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PEMBAIKAN DELIGNIFIKASI OKSIGEN BAGI PULPA SODA-AQ TANDAN 

KOSONG KELAPA SAWIT DAN PENGGUNAAN REKA BENTUK UJIKAJI 

UNTUK PENGOPTIMAAN PROSES 

 

ABSTRAK  

 

Delignifikasi bagi pulpa soda-AQ tandan kosong kelapa sawit (Elaeis guineensis) 

dengan oksigen dihadkan pada 38% demi mengelakkan degradasi selulosa yang serius. 

Untuk meningkatkan keberkesanan bagi delignifikasi oksigen (peringkat O), sejumlah kecil 

hidrogen peroksida (H2O2) bersama atau tanpa antrakuinone (AQ) ditambahkan semasa 

oxygen delignifikasi dan dikenali sebagai delignifikasi oksigen diperkuat dengan hidrogen 

peroksida (peringkat OP), manakala dengan pernambahan AQ dikenali sebagai peringkat OP 

dengan pembantuan-AQ.  Pada kajian awal, delignifikasi oksigen dengan penambahan H2O2 

dan AQ telah menunjukkan potensi untuk meningkatkan penurunan nombor kappa (Kn) dan 

kecerahan pulpa. Maka kesan interaksi bagi H2O2 dan AQ bersama dengan tiga faktor proses 

iaitu suhu tindak balas (°C), masa tindak balas (t), dan kepekatan alkali (Ac) pada oksigen 

delignifiksi bagi pulpa hasilan tandan kosong kelapa sawit dikaji secara statistik dengan 

menggunakan rekabentuk ujikaji dua-tingkat pemfaktoran separuh (2
k-1

) supaya 

menyingkirkan faktor yang tidak signifikan.  Berdasarkan model-model foktoran
 
yang dibina, 

H2O2 (P), suhu tindak balas (T) dan kepekatan alkali (Ac) memberi kesan yang signifikan 

kepada semua sifat.  Di samping itu, kemerosotan kelikatan pulpa dengan kandungan H2O2 

yang tinggi dapat dikurangkan secara signifikan dengan pernambahan AQ dalam kuantiti 

yang sedikit. Tambahan lagi, semua model faktoran yang dibina adalah sah secara statistik 

dan eskperimen. Pengoptimuman peringkat OP dengan pembantuan-AQ dilakukan dengan 

rekabentuk ujikaji Metodologi Permukaan Sambutan (response surface methodology, RSM) 

berdasarkan rekabentuk komposit pusat (central composite design, CCD) dengan tiga faktor 

individu iaitu H2O2
*
 (P


, 0.25-2.00%), suhu tindak balas

*
 (T

*
, 70-110 °C), dan kepekatan 

akali
*
 (Ac

*
, 1.2-2.8%) serta faktor tetap iaitu 30 min masa tindak balas dan 0.02% AQ.  



 xviii 

Analysis rekabentuk komposit pusat mendapati Ac* adalah tidak signifikan bagi sifat 

kelikatan selulosa, tetapi kepekatan Ac* yang tidak mencukupi akan menyebab kemerosotan 

kelikatan selulosa juga terutamanya dalam keadaan P* dan T* yang tinggi. Keadaan 

optimum kiraan bagi peringkat OP dengan pembantuan-AQ adalah 1.4% H2O2 dan 2.4% 

NaOH, pada 100 °C dan Kn , kelikatan selulosa dan kecerahan bagi pulpa yang terhasil 

masing-masing adalah 6.5, 12.4 cP dan 61.92% (ISO), dan kesemua nilai adalah tidak 

berbeza secara signifikan dengan nilai yang dikira. Rawatan cahaya dengan lampu biru (400-

500 nm) sebelum peringkat O menunjukkan potensi bagi meningkatkan pemilihan peringkat 

O.  
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IMPROVEMENT IN OXYGEN DELIGNIFICATION OF OIL PALM EMPETY 

FRUIT BUNCHES (EFB) SODA-AQ PULP AND USE OF EXPERIMENTAL 

DESIGN FOR PROCESS OF OPTIMISATION 

 

ABSTRACT 

 

The delignification of oil palm (Elaeis guineensis) empty fruit bunch fibres soda-AQ 

pulp by oxygen is limited to 38%, to avoid substantial cellulose degradation. To enhance the 

effectiveness of oxygen delignification (O stage), small amounts of hydrogen peroxide (H2O2) 

with and without anthraquinone (AQ) are added during oxygen delignification, which are 

known as the hydrogen peroxide reinforced oxygen delignification (OP stage) and AQ-aided 

OP stage respectively. The preliminary study of the addition of hydrogen peroxide and 

anthraquinone (AQ) to oxygen delignification has shown their potential on improving kappa 

number (Kn) reduction and pulp brightness. Hence, the interaction effects of hydrogen 

peroxide and anthraquinone, and the other three process variables viz.  reaction temperature 

(T), reaction time (t) and alkaline charge (Ac) on oxygen delignification of pulp produced 

from oil palm (Elaeis guineensis) empty fruit bunch fibre are statistically investigated by 

employing a half two-level factorial (2
k-1

) experimental  design in order to screen out the 

insignificant effects. Based on the factorial models built, H2O2 (P), reaction temperature (T) 

and alkali charge (Ac) are significant to all of the responses. Besides, the impairment to the 

pulp viscosity by a relatively higher level of H2O2 (2.0% on the oven-dry weight of pulp) is 

found to be significantly countered by adding a small amount of anthraquinone. Furthermore, 

all factorial models built are also statistically and experimentally validated.  The optimisation 

of the AQ-aided OP stage is operated with response surface methodology (RSM) through 

central composite design (CCD) with three independent variables namely H2O2
*
 (P


, 0.25-

2.00%), reaction temperature
* 

(T
*
, 70-110 °C), and alkali charge

*
 (Ac

*
, 1.2-2.8%) and the 

fixed variables are 30 min reaction time and 0.02 % AQ. The analyses of CCD found that Ac
*
 

gives an insignificant effect to the pulp viscosity, which however an insufficient of Ac
*
 



 xx 

causes a serious decrease of the pulp viscosity especially when the P

 and T

*
 are in high level. 

