SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY OF CaO-BASED CATALYSTS IN TRANSESTERIFICATION OF NON-EDIBLE AND WASTE COOKING OILS INTO GLYCEROL-FREE FATTY ACID METHYL ESTER

YANNA SYAMSUDDIN

UNIVERSITI SAINS MALAYSIA

2017

SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY OF CaO-BASED CATALYSTS IN TRANSESTERIFICATION OF NON-EDIBLE AND WASTE COOKING OILS INTO GLYCEROL-FREE FATTY ACID METHYL ESTER

by

YANNA SYAMSUDDIN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my main supervisor, Professor Dr. Bassim H. Hameed for the invaluable guidance, encouragement, constructive advice and endless support throughout this research. My appreciation also goes to Dr. Muhammad Nazri Murat as my co-supervisor for the support in my thesis writing and guidance through my research program.

I am thankful to Directorate General of Higher Education (DGHE), Ministry of Research, Technology and Higher Education, Indonesia for the scholarship support for my study program.

The acknowledgment is extended to management of the School of Chemical Engineering, USM, especially the Dean, Professor Dr. Azlina Harun @ Kamaruddin and Deputy Dean, Professor Dr. Ahmad Zuhairi Abdullah for the support and facilities concerning my studies. My appreciation also goes to the administrative and laboratory staffs for the kind assistance in various capacities during these years.

My appreciation goes to my employer, Syiah Kuala University particularly the management of Chemical Engineering Department, Engineering Faculty. Special thanks to all my friends for helping and being there for me.

I would like to express my appreciation to the READ research group for their encouragement, advice and friendship over the period I was in USM.

Lastly, a deepest gratitude goes to my beloved family for their endless support and encouragement in facing the challenges throughout the process in completing my study.

Yanna Syamsuddin 2017

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
ABSTRAK	xxiii
ABSTRACT	XXV

CHAPTER ONE – INTRODUCTION

1.1	World	energy condition and environmental issue	1
1.2	Biodie	sel as renewable and environmental friendly energy source	2
	1.2.1	World biodiesel production and consumption	3
	1.2.2	Biodiesel industry in Malaysia	4
	1.2.3	Biodiesel synthesis	5
1.3	Proble	m Statement	7
1.4	Resear	ch Objectives	8
1.5	Scope	of the Research	9
1.6	Organ	ization of the Thesis	10

CHAPTER TWO – LITERATURE REVIEW

2.1	Introduction		12
2.2	Biodies	sel	12
	2.2.1	Non-edible vegetable oils	14
	2.2.2	Waste cooking oil	17
2.3	Dimeth	yl carbonate	18
2.4	Biodies	el manufacturing process	21
	2.4.1	Catalytic transesterification reaction	22
	2.4.2	Comparison between methanolysis and DMC-mediated	23
		transesterification process	

	2.4.3	Transesterification reaction with DMC	25
2.5	Hetero	geneous catalyst for transesterification reaction	28
	2.5.1	Heterogeneous acid-base (bi-functional) catalyst	30
	2.5.2	Mixed-oxide catalyst	31
	2.5.3	Influence of catalyst synthesis conditions on its catalytic	39
		activity	
		2.5.3(a) Metal molar ratio	39
		2.5.3(b) Calcination temperature	40
		2.5.3(c) Calcination time	41
2.6	Effect	of reaction parameters on transesterification with DMC	42
	2.6.1	Effect of reaction temperature	43
	2.6.2	Effect of reaction time	44
	2.6.3	Effect of DMC-to-oil molar ratio	45
	2.6.4	Effect of catalyst loading amount	47
	2.6.5	Catalyst reusability	48
2.7	Kinetic	e study of transesterification reaction	52
	2.7.1	Kinetics of transesterification with DMC	52
2.8	Summa	ary	57

CHAPTER THREE – MATERIALS AND METHODS

3.1	Introdu	uction		59
3.2	Materi	als		59
	3.2.1	Non-edib	le and waste cooking oils	59
	3.2.2	Chemical	s and gases	62
3.3	Genera	al descriptio	n of the equipment	65
	3.3.1	Transeste	rification reaction	65
	3.3.2	Instrumer	nt for product analysis	68
		3.3.2(a)	Analysis of triglyceride and FAME	68
			Concentration	
		3.3.2(b)	Density	69
		3.3.2(c)	Viscosity	70
		3.3.2(d)	Flash point	70
		3.3.2(e)	Moisture content determination	70
	3.3.3.	Instrumer	nt for catalyst characterization	71

		3.3.3(a)	Thermogravimetric analyzer (TGA)	71
		3.3.3(b)	Nitrogen adsorption-desorption	72
		3.3.3(c)	Powder X-ray diffraction (XRD)	72
		3.3.3(d)	Fourier transform infrared (FTIR)	73
		3.3.3(e)	Scanning electron microscopy-energy dispersive	74
			X-ray (SEM-EDX)	
		3.3.3(f)	Temperature-programmed desorption (TPD)	75
		3.3.3(g)	Surface acidity and basicity measurement	75
3.4	Synthe	sis of cataly	st	76
	3.4.1	Synthesis	of calcium-zinc mixed-oxide catalysts	76
	3.4.2	Synthesis	of calcium-lanthanum mixed-oxide catalysts	77
	3.4.3	Synthesis	of calcium-lanthanum-aluminum mixed-oxide	77
		Catalyst		
3.5	Transe	sterification	reaction	78
3.6	Cataly	st reusability	7	80
3.7	Kineti	c study		80
CHA	PTER FO	DUR – RES	ULTS AND DISCUSSION	
4.1	Introdu	uction		82
4.2	Calciu	m–zinc mixe	ed-oxide catalyst	83
	4.2.1	Synthesis	of Ca–Zn mixed-oxide catalysts	83
	4.2.2	Character	ization of the synthesized Ca-Zn mixed-oxide	84
		catalysts		
		4.2.2(a)	Thermal gravimetric analysis (TGA)	84
		4.2.2(b)	Nitrogen adsorption-desorption	85
		4.2.2(c)	X-ray diffraction (XRD) analysis	88
		4.2.2(d)	Fourier-transformed infra red (FTIR) analysis	90
		4.2.2(e)	SEM-EDX analysis	91
		4.2.2(f)	TPD and acid-base concentration analysis	95
	4.2.3	Effect of	Ca:Zn catalyst molar ration on transesterification	97
		of jatroph	a oil	
	4.2.4	Catalytic	performance of the synthesized Ca-Zn mixed-	100
		oxide cata	lyst	
		4.2.4(a)	Effect of various reaction temperature	101

		4.2.4(b)	Effect of various reaction time	103
		4.2.4.(c)	Effect of reactants molar ratio	104
		4.2.4(d)	Effect of various amount of catalyst loading	107
	4.2.5	Reusabilit	y and stability of Ca–Zn mixed-oxide catalyst	109
	4.2.6	Catalytic a	activity of the synthesized CZ-1:3 catalyst on other	114
		oils		
	4.2.7	Concludin	g remarks for Ca–Zn catalyst and justification for	115
		developme	ent of Ca–La catalyst	
4.3	Calciu	m-lanthanun	n mixed-oxide catalyst	116
	4.3.1	Synthesis	of Ca–La mixed-oxide catalysts	116
	4.3.2	Characteri	zation of the synthesized Ca-La mixed-oxide	117
		catalysts		
		4.3.2(a)	Thermal gