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PENGOPTIMUMAN SAIZ ARGENTUM NANOPARTIKEL DALAM 

NANOPES Ag-Cu SEBAGAI BAHAN LAMPIR-DAI UNTUK APLIKASI 

SUHU TINGGI 

 

ABSTRAK 

Peranti elektronik yang digunakan untuk suhu tinggi lampau (>500
o
C) 

sebagai contoh dalam aplikasi penerbangan dan aeroangkasa, terus menjadi 

permintaan. Nanopes Ag-Cu ialah campuran nanopartikel Ag dan Cu dengan 

penambah organik (pengikat PVA, etilena glikol), telah diperkenalkan sebagai teknik 

lekapan dai. Dengan menggunakan nanopartikel, keperluan untuk tekanan luar ketika 

proses pensinteran telah dihapuskan dan suhu pensinteran boleh dikurangkan dengan 

menggunakan pengikat PVA, yang mempunyai suhu penguraian lebih rendah 

(280
o
C) apabila dibandingkan dengan pengikat komersial V-006A (380

o
C). Dalam 

kajian ini, nanopes Ag-Cu dengan sebanyak 0.15 g pengikat PVA disejatkan selama 

30 min, memaparkan nilai keberalian elektrik 3.26 x 10
5
(Ω.cm)

-1 
pada 340

o
C suhu 

pensinteran optimum dan 5
o
C/min kadar pemanasan. Kajian diteruskan dengan 

menggabungkan pelbagai saiz Ag nanopartikel pada sifat elektrikal, haba dan 

mekanikal, Set II (150 + 20-50 nm) masing-masing memaparkan nilai keberaliran 

elektrik dan haba paling tinggi iaitu 1.15 x 10
5
(Ω.cm)

-1 
dan 143-181 W/m-K. Namun, 

nilai kekuatan ricih untuk Set II hanya 0.78 MPa. Kajian tentang sifat mekanikal 

nanopes Ag-Cu menggunakan pengikat berlainan (pengikat komersial V-006A) yang 

direkodkan adalah 12.05 MPa pada 260
o
C suhu pensinteran optimum dan 5

o
C/min 

kadar pemanasan. Kesimpulannya, saiz Ag nanopartikel (150 + 20-50 nm) 

menawarkan nilai keberaliran elektrik dan haba yang baik sebagai bahan lampir-dai 

untuk aplikasi suhu tinggi. 
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OPTIMIZATION OF SILVER NANOPARTICLES SIZES IN Ag-Cu 

NANOPASTE AS DIE-ATTACH MATERIALS FOR HIGH TEMPERATURE 

APPLICATIONS 

 

ABSTRACT 

 Electronic devices used for extreme high temperature (>500
o
C) for instance 

in aviation and aerospace applications, continue to be in demand. Ag-Cu nanopaste, 

which is a mixture of Ag and Cu nanoparticles and organic additives (PVA binder, 

Ethylene glycol), has been introduced as die attachment technique. By using 

nanoparticles, the need of external pressure during sintering process is eliminated 

and the sintering temperature can be reduced by using PVA binder, which has lower 

burn-off temperature (280
o
C) as compared to commercial binder V-006A (380

o
C). In 

this study, Ag-Cu nanopaste with 0.15 g amount of PVA evaporated at 30 min, 

displays electrical conductivity value of 3.26 x 10
5
(Ω.cm)

-1
 at 340

o
C optimum 

sintering temperature and 5
o
C/min heating rate. Further investigation on the 

combination Ag nanoparticle sizes on electrical, thermal and mechanical properties 

shows that Set II (150 + 20-50 nm) displays highest electrical and thermal 

conductivity value, which is 1.15x 10
5
(Ω.cm)

-1
and 143-181 W/m-K, respectively. 