The calculated optimum condition for AQ-aided OP stage is 1.4% H2O2 with 2.4% NaOH at 

100 °C and the Kn, pulp viscosity and brightness of the resultant pulp are 6.5, 12.4 cP and 

61.92% (ISO) respectively, which are significantly no different from the calculated values. A 

photo-treatment by using blue light (400-500 nm) prior to the O stage also shows potential to 

improve the O stage selectivity.  
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CHAPTER 1 INTRODUCTION 

 
1.1        General 

Since the 1980s, it had been reported that highly toxic and environmental persistent 

polychlorinated dioxins and furans were detected in the effluent of bleaching plant (Nelson, 

1998). Thus, the new approach of bleaching technologies like elementary chlorine free (ECF) 

and totally chlorine free (TCF) bleaching were introduced with the aim to reduce the highly 

toxic chlorinated compounds in the effluent. Soon after, many works had been carried out 

extensively on investigating and examining the performance of ECF and TCF bleaching 

towards different kinds of pulps (Reeve and Weishar, 1991; McDonough, 1995; Leroy et al., 

2004).  

 

It is a well-established fact that in order to achieve the highest efficacy of TCF bleaching; the 

capability of delignification in first bleaching stage is most important (Sippola and Krause, 

2005; Agarwal et al., 1999). Amongst the chlorine-free bleaching stages, oxygen 

delignification (O stage) has shown its potential during the first stage of TCF bleaching, 

since it is capable to remove the residual lignin in the pulp up to 50% without significant 

detrimental effect on the pulp strength. In addition, Beyer and co-workers implied that 

bleaching with ozone causes strong yellowing while oxygen will not (Beyer et al., 1999). 

However, if compared with the conventional chlorination (C stage) and chlorine dioxide (D 

stage), O stage shows lower effectiveness since the further elimination of lignin will cause 

serious degradation of the carbohydrates (Parathasarathy et al., 1990; Leroy et al., 2004) 

 

Amongst the studies, some reported that the addition of hydrogen peroxide (H2O2) in O stage 

had improved the delignification and had retained the pulp viscosity at an acceptable level on 

softwood kraft pulp (Farley, 1973; Parathasarathy et al., 1990; Boman et al., 1995). 

Parthasarathy et al. (1990) have reported that small amount of H2O2 (less than 0.5% on oven 

dry (o.d.) pulp) should be added since the further increase of H2O2 charges would lower the 
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viscosity as compared to the conventional O stage. Nevertheless, the results of the study 

showed that the pulp brightness only gained little benefits with the addition of small amount 

of H2O2. Furthermore, unenviable decomposition of H2O2 to very reactive radicals would 

occur when high temperature and alkaline were employed during O stage. This would cause 

carbohydrate degradation with the presence of transition metals.  

 

By controlling the decomposition of H2O2, in cooperation with a pre-treatment—a 

combination of nitrosation and metal chelation, higher charge of H2O2 (1.0% on o.d. pulp) 

could be employed during the H2O2 reinforced O stage (OP stage) to remove up 65% of the 

residual lignin and retained substantially high viscosity of the softwood kraft pulp (Stevens 

and Hsieh, 1995). Moreover, Argyropoulos et al. (2003, 2004) had endeavoured that borax 

and 1,10-pheanthroline in OP stage would give a promising result to preserve viscosity and 

concomitantly would increase the rate of delignification and ISO brightness on softwood 

kraft pulp. However, attempts to improve O stage on lignocellulosic materials other than 

softwood have yet to be carried out. The authors also stated that the addition of 0.3% 1,10-

phenanthroline may cause an increase of about 30% in the NOx discharge from the recovery 

boiler.  

 

Besides, photo treatment prior to O stage had also shown its potential to improve or extend 

the oxygen delignification. A number of researches reported that when lignocellulosic 

materials absorb ultraviolet (UV) and visible light, they will generate active species, and thus 

cause photodegradation of lignocellulosic materials (Krinhstad, 1969; Schmidt et al., 1990; 

Davidson, 1996, Bikova and Treimanis, 2004). Sun et al. (1996) showed that an involvement 

of UV-peroxide stage in TCF bleaching successfully bleached the radiate pine kraft pulp up 

to 90% ISO of brightness. Besides, Da Silva Perez et al. (2002) also proved that 

photodegradation had occured in Eucalyptus grandis peroxyformic/formic acid chemical 

pulp under irradiation of light with wavelength above 300 nm. A recent study by Ruggiero et 
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al. (2005) agreed that the sugar cane bagasse acidolysis lignin could be degraded via UV 

light.   

On the other hand, oil palm Elaeis guineensis is one of the important crops in Malaysia since 

1917 (Mohamad at al., 1986; Khor et al., 2009). In the production of palm oil, some by-

products are generated such as mesocarp fibre, shell and empty fruit bunch (EFB) which is 

valuable to biomass resources for generating energy (Ma et al., 1994). Nevertheless, it has 

been recognised that the incineration of EFB causes some environmental problems (Lim and 

Zaharah, 2000; Tanaka, 2004; Anderson, 2008; Frank et al., 2008). Therefore, EFB is 

normally used for production of fibre based products such as composite and pulp for paper 

production.   

 

The utilisation of oil palm biomass especially EFB in the production of pulp and paper has 

been introduced since the late of 1970s (Khoo and Lee, 1991). Since that, the effect of 

different pulping agents such as sodium carbonate, kraft, kraft-AQ, soda, soda-AQ on EFB 

pulping have been investigated by several groups of researchers. According to Tanaka et al. 

(1999) the bleachability of EFB kraft-AQ pulp is comparable with commercial hardwood 

kraft pulp. However, in the later studies showed that soda-AQ pulp, which is sulphur-free 

pulp exhibits better bleachability than kraft-AQ pulp (Leh et al., 2004; Leh et al., 2005).  

