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reaction), (f) reused CKO (after 6 cycles of reaction) 

 

 

Figure 4.52 SEM images and EDX analysis of the synthesized CLA–6:2:1 

mixed-oxide catalysts: (a) fresh CLA–6:2:1, (b) reused CJO 

(after 7 cycles of reaction), (c) reused CKO (after 6 cycles of 

reaction), (d) reused CPKO (after 6 cycles of reaction), (e) 

reused CPO (after 6 cycles of reaction), (f) reused WCO (after 

6 cycles of reaction) 
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Figure 4.53 X-ray diffraction patterns of the synthesized CLA-

6:2:1catalysts: (a) fresh CLA–6:2:1, (b) reused CJO (after 7 

cycles of reaction), (c) reused CKO (after 6 cycles of 

reaction), (d) reused WCO (after 6 cycles of reaction), (e) 

reused CPO (after 6 cycles of reaction), (f) reused CPKO 

(after 6 cycles of reaction); ● CaO; ○ La2O3; Δ Al2O3;  

◊ CaCO3 
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Figure 4.54 The overall transesterification of triglyceride with DMC 
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Figure B.1 GC chromatogram of FAME from reaction of Jatropha oil 

with DMC, conditions: (a) 130 °C, 180 min, 15:1 DMC/CJO, 

5 wt.% loading; (b) 150 °C, 180 min, 15:1 DMC/CJO, 7 wt.% 

loading 

 

 

 

Figure D.1 Plot −𝑙𝑛 1 − 𝑋𝑀𝐸  versus time at different temperature 

(a) CJO. Reaction conditions: 15:1 DMC/CJO molar ratio and 

7 wt.% amount of catalyst loading.  

(b) CKO.  Reaction conditions: 9:1 DMC/CKO molar ratio 

and 5 wt.% amount of catalyst loading.  

(c) CPKO.  Reaction conditions: 9:1 DMC/CPKO  molar ratio 

and 5 wt.% amount of catalyst loading.  

(d) CPO.  Reaction conditions: 15:1 DMC/CPO molar ratio 

and 10 wt.% amount of catalyst loading.  

(e) WCO.  Reaction conditions: 15:1 DMC/WCO molar ratio 

and 10 wt.%  amount of catalyst loading.  
 

 

 

Figure E.1 Arrhenius plot for activation energy determination: (a) CJO, 

(b) CKO, (c) CPKO, (d) CPO, (e) WCO 
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SINTESIS, PENCIRIAN DAN PRESTASI MANGKIN OLEH MANGKIN 

BERASAS CaO DALAM TRANSESTERIFIKASI MINYAK SAYUR TIDAK 

BOLEH DIMAKAN DAN SISA MINYAK SAYUR UNTUK 

MENGHASILKAN METIL ESTER ASAM BERLEMAK BEBAS GLISEROL  

 

ABSTRAK 

 

 Biodiesel juga dikenali sebagai asid lemak metil ester (ALME), telah 

menjadi lebih menarik sebagai bahan api alternatif disebabkan oleh keboleh 

perbaharui dan pengeluaran bahan cemar yang rendah.  Sintesis biodiesel telah 

dijalankan melalui transesterifikasi menggunakan dimetil karbonat (DC) untuk 

pengganti metanol menggunakan pemangkin heterogen untuk mengatasi produk hasil 

sampingan gliserol yang berlebihan dan untuk mengelakkan penggunaan air sisa 

yang besar untuk proses penulenan. Penyelidikan ini bertujuan untuk membangunkan 

mangkin heterogen yang aktif, stabil dan boleh diguna semula untuk transesterifikasi 

minyak sayur tidak boleh dimakan dan sisa minyak masak (SMM) dengan DC untuk 

menghasilkan ALME bebas gliserol. Mangkin-mangkin campuran oksida berasas 

CaO (Ca‒Zn, Ca‒La dan Ca‒La‒Al) telah dibangunkan melalui kaedah 

permendakan diikuti oleh pengkalsinan antara suhu 300 °C hingga 900 °C dan masa 

1 jam hingga 5 jam. Analisis termal gravimetri, isoterma penjerapan-nyah jerapan 

N2, penyerakan X-ray, Infra merah pengubahan Fourier, mikroskopi elektron 

imbasan-X-ray taburan tenaga dan analisis penyahjerapan program suhu telah 

dijalankan untuk mencirikan mangkin.  Prestasi mangkin telah dinilai berdasarkan 

tindak balas transesterifikasi menggunakan proses kelompok pada keadaan operasi 

yang berbeza, termasuk suhu (110-190 °C), masa tindak balas (30-360 min), nisbah 

DC kepada minyak (2:1-18:1) dan jumlah mangkin (1-13 % berat, bergantung 

kepada berat minyak).  Keputusan menunjukkan bahawa mangkin campuran oksida 
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