11                                                |
| 1 Increased signa | I ↓ Decreased signal                | ↔ Iso-intense signal           |                                  |                                         |                                                   |

Figure 2.8: STRIVE method of identification and classification of CSVD spectrum. Top: example of MRI images; Middle: schematic representation; Bottom: characteristic of changes related to CSVD (adapted from: Wardlaw *et al.*, 2013).

#### 2.6 Aetiology and Consequences of WMHs

About 95% of asymptomatic or SBI are lacunar infarcts (as seen as WMHs on MRI imaging) and are arguably more prevalent than symptomatic ones. The two major contributors to the progression of SBI include age and hypertension (Norrving, 2015). The key difference between SBI and symptomatic lacunar infarcts are their location and size. This is because both SBI and symptomatic lacunar infarcts have similar pathological appearance (Bailey *et al.*, 2012). For example, most asymptomatic SBI are located within white matter periventricular space (periventricular lesion, PVL) and centrum semiovale (deep subcortical lesions, DSCL) (Kaiser *et al.*, 2014; Wharton *et* 

*al.*, 2015), whereas, in symptomatic lacunar ischaemic stroke mostly affects the sensory and motor tracts (Valdés Hernández *et al.*, 2015).

However, the underlying pathomechanism of SBI or WMHs remains contentious, largely as a result of growing insights from histopathological, epidemiological, and physiological studies that contribute important information about it. In addition, healthy white matter is more myelinated than white matter of Alzheimer's patients (Bartzokis *et al.*, 2003) and has a high content of long chain fatty acids and less water content (by 12%) compared with grey matter. Previous study reported that WMHs are consistently related to age, hypertension and other cardiovascular risk factors (Prabakharan *et al.*, 2012). Therefore, individual with extensive WMHs are at high risk for future stroke, i.e. WMHs serving as prognostic marker. Nevertheless, it is estimated that SBI or WMHs occur around 30% of healthy subjects over 60 years of age, and with a linear prevalence increment with age (de Leeuw *et al.*, 2001).

Reduced cerebral blood flow and focal neurologic signs are related to brain atrophy and have been found to correlate with number and volume of WMHs (Bahrani *et al.*, 2017). Furthermore, WMHs are also associated with cognitive impairment, with the notion that a certain threshold must be achieved before this becomes clinically apparent (Debette & Markus, 2010). Alarmingly, WMHs have also been linked precursor of developing neuropsychiatric disorder such as schizophrenia (Berlow *et al.*, 2010).

#### Part 2: Cerebrovascular Disease Risk and Risk Prediction

## 2.7 Risk Factors for Cerebrovascular Disease

In 1960, Framingham Heart Study was the first to recognised the non-modifiable and modifiable risk factors for cerebrovascular disease in the population setting (Mahmood *et al.*, 2014). Understanding of such factors has helped facilitate the management and prevention of cardiovascular morbidities and mortality. Age, gender, race, ethnicity and heredity have been recognized as common non-modifiable risk factors for the onset and progression of stroke. Although these factors cannot be modified, they help identify those whose potentially at high risk, hence, enabling strategic management of modifiable risk factors such as smoking and cholesterol level.

In addition, age is the strongest determinant risk factor for stroke. It has been reported that, the risk for stroke for an individual is doubled at 10 successive years after 55 years of age, for both male and female (Smajlovic, 2015; Ovbiagele & Nguyen-Huynh, 2011). Furthermore, the incidence of stroke is 1.25 folds higher in male compared to female, as females tend to live longer than males (Morovic *et al.*, 2012).

Stroke incidence and mortality are particularly varied among different race. Previous studies reported that, the incidence of stroke is double in black patients compared to white patients. For example, the incidence of stroke among black patient is more than 2 folds higher than white, whilst Hispanic patients are 1.6 folds higher than white patients (Howard, 2013). Higher incidence of stroke also has been reported in Asians such as Chinese and Japanese (Ueshima *et al.*, 2008).

Moreover, the incidence and prevalence of stroke also elevated in individual with family history of stroke. The reasons for this are a genetic tendency for stroke, a genetic determination of other stroke risk factors, and a common familial exposure to environment or lifestyle risk. Previous studies suggested that, an increase risk for male whose mothers died from stroke and female who had a family history of stroke (Seshadari *et al.*, 2010). In the Framingham Study and offspring analysis revealed that both paternal and maternal history of stroke conferred an increased risk of stroke (Romero & Wolf, 2013).

#### 2.8 Cardio-cerebrovascular Risk Prediction Assessment by QRISK2

Currently, an online calculator has been established to predict the risk for cardiocerebrovascular disease within 10 years; such a tool includes QRISK 2 (Collins & Altman, 2010). QRISK2 is an online based risk prediction of cardio-cerebrovascular disease (http://:www.QRISK.org/index.php) (University of Nottingham and EMIS). It was developed in the United Kingdom (UK) based on information compiled between 1993 and 2010 that contained the data for over 10 million patients registered with 550 general practices in the UK. Hence, it is globally used and is annually updated. QRISK2 is the updated version of QRISK1, whereby a new multivariable risk score that comprises all the risk factors in QRISK1 has been factored in, including self-assigned ethnicity and conditions associated with cardio-cerebrovascular risk including type 2 diabetes mellitus, hypertension, rheumatoid arthritis, renal disease and atrial fibrillation (Hippisley-Cox *et al.*, 2008). Interactions between age and body mass index, systolic blood pressure, family history, smoking status, treated hypertension, diagnosed type 2 diabetes mellitus, and atrial fibrillation are also considered in QRISK2 (Table 2.1).