 

Based on Leh et al. (2005), in order to achieve the ISO brightness of above 80%, TCF 

bleaching sequence containing ozone (Z stage) is a necessity. However, Z stage requires very 

high investment costs for the ozone generator and its auxiliary equipments and also rather 

high operating cost due to high power consumption. Hence, one way to consider the 

establishment of a small scale pulp mill which uses EFB as raw material, a simple TCF 

bleaching sequence without Z stage should be recommended. Therefore, an imperative action 

to improve O stage becomes a necessity.  
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Aforementioned, OP stage is a preferable attempt to improve oxygen delignification. 

However, without the employment of any pre-treatment such as nitrosation or metal 

chelation (Stevens and Hsieh, 1995), substantial losses of pulp viscosity is inevitable. In 

order to minimise the cellulose deterioration in an OP stage towards oil palm EFB soda-

anthraquinone pulp, an attempt has been made by adding anthraquinone (AQ) to the system 

in this study. Consequently, a half two-level factorial design has been used to analyse the 

effect of five bleaching variables—the H2O2 charge (P, %), reaction temperature (T, °C), 

reaction time (t, min), alkali charge (NaOH, %), and percent of AQ (Aq, %) on three 

properties of the pulp which are the kappa number (Kn), pulp viscosity (cP) and brightness 

(ISO). According to the variables selected in two-level factorial designs, response surface 

methodology (RSM) via a central composite design (CCD) has been applied to optimise the 

H2O2 reinforced oxygen delignification. 

 

In addition, due to the natural ability light absorber of lignocellulosic materials, photo pre-

treatment brings an ancillary approach to improve oxygen delignification. Consequently, a 

photo pre-treatment by using blue light in visible spectrum range (400-500 nm) has also been 

carried out on EFB pulp in this study. 

 

Delignification of EFB soda-AQ pulp by oxygen has been limited to only 36.72% which 

substantially limits its role in the bleaching process (Koay, 2008). This research focuses on 

improving the selectivity of oxygen delignification using a hydrogen peroxide (H2O2) 

reinforced O stage (Op stage) via addition of anthraquinone (AQ) and photo pre-treatment of 

the pulp using blue light in visible spectrum range (400-500nm).  

 

1.2 Objectives 

This research was carried out in order to improve of oxygen delignification on EFB soda-AQ 

pulp. Objectives of this research are as below: 
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 To improve the selectivity of oxygen delignification on EFB soda-AQ pulp by 

addition of hydrogen peroxide (H2O2) with and/or without anthraquinone (AQ). 

 To statistically identify the combined effect of AQ-aided hydrogen peroxide 

reinforced oxygen delignification.  

 To optimise the AQ-aided hydrogen peroxide reinforced oxygen delignification by 

employing response surface methodology (RSM). 

 To investigate the effect of photo pre-treatment (in the spectrum range 400-500 nm) 

on the selectivity of oxygen delignification.   
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 An Overview of Pulp Bleaching 

Generally, pulp produced from lignocellulosic materials is brownish or yellowish in colour 

which thereby limits its application for high quality paper products. In order to increase pulp 

brightness, it is necessary to bleach the pulp. Through a bleaching process, pulp brightness 

can be increased by either eliminating the lignin or only altering the chomophoric structures 

to non-chromophoric structures without eliminating the lignin (brightening). The application 

of these two bleaching custom is dependent on the preceding pulping method. Basically, 

bleaching by eliminating lignin will be applied on chemical pulp, while high yield pulp such 

as mechanical and semimechanical pulp will be bleached by only changing the chromophoric 

structures in the lignin.  

 

Since the lignin still remain in the bleached high yield pulp, the chromophoric structures can 

be generated back through oxidation with the presence of oxygen and light and causing 

colour reversion – yellowing the bleached pulp. This indicates a low brightness stabilizing of 

high yield pulp. In order to obtain bleached pulp with high brightness stability pulp, chemical 

full bleached pulp is preferred. On the other hand, high brightness pulp can hardly be 

achieved by using one stage bleaching only. Hence, a multistage bleaching sequence is 

possible to get higher pulp brightness. On the other hand, carbohydrate degradation should 

be controlled at a minimum level during the bleaching process in order to preserve pulp 

strength and paper making properties. To obtain high quality bleached chemical pulp, an 

appropriate bleaching sequence condition is very important for pulp bleaching (Casey, 1966; 

Dard, 1978; Smook 1992; Reeve, 1996).  
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2.1.1 Brief History and Development of Pulp Bleaching 

The technique of bleaching on clothes and linen by using lime as a bleaching agent started in 

300 B.C. viz more than 400 years ago prior to the invention of paper by Ts‘ai Lun in A.D. 

105. Consequently, in 100 A.D., white linen was also produced by scouring it with alkali 

followed by washing as well as exposing to the sun. However, the technique of bleaching for 

pulp and paper is only established in the early nineteenth century when the chemical wood 

pulp commenced. (Dard, 1978; Reeve, 1996).  

 

In 1774, Karl Wilhelm Scheele (1742 - 1786) found the element of chlorine and its ability to 

destroy vegetable colouring compounds as discovered by C.L. Berthollet in 1784 (Dard, 

1978; Sjöström, 1993). In the following year in France, Berthollet revealed that chlorine can 

be dissolved in the solution of vegetable ash, potash (any salts of potassium) and the name 

―eau de Javelle‖ is given (Reeve, 1996). About ten years later (in 1799), Charles Tennant of 

Glasgow discovered that the suspension of lime, which is cheaper than vegetable ash, can be 

used for pulp bleaching as the suspension can absorb chlorine gas to form calcium 

hypochlorite (Histed et al., 1996). Consequently, this chemical became a typical bleaching 

agent in the nineteenth century (Reeve, 1996).  

 

As a matter of fact, bleaching of pulp only become more important and challenging after the 

industrial revolution in the early of nineteenth century, as the demand of raw material such as 

cotton, rag or linen of pulp for production was outstripping supply (Dard, 1978). Thus, a new 

raw material which should be made available in large quantity is necessary. In the 1840s, 

Friedrich Gottlob Keller invented a wood-grinding machine thus producing cheaper ground 

wood papers. Since then, raw materials for paper pulp had been replaced by wood fibres. 