However, the shear strength value for Set II is only 0.78 MPa. The mechanical 

properties of Ag-Cu nanopaste using different binder (commercial binder V-006A) 

were studied and the bonding attributes recorded is 12.05 MPa at optimum 260
o
C 

sintering temperature and 5
o
C/min heating rate, which is not comparable to the 

mechanical properties of Ag-Cu nanopaste using PVA binder. In conclusion, Ag 

nanoparticle sizes (150 + 20-50 nm) offered good electrical and thermal conductivity 

value as die-attach material for high-temperature applications.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Theoretical background 

 

 High temperature electronic devices are widely used in numerous 

applications, for instance in automotive, oil and gas, and aircraft industry(Chin et al., 

2010). These industries require electronic devices that are capable to withstand 

extreme high temperature (>500
o
C) and on the same time, reliable. Therefore, the 

reliability of these devices is vital to ensure their performance.  

 

 SiC-based electronic devices can be operated efficiently at temperatures 

beyond 600
o
C due to its wide band gap properties (Chin et al., 2010). In fact, this 

important attribute has overcome the limitation of low operation temperature 

(<250
o
C) for conventional silicon (Si)-based electronic devices. Hence, the challenge 

to develop electronic devicesthat comparable to SiC-based is continue to rise. To 

address this issue, the development of electronic packaging particularly in die-attach 

technology is being researched. This is due to the fact that the reliability and overall 

functioning of these electronic devices depends on the die-attach quality in the first 

level electronic packaging.  

 

A die-attach material should ideally demonstrate a melting temperature that is 

higher than 500
o
C, in order to operate in high-temperature environment. Besides, the 

die-attach material should be able to have low processing temperature as well. In 

addition, another criteria required are good electrical and thermal conductivity, and 

acceptable bonding strength.    
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1.2 Problem statement 

 

 As Si-based electronic devices can no longer meet the requirement of high 

operating temperature, SiC-based electronic devices have been developed 

specifically to overcome the issue (Manikam and Cheong, 2011). As a vital part of 

electronic package, die-attach materials not only provides an electrical 

interconnection and mechanical fixation between a die and a substrate but also create 

a path for heat generated by semiconductor to dissipate as well (Abtew and 

Selvaduray, 2000; Lu et al., 2004).  

 

 Therefore, the challenge to seek a die-attach material that can be operated at 

high temperature (>500
o
C) is continue to rise. For instance, conductive adhesive, 

conductive glass and Bismuth (Bi) solder alloys are only suitable for low-

temperature range of applications due to their low melting temperature (Gao et al., 

2014; Lahokallio et al., 2014; Kisiel and Szczepański, 2009; Wang et al., 2014; 

Spinelli et al., 2014). On the other hand, gold-nickel (Au-Ni) solder alloy offers high 

melting point of 980
o
C, but its high soldering temperature has become a drawback to 

fulfill the die-attach material requirement.  

 

To overcome the limitation in high processing temperature, new die-

attachment technique has been introduced, namely metal film and metal paste. These 

two aforementioned techniques utilize the inter-diffusion bonding of metal film and 

sintering process to form intermetallic compounds, which acts as a joint between die 

and substrate (Mustain et al., 2010; Chuang and Lee, 2002; Kähler et al., 2012; 

Zhang and Lu, 2002). As for metal paste, raw metal with high melting temperature 
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such as Au formed a homogenous inter-metal layer with application of external 

pressure (0.28-0.55 MPa) upon sintering process (Mustain et al., 2010). The same 

technique is applied for silver (Ag) and copper (Cu) micropaste that an external 

pressure of 40 MPa is applied during sintering process and the sintering temperature 

has reduced to 250
o
C (Kähler et al., 2012; Zhang and Lu, 2002). Nevertheless, the 

application of pressure during bonding process is unfavorable because it could 

complicate the manufacturing process. 