However, the coarseness of ground wood pulp limits its application. In 1851, the first 

chemical wood pulp (soda process) was developed by Hugh Burgess and Charles Watt (Dard, 

1978). Nevertheless, chemical wood pulp is darker and is more difficult to be bleached in 

comparison to non-wood fibres used previously.  
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In order to obtain higher brightness pulp from wood fibre, multi-stages bleaching is required. 

The bleaching sequence used should also appositely be according to pulp requirements. In 

the 1800s to the early 1900s, hypochlorite (H stage) and alkaline extraction (E stage) are the 

only two bleaching stages employed and the common bleaching sequence is HEH. In the 

1930s, the first stage of bleaching is replaced by elemental chorine, which is known as 

chlorination (C stage). C stage is relatively cheaper and attacks the lignin selectively with 

less carbohydrates degradation. Hence, the most common used bleaching sequence during 

that period of time shifts to CEH. During the same decade (1930s), Mathieson Chemical 

Corp. generated chlorine dioxide by adding sodium chlorite in pulp suspension and chlorine 

gas. However, the use of chlorine dioxide (D stage) just begins during the 1940s, when the 

five stages of bleaching sequence as CEDED were introduced (Reeve, 1996). The fast 

growth of the D stage was due to its capability to produce high brightness pulp while 

retaining sufficient pulp strength (Sjöström, 1993; Reeve, 1996). In the 1980s, highly toxic 

and environmental persistent compounds such as dioxin, furan and chlorinated organic 

compound are detected in the effluent discharged from pulp mills (Nelson, 1998).  

 

Due to the pressure from environmental protection groups and also government agencies 

toward pulp mills, a new bleaching trend, which is more environmental friendly namely 

elemental chlorine free (ECF) bleaching and totally chlorine free (TCF) bleaching, is 

recommended. In ECF bleaching, the C stage which uses elemental chlorine as a bleaching 

agent is excluded in the bleaching sequence and is replaced by D stage as the first bleaching 

stage. Thus the bleaching sequence of DEDED is then used conventionally (Daniel et al., 

2004; Leroy et al., 2004). On the other hand, TCF bleaching emphasizes on using agents that 

do not contain chlorine (Cl2), including chlorine dioxide (ClO2) and sodium hypochlorite 

(NaOCl) agents, such as ozone (O3, ozone delignification, Z stage), oxygen (O2, oxygen 

delignification, O stage) and hydrogen peroxide (H2O2, hydrogen peroxide bleaching, P stage) 

(Reeve, 1996; Nelson, 1998). Moreover, bio-bleaching by using enzyme (Sjöström, 1993; 
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Farrell et. al., 1996) and photo bleaching with UV light show their high potential in chlorine 

free pulp bleaching (Yan et. al., 1996).  

 

ECF bleaching is claimed to be a move towards more environmentally compatible 

technology since the formation of chlorinated organic compounds has been minimized 

(Mcdonough, 1995; Reinstaller, 2008). However, as reported by Steffes and Germgard 

(1995), the replacement of D stage in ECF bleaching sequence with Z stage for TCF 

sequence had caused the absorbable organic halogen (AOX) emission to drop from 0.4 

kg/ton of pulp to zero.  

 

On the other hand, paper strength properties of ECF bleached paper are normally higher than 

TCF paper. A comparison between the chlorine counterparts and oxygen based bleaching 

agents towards lignin and carbohydrates is shown in Table 2-1. It is obvious to see that O3, 

O2 and H2O2 are comparable to Cl2, ClO2 and NaOCl respectively in term of reaction towards 

lignin. However, the oxygen based chemicals are less selective as they attack carbohydrates 

as well (Hosoya, 1992; Nelson, 1998).  

 

This indicated that even though TCF shows higher environmentally compatibility than ECF, 

but in terms of paper strength properties such as brightness, ECF bleached paper is normally 

higher than TCF bleached paper. Hence, for pulp millers, higher preference is still given to 

ECF (Mcdonough, 1995; Leroy et al., 2004). Consequently, it has still become a challenge 

for the researchers to enhance TCF bleaching selectivity by further improving its 

delignification and minimizing the impact on cellulose deteriorating.  
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Table 2-1Classification Reaction of Bleaching Agents toward Lignin and Carbohydrate 

(Hosoya, 1992; Nelson, 1998) 

 

Bleaching 

Agent 

Lignin 

Carbohydrate Aromatic 

Rings 
Double Bonds 

Free 

Phenolic  

Groups 

Carbonyl  

Groups 

Cl2 1 1 0 0 0 

ClO2 0 1 1 0 0 

NaOCl 0 0 0 1 0 

O3 1 1 0 0 1 

O2 0 1 1 0 1 

H2O2 0 0 0 1 1 

0: no reaction with the functional groups of lignin. 

1: reaction occurs with the functional groups of lignin. 

 

2.2 Oxygen Delignification (O stage) 

Oxygen delignification is an environmental feasible process since there are extremely low 

chlorinated compounds detected in its effluent. Effluent is recommended to be recycled in 

pulp mill as a closed system (McDonough, 1995; Nelson, 1998; Barroca et al., 2001). In 

addition, it is also capable of delignifying up to 50% of lignin residual remained in the 

unbleached pulp. On the other hand, oxygen is also a cost feasible bleaching agent in 

comparison to chlorine dioxide (Smook, 1992; Reeve, 1996; Nelson, 1998; Barroca et al., 

2001). Besides, the energy required for generating oxygen is one over eight as compared to 

an equivalent amount of chlorine generated (McDonough, 1989). Since, O stage has been 

cost advantageous and has met the environmental obligation; it is apt to be used in most of 

the pulp bleach plants (Tench and Harper, 1987; Smook, 1992; Reeve, 1996; Nelson, 1998; 

Barroca et al., 2001).  

 

2.2.1 Development of Oxygen Delignification 

Oxygen is first introduced by Joy and Camphell as a bleaching agent for paper pulp in 1867. 

About fifty years later, in 1915, oxygen pressurised method with the addition of the alkaline 

earth metal hydrate was introduced by Mueller (McDonough, 1996). After that, in late 

1950‘s, oxygen is successfully used as a bleaching agent (McDonough, 1996, Nelson, 1998). 

However, oxygen is still not commonly used for pulp bleaching because it attacks both lignin 
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and carbohydrates unselectively. In 1960s, the advancement of O stage to preserve the pulp 

strength properties was found by Robert and co-worker via adding magnesium salts during O 

stage. Consequently, the O stage first became commercialised in South Africa in 1970 

(McDonough, 1996; Nelson, 1998).  

 

Due to the increase of environmental consciousness, O stage started to be widely used. 

Moreover, the effects of O stage on different types of pulp are also investigated substantially 

right after the confirmation in 1980s that bleaching by C stage followed by an E stage causes 

serious environmental problem due to the generation of chlorinated organic compounds and 

dioxin (Nelson, 1998). In addition, chloride containing effluent from C stage is highly 

corrosive (Alfonsson et al., 1993; Nagarathnamma and Bajpai, 1999).  

 

Initially, when the O stage is employed as the first stage conventional bleaching sequence, it 

is capable to shorten the bleaching sequence from CEDED to OCED and at the same time it 

improves the resultant pulp brightness while retaining the pulp properties and also lowers the 

toxicity in effluent (Tench and Harper, 1987). Besides, oxygen alkaline extraction ((EO) 

stage) is also carried out after the first bleaching stage, either as C stage or D stage. 

According to a comparison between C/DED and C/D(EO)D done by van Lierop et al. (1989), 

the latter bleaching sequence shows higher brightness and lower Kn while maintaining the 

viscosity for sulphite pulp . In addition, the use of (EO) stage has saved the chemical 

consumption in the subsequent stage and also decreases the coloured substance in the 

effluent.  

 

Nevertheless, the relatively low selectivity of O stage limits its delignification at no more 

than 50% viz. before causing unacceptable carbohydrates degradation. Therefore, different 

attempts are carried out in order to improve O stage efficiency, such as introducing a pre-

treatment prior to O stage, addition of catalyst (additives), two stage of O stage (O-O stage), 
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and hydrogen peroxide reinforce oxygen delignification (OP stage) started from 1990s until 

now (Barroca et al., 2001; Suchy and Agryropoulos, 2001 and 2002).  

 

2.2.2 Variables Affected Oxygen Delignification 

During the O stage, the variables which affect the O stage efficiency are alkali charge, time, 

temperature, oxygen pressure and consistency of pulp. In order to get the better mechanical 

and optical properties of pulp with lower operation cost, effects of each variable of the O 

stage on pulp properties should be understood clearly (McDonough, 1983). Besides 

bleaching variables, initial Kn of pulp properties will also affect the efficiency of the O stage 

too (Agarwal, 1999; Doğan and Gürüz, 2008).    

 

Based on a kinetic study of the O stage, the delignification is divided into two phases, which 

are rapid initial phase and slow final phase. Even though the sensitivity of rapid initial phase 

variables is low in comparison to slow final phase, but the rate of delignification and 

carbohydrate degradation increases concomitant with the increase of alkali charge, 

temperature and oxygen pressure (Olm and Teder, 1979; McDonough, 1983; Barroca et al., 

2001).   

 

The increase of alkali charge at constant pulp consistency causes the increase of both the 

delignification and cellulose degradation (McDonough, 1983; Nelson 1996). The 

concentration of alkali charge used, usually, is based on the type of pulp and the viscosity 

requisite for the final pulp. However, the increase of the operation temperature and/or the 

reaction time decreases the concentration of alkali charge required concomitantly 

(McDonough, 1983). In high consistency of the O stage, each 0.13% and 0.16% NaOH is 

requisite to decrease apiece unit of Kn for softwoods and hardwood respectively. 

Subsequently, more alkali is needed in medium consistency of the O stage as the 



 13 

concentration of NaOH is lower compared to high consistency in the same dosage of NaOH 

used (McDonough, 1983).  

 

As aforementioned, the delignification of the O stage is divided into the rapid initial phase 

and the slow final phase. Delignification of the rapid initial phase happened in the first 10 

minutes of the process, while the reaction time for the slow final phase is dependent on the 

amount of alkali charge and the final Kn required (McDonough, 1983). Barroca et al. (2001) 

revealed that, the initial rapid phase of the O stage gives higher selectivity. On the other hand, 

continuing prolongs the reaction time will limit the reduction of kappa number (Olm and 

Teder, 1979). 

 

As reported by many studies, operation temperature is one of the factors affecting the rate of 

delignification. The increase of operation temperature also increases both the delignification 

and carbohydrate degradation concomitant. Higher temperature is required to enhance the 

rate of delignification since it will improve chemical impregnation into fibre wall 

(McDonough 1983; Agarwal, 1997; Barroca et al., 2001).    

 

Among the variables, the effects of oxygen pressure on pulp during the O stage are smaller 

compared to alkali charge and operation temperature (McDonough, 1983; Barroca et al. 

2001). Nevertheless, due to oxygen being low solubility in water, oxygen pressure is 

necessary to impregnate the oxygen into the pulp fibres in order to accelerate both the 

delignification and carbohydrate degradation (Argawal et al, 1999; Doğan and Gürüz, 2008). 

In comparison, with the same oxygen pressure, low consistency pulp is less affected than 

high consistency pulp. This is mainly due to higher water layer on the surface of pulp fibres 

as low consistency pulp obstructs the penetration of oxygen (McDonough, 1983). However, 

Olm and Teder (1979) claimed that the oxygen pressure only give the effect during the initial 

phase of the O stage. 
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Mass transfer of oxygen in the O stage is well related to the consistency of pulp. As 

mentioned earlier, the impregnation of oxygen is low when the consistency of pulp is low. In 

contrast, the mixing rate between the fibres and chemical (mass transfer) is better in low 

consistency than high consistency pulp (McDonough, 1983). However, Agarwal et al. (1999) 

expelled that there is no significant discrepancy of the mass transfer of the O stage in low 

and medium consistencies on mixed southern hardwood pulp.    