 

To address the issue, a strategy of reducing the size of metal particles in 

metal paste to nanoscale (nanopaste) has been introduced. The reduction of particle 

size is aim to increase the chemical driving force of metallic particle and thus, 

eliminate the need of external pressure application. The pressure-less sintering 

process for Ag nanopaste could be attained in open air at a temperature of 280-300
o
C 

with 40 min dwell time (Bai et al., 2007; Bai et al., 2006). Positive results were 

obtained for Ag nanopaste which is good electrical conductivity value of 2.5-2.6 x 

10
5 

(Ω.cm)
-1

, and grain growth occurred during sintering thus createa microstructure 

consisted of a dense network with micrometer-size pores(Bai et al., 2006).Despite 

the great qualities, Ag nanopaste is limited to its high cost, which is critical for mass 

production. 

 

Hence, silver-aluminum (Ag-Al) nanopaste is introduced to overcome the 

limitations of Ag nanopaste. Ag-Al nanopaste does only cheaper in cost, it can also 

be sintered at 380
o
C in open air ambient (Manikam et al., 2013a;Manikam et al., 

2013b; Manikam et al., 2013c; Manikam et al., 2012a; Manikam et al., 2012b). In 

addition, the Ag–Al nanopaste with 84.7-87.0% nanoparticle loading offered an 
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electrical conductivity value range from 0.95 to 1.01x 10
5 

(Ω.cm)
-1 

(Manikam et al., 

2013a). Even though the electrical conductivity value for Ag-Al nanopaste is higher 

than Sn, Bi, Au and Zn solder alloys [0.02-0.71x 10
5 

(Ω.cm)
-1

], it is still lower than 

the electrical conductivity value for Ag micropaste [4.17 x 10
5 

(Ω.cm)
-1

]and Ag 

nanopaste [2.50-2.60 x 10
5 

(Ω.cm)
-1

] (Bai et al., 2006, Kähler et al., 2012, Zhang and 

Lu, 2002). 

 

Cu was chosen to replace Al in Ag-based nanopaste because it has the second 

best electrical and thermal conductivities among other metals, and low-cost. In 

fact,the standard electrode potential of Cu is closer to Ag which will eliminates the 

risk of galvanic corrosion (Chawla, 1993).Due to aforementioned qualities, Ag-Cu 

nanopaste is introduced and it could be sintered in open air at temperature of 380
o
C 

similar to Ag-Al nanopaste (Tan and Cheong, 2013). Ag-Cu nanopaste with various 

loading offers electrical conductivity range from 0.81 to 2.27 x 10
5 

(Ω.cm)
-1 

(Tan and 

Cheong, 2014a; Tan et al., 2014b). The electrical conductivity of Ag-Cu nanopaste is 

notably higher when sintered at open air ambient other than nitrogen and argon 

ambient [1.78-1.85x 10
5 

(Ω.cm)
-1

](Tan and Cheong, 2013;Tan and Cheong, 2014a; 

Tan et al., 2014b).  

 

In this work, an attempt to lower down the sintering temperature of Ag-Cu 

nanopaste (380
o
C) by using organic additive with lower burn-off temperature will be 

investigated. The Ag-Cu nanopaste is formulated by mixing Ag and Cu nanoparticles 

with organic binder, polyvinyl alcohol (PVA). The study covers determination of 

optimum amount of PVA binder, drying time and sintering temperature of Ag-Cu 

nanopaste. Further investigation on physical and electrical properties of Ag-Cu 
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nanopaste at various sintering temperatures will be discussed. Next, effects of 

combined Ag nanoparticle sizes on physical, electrical, thermal and mechanical 

properties of Ag-Cu nanopaste will be discussed. In this particular study, only the 

amounts of Ag nanoparticles are varied, while the size and amount of Cu 

nanoparticles is maintained. Lastly, bonding attributes of Ag-Cu nanopaste 

formulated by commercial V-006A binder at various sintering temperatures and 

heating rates will be discussed.  

 

1.3 Research objectives 

 

The primary aim of this research is to develop Ag-Cu nanopaste that can be 

sintered at low processing temperature without the application of external pressure, 

and fulfill the requirements for high-temperature die-attach properties. In order to 

achieve the primary objectives, the optimization of Ag-Cu nanopaste were 

systematically investigated as listed below: 

 

1. To optimize Ag-Cu nanopaste by mixing similar size Ag and Cu 

nanoparticles (50-60 nm) with organic binder (PVA). 