 

In addition, the initial Kn of unbleached pulp claimed that it may affect the efficiency of the 

O stage. Lignin can be classified into two lignin fragments as ―stubborn lignin‖ and ―easily 

remove lignin‖ moieties. It is stated that with high initial Kn, lignin contains greater amount 

of ―easily removed lignin‖ moieties, and they are readily being removed in the rapid initial 

phase of the O stage, whilst, the ―stubborn lignin‖ is removed in the slow final phase. 

Consequently, the removal of ―stubborn lignin‖ is time dependence (Argawal et al, 1999; 

Lucia et al., 2002; Doğan and Gürüz, 2008). Lucia et al. (2002) indicated that for the 

softwood kraft pulp in a single O stage, the bleachability (Δ lignin concentration/ % of 

NaOH) of pulp with high initial Kn is higher than that with lower initial Kn. In addition, there 

is a limitation to decrease the Kn even with extending the operation time.  

  

2.2.3 Chemistry of Oxygen Delignification 

Oxygen, lignin and carbohydrate play the key role in the chemistry of O stage. As oxygen 

decomposes into different type of oxygen reactive species in O stage and the complexities of 

the lignin and carbohydrates structures in nature, it makes the study on the chemistry of O 

stage becomes more complicated. Nevertheless, by understanding the chemistry of O stage 

as reactions arise between oxygen reactive species, lignin and carbohydrates; it may assist to 

improve the O stage.     
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2.2.3.1 Oxygen Reactive Species in Oxygen Delignification 

In O stage, oxygen reactive species which decomposed from molecular oxygen are 

responsible to react with the lignin and carbohydrates in the system. Molecular oxygen is a 

unique radical species, it contains two unpaired electrons under triplet state (↑↑, 
3
O2), in 

which its non reactive species and it readily transforms it into reactive species such as 

superoxide anion radical (O2
.-
) and singlet oxygen (↑↓,

 1
O

*
2) (Sjöström, 1993; McDonough, 

1996). However, the transformation of 
3
O2 to 

1
O

*
2 barely happens except with the presence 

of a catalyst and/or has been hastened by the absorption of light energy (Wasserman, 1979).   

 

As depicted in Scheme 2-1I, O2
.-
 is formed through a reduction process as 

3
O2 accepts a 

single electron (e
-
) in the presence of substrate such as hydrogen or ionized lignin residues. 

In addition, 
3
O2

 
is also reduced to form hydroperoxy radical (HOO

.
), hydrogen peroxide 

(H2O2), hydroxyl radical (HO
.
) and water (H2O) (Sjöström, 1993; McDonough, 1996; Cao et 

al., 2007). Furthermore, due to the fact that O2
.- 

 and HOO
.
 have higher affinity for electrons, 

they tend to accept an electron to form peroxide anion (O2
2-

) and hydroperoxide anion (HOO
-
) 

correspondingly. Since, HOO
.
, H2O2, and HO

.
 are weak acid, therefore an equilibrium 

amount of their anions are present as O2
.-
, hydroperoxide anion (HOO

-
) and oxy ion (O

.-
) 

respectively under an alkaline medium (Sjöström, 1993; McDonough, 1996; Guay et al, 

1999). Furthermore, ozonide anion radicals (O3
.-
) is formed through the reaction between O

.-
 

and O2 as shown by Eq. 2-1(Gierer et al., 1991; Sjöström, 1993).  
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Scheme 2-1 The steps of oxygen reduction during O stage. I. The stepwise of reduction of 

oxygen in addition of one electron and proton to generate oxygen reactive species. II. The 

stepwise of generating organic radicals in O stage. (Sjöström, 1993; McDonough, 1996; 

Guay et al., 1999) 

 

O
.-
 + O2                         O3

.-
                  Eq. 2-1 

 

Amongst the oxygen reactive species, HO
.
 is the most reactive species with redox potential 

E
o
 ~ 2.7 V and E

o
 ~ 2.3 V in acidic medium and neutral medium respectively (Gierer et al., 

1991; Sjöström, 1993). As it has strong electrophilic nature, hence, it readily reacts with 

aromatic nuclei or double bond containing compounds in alkaline medium (Gierer et al., 

1991). In addition, HO
.
 can also undergo subtraction of hydrogen to form O

.-
 (E

o
 ~ 1.4 V) in 

alkaline medium (Gierer et al., 1991; Sjöström, 1993). While, the redox potential for O2
.-
 and 

HOO
-
 is E

o
 ~ 0.41 V and E

o
 ~0.81 V correspondingly (Sjöström, 1993).  

 

Johansson and Ljunggren (1993) claimed that an addition of a substantial amount of H2O2 

may improve the effectiveness of O stage due to the formation of H2O2 decomposition 

constituents. As mentioned earlier, HO
.
 is a highly reactive species in O stage and readily 

reacts with most of the organic substance especially hydrogen subtraction from H2O2 and 

HOO
-
 (Eq. 2-2 and Eq. 2-3). By adding H2O2, which is a weak acid (pKa = 11.8), in O stage 

under a condition with pH ≈ 11.8, the presence of H2O2 and its conjugated base (HOO
-
) is in 

almost equal amount. Since, HO
.
 more readily reacts with HOO

-
 than H2O2 under the 
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particular pH and/or higher pH condition, therefore, the reaction of Eq. 2-3 is faster than Eq. 

2-2. This gives a good reason why carbohydrates are less degraded under higher pH 

condition as O2
.-
 (the product of Eq. 2-3) is less reactive to carbohydrates. In contrast, under 

low pH condition, HO
.
 tends to react with H2O2 because less HOO

-
 is formed under the 

condition. This implies that only a relatively slower reaction between HO
.
 and H2O2 occurs 

to form HOO
.
 and water in low pH condition. Indirectly, this also indicates that more HO

. 

retains in O stage system and it will react with lignin and carbohydrate non-selectively (Guay 

et al., 1999).  

 

HO
.
 + H2O2         H2O +  HOO

.
                                    Eq. 2-2 

 

HO
.
 + HOO

-
  H2O + O2

.-
                                               Eq. 2-3 

 

Despite that, the oxidation processes in an O stage system, as shown in Figure 2-1II are 

initiated by the reaction between the reactive substrates with O2 and then form predecessor 

organic radicals (R
.
, RO2

.
) (Eq. 2-4 and Eq. 2-5). While the reactive substrates, for example 

ionised free phenolic hydroxyl groups are activated under alkaline condition and/or the 

increased temperature of O stage. After the organic radicals are generated, the processes are 

then propagated and terminated as shown in Eq. 2-6, Eq. 2-7 and Eq. 2-8 respectively 

(Sjöström, 1993; McDonough, 1996).  

 

Initiation: 

RO
-
 + O2  RO

.
 + O2

.-
          Eq. 2-4 

RH + O2  R
.
 + HO2

.
                      Eq. 2-5 

Propagation: 

R
.
 + O2   RO2                                    Eq. 2-6 

RO2
.
 + RH   RO2H + R

.
                                              Eq. 2-7 
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Termination: 

RO
.
 + R

.
   ROR                                                 Eq. 2-8 

 

The reactivity in O stage becomes more complicated with the presence of transition metal 

ions such as Fe
2+

, Cu
2+

 , Mn
2+

 and Co
2+

 (Sjöström, 1993). The transition metals accelerate the 

decomposition of peroxide to HO
.
 in O stage system as shown in Eq. 2-9 and Eq. 2-10. Due 

to the generation of high reactive and unselective HO
. 
species, it may cause the carbohydrates 

to degrade severely (Sjöström, 1993; McDonough, 1996).    

  

 

             metal ions 
O2

.-
 + H2O2  HO

-
  + HO

.
 +  O2                            Eq. 2-9 

                  metal ions 
HOO

-
 + H2O2            O2

.-
   + HO

.
    +    HOH                               Eq. 2-10 

  
 

2.2.3.2 Reaction of Lignin in Oxygen Delignification 

Lignin is the second abundantly available substance in lignocellulosic materials, which is 

amorphous and formed by inter-linkage of lignin units/monomers as shown in Figure 2-1 –  

syringyl (A), guaiacyl (B), veratryl (C), Me-syringyl (D) and etc (Sun et al. 1997). It is 

believed that 50 % and 60 % of the inter-linkage of lignin units in softwood and hardwood 

respectively are β-O-4 inter-unit linkages (Sjöström, 1993). The complexity of lignin in 

structure and its distribution in each part and species of plant are different.  Therefore, 

instead of lignocellulsic materials, most of the studies on lignin reactivity have been done on 

lignin model compounds due to its usefulness to predict the lignin reaction in the pulping 

and bleaching process through the structural changes of lignin after pulping and bleaching. 

Since the changes of lignin structure may affect the reactivity of the following bleaching 

stage, to understand the structure of lignin after pulping and each stage of bleaching are very 

important in order to suit the best bleaching sequence to the pulp.  
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Figure 2-1 The bases of the lignin structure. (Sun et al., 1997) 

 

In the bleaching process, there are two major feasible reactions which are electrophilic 

reaction (hydrogen abstraction, electron abstraction, and eletrophilic addition) and 

nucleophilic reaction (nucleophilic addition, nucleophilic displacement, rearrangement, 

elimination of water and intramolecular nucleophilic addition). In comparison, electrophilic 

reaction is a more preferable reaction to deligfy the pulp than nucleophilic reaction (Gierer, 

1986; Sjöström, 1993; McDonough, 1996). 

 

Similar to as other bleaching processes, O stage consists of both electrophilic and 

nucleophilic reaction. In O stage, the reactive species like HO
.
, HOO

.
 and O2

.-
 act as 

electrophilic agent while HOO
-
and HO

-
 as nucleophilic agent. Free phenolic groups in lignin 

structure are mainly reactive to the reactive species in O stage with the formation of 

phenoxyl radicals under alkaline condition. As shown in Scheme 2-2, electrophilic agents 

can attack the phenoxy radicals to form a hydroperoxide intermediate followed by the 

formation of dioxetanes to induce the cleavage of the aromatic ring and side chain scission. 

Consequently, the oxirane, muconic acid (a type of carboxylic acid) and carbonyl structures 

are formed (Gierer, 1993 ; Sjöström, 1993; McDonough, 1996; Asgari and Argropoulos, 

1998; Yang et al., 2003).  
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Scheme 2-2 Electrophilic reactions in O stage. (Gierer, 1993; Gierer et al., 1993; Asgari and 

Argyropolous, 1998; Yang et al., 2003) 

 
 

In addition, muconic acid and quinone are formed in O stage via necleophilic agent with 

penoxy groups of lignin as shown in Scheme 2-3 (Sjöström, 1993; McDonough, 1996). The 

formation of muconic acid via nucleophilic reaction is almost the same as electrophilic 

reaction that hydroperoxide intermediate form followed by the formation dioxetanes to 

induce the cleavage of the aromatic ring.  
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Scheme 2-3 Nucleophilic reactions in O stage. (Sjöström, 1993; McDonough, 1996) 

 

In contrast, there have been some constituent limits the delignification in O stage which are 

condensed lignin units and the lignin-carbohydrate complexes. Those condensed lignin units 

are formed via coupling reactions in O stage as shown in Scheme 2-4, and which are defiant 

to the pulp in the further delignification O stage due to its undissolved characteristic 

(Gellerstedt, 1996; Agryropoulos, 2003). There have been few examples of condensed unit 

types are shown in Figure 2-2. In comparison, the condensed lignin units like 

diphenylmethane (DPM), biphenyl (5,5‘) (Asgari and Agryropoulpos, 1998; Liitiä et al., 

2002; Agryropoulos, 2003) and p-hydroxyphenyl structures are believed to be the major 

condensed lignin units in O stage (Agryropoulos, 2003, Fu and Lucia, 2003). Based on Fu 

and Lucia (2003), 5,5‘-biphenyl and p-hydroxyphenyl structures are relatively stable in the O 

stage. While a partial of DPM structures are oxidised to lower molecular moieties and are 

dissolved in the O stage.   