2. To investigate the properties of Ag-Cu nanopaste bycombining three sets of 

Ag nanoparticle sizes (20-50, 50-60 and 150 nm), while maintaining the size 

and amount of Cu nanoparticles (50-60 nm). 

3. To study the effect of different binder (commercial V-006A binder) on 

thebonding attributes of Ag-Cu nanopaste. 
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1.4 Scope of study 

 

The structure of this research work is divided into three parts. In the first part, 

Ag-Cu nanopaste was formulated by mixing Ag and Cu nanoparticles with various 

loading of PVA binder and organic additives. The stencil printable quality of Ag-Cu 

nanopaste will determine the optimum amount of PVA. Various drying time and 

sintering temperature were used with the intention to obtain and optimize the 

sintering condition. The physical and electrical properties of Ag-Cu nanopaste (PVA 

binder) at various sintering temperatures were investigated. In the second part, three 

sets of combined Ag nanoparticle sizes in Ag-Cu nanopaste was prepared to study its 

effects on physical, electrical, thermal and mechanical properties of Ag-Cu 

nanopaste (PVA binder). In the last part, bonding attributes of Ag-Cu nanopaste 

formulated by V-006A binder at various sintering temperatures and heating rates 

were investigated.  

 

 Various characterization techniques were used in this work and they are 

categorized into physical, electrical, thermal and mechanical characterizations. For 

physical characterization, field emission scanning electron microscopy (FE-SEM), 

polarizing microscope, high resolution transmission electron microscope (HR-TEM)  

and atomic force microscopy (AFM) was used to observe the morphology and 

surface topography of sintered Ag-Cu nanopaste. X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS) was carried out to identify phases presented in the 

sintered Ag-Cu nanopaste. For electrical characterization, four-point probe was used 

to calculate the electrical conductivity value. For thermal characterization, 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) was 
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used to determine the burn-off temperature of organic additives and sintered Ag-Cu 

nanopaste. Thermal conductivity was obtained by using laser flash analysis. For 

mechanical characterization, bonding strength of Ag-Cu nanopaste was determined 

using lap shear test performed by Instron universal testing machine.  

 

1.5 Thesis outline 

 

 This thesis is divided into 5 chapters. Chapter 1 provides an overview of 

high-temperature electronic packaging, followed by the challenges in the 

development of high-temperature die-attach material, research objectives, and scope 

of study. Chapter 2 covers the literature review and background theories in the study. 

Chapter 3 presents the materials and detailed methodology steps that employed in 

this research. Chapter 4 focuses on the results and discussions of the findings. Lastly, 

Chapter 5 summarizes the overall findings of this study and suggestions for future 

works. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

 

 Over the years, the demands for high-temperature electronic devices has 

increase significantly from various industry, such as oil and gas industry, aviation, 

aerospace, and automotive(Chin et al., 2010). The electronic devices fabricated using 

silicon carbide (SiC) can be operated efficiently at temperatures beyond 600
o
C, due 

to its wide band gap properties (Chin et al., 2010). This important attribute has 

overcome the limitation of low operation temperature (<250
o
C) for conventional 

silicon (Si)-based electronic devices. Nowadays, electronic packaging that offer 

comparable attributes to SiC-based electronic device are being developed to fulfill 

the demands. This chapter begins by reviewing the evolution of electronic device 

from Si-based to SiC-based, followed by their applications. The chapter will next 

cover an overview of electronic packaging and the materials used for high-

temperature applications. For die-attach material, the basic requirements of a die-

attach material, and its detailed literatures for high-temperature die-attach materials 

will be covered. In this thesis, the primary focus is on die-attach material specifically 

metal paste using metallic nanoparticles; hence, the characterization and properties 

of the die-attach materials will be presented.  
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