 

 

Scheme 2-4 An example of coulping reaction in O stage. (Gellerstedt, 1996) 
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Figure 2-2 Types of condensed lignin unit. (Gellerstedt, 1996) 

 

Moreover, the lignin-carbohydrate complexes (LCC) are also claimed to limit the extending 

of delignification in O stage due to the difficulty to cleave their inter-linkages. Lawoko et al. 

(2005) claimed that the contents of LCCs are presently different in wood, kraft pulp and 

oxygen delignified pulp. The authors elucidated that the xylan-lignin compound (Xy-L) is 

extensively degraded during pulping, while glucomannan-lignin compound (GlcMan-L) 

undergone partial condensation to form higher molecular compound. The condensed 

GlcMan-L compound is state unaffected in the O stage. This may attribute to limit the 

extension of the O stage. In contrast, Fu and Lucia claimed that Xy-L is more resistant, while 

galacan-lignin compound (Gal-L) is dissolved in the O stage.  

 

2.2.3.3 Reaction of Carbohydrate in Oxygen Delignification  

The main constituents of carbohydrates in woody materials are celluloses and hemicelluloses, 

which are important in pulp and paper since they can form inter-fibre hydrogen bond and 

give paper strength. Cellulose is formed by glucose with β-1,4 glycosidic linkage linearly 

and its replicate unit – cellubiose is shown in Figure 2-3. The celluloses consist of crystalline 

or amorphous regions which are bounded with hydrogen bond weakly. On the other hand, 

hemicelluloses are formed by different types of monosaccharide such as D-xylose, L-

arabinose, D-mannose, D-glucose etc, non-linearly, and consisting in an amorphous state 

(Sjöström, 1993; Biermann, 1996).  
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Figure 2-3 The basic structure of cellulose. (Sjöström, 1993) 

 

 
During the pulping and bleaching processes, carbohydrates are degraded. As the degradation 

of carbohydrates is highly related to the degree of polymerisation (DP) in the number of 

repeating glucose unit of cellulose (Alexander et al., 1957), the determination of DP of 

carbohydrates is used to indicate the carbohydrate degradation caused by the pulping or 

bleaching processes. Due to this complicity to determine DP (ASTM 1795); therefore, the 

determination of cellulose via pulp viscosity (cP, TAPPI Standard T230 su-66) is used by 

dissolving cellulose in cupriethylenediamine (CED) solution. Ott et al. (1954) claims that the 

relationship of DP and pulp viscosity is corresponding to 1500 DP to about 70 cP and 600 

DP to 10 cP respectively. Besides, an equation pulp viscosity to DP is proposed as in Eq. 2-

11 (Khairi et al., 2010). In comparison, hemicelluloses are less contributing to pulp viscosity 

than celluloses as their DP are 200 and 10000 respectively. (Sjöström, 1993; Biermann, 

1996).  

 

DP = [0.75(954Log10η – 325)]
1.105

                                                           Eq. 2-11 

 

In order to minimise cellulose degradation in the O stage, the knowledge in the chemistry of 

carbohydrates degradation is very important. There are two important reactions on 

carbohydrates degradation during O stage which are known as random chain cleavage and 

peeling reaction. Typically, peeling reaction is not an important problem in the O stage due 

to the end reducing groups which are oxidised by oxygen to a stable form. On the other hand, 

the random chain cleavage reaction occurring in the O stage will give deteriorating effect to 

the carbohydrates. The reactive species, (HO
.
 as discussed in section 2.2.3.1), given an 
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impetus to the cleavage of β-1-4 glycosidic linkages by attacking C-2, C-3 and C-6 via 

oxidation of the hydroxyl groups to carbonyl groups. Then the cleavage reaction arises 

through β-alkoxyl elimination and a new reducing end group (REG) and diketodeoxyglycitol 

are formed (Sjöström, 1993; Knill and Kennedy, 2003). Subsequently, two new reducing end 

groups are formed through the β-elimination on C-2 and C-6 and the random chain cleavage 

reaction on C-2 is shown in Scheme 2-5A. However, the β-elimination through C-3 is 

different from C-2 and C-6, and due to this, it does not form the reducing end groups for the 

further peeling reaction. Other than that, the reaction without chain cleavage begins from 

structure (I) and undergoes the ring opening to form carboxylic type structure and cyclic 

carboxylic acid as shown in Scheme 2-5B (McDonough, 1996; Potthast et al., 2006).  

 

Since the chain cleavage of cellulose gives the new terminals reducing end groups, further 

peeling reactions are continued as shown in Scheme 2-6A (Sjöström, 1993; Souza et al., 

2002). Nevertheless, after 50-100 units of end groups celluloses are removed, the peeling 

reaction may stop by the stopping reaction and carboxylic acid is formed as illustrated in 

Scheme 2-6B (Biermann, 1996). 

 

 

The presence of transition metal ions detrimentally affects carbohydrates in O stage as it 

accelerates the decomposition of peroxide to HO
.
 in the O stage system as discussed in 

section 2.2.3.1. In order to reduce the degradation of carbohydrates in the O stage while 

avoiding the reduction of delignification, a sufficient amount of magnesium sulfate (MgSO4) 

is added in the O stage (Yang et al., 2001). The protective effects of MgSO4 to carbohydrates 

degradation are listed as below: 

(i) to give the carbohydrate from cleavage seize up metal ions or complexes structures 

are formed (Ericson et al., 1971; Gilbert et al., 1973; Chen and Lucia, 2003) 

(ii) to avoid further degradation, carbonyl groups in C-2 and C-3 of glucose are formed 

as a complex with the magnesium, and  

(iii) to stabilise the carbohydrates by forming the peroxide complexes (Yang et al., 2001).  
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Scheme 2-5 Oxidation reaction of the cellulose chain. A. Random chain cleavage of cellulose on C-2. B. The reaction undergoes without chain cleavage of 

cellulose. (Reeve et al., 1996; Potthast et al., 2006) 

 

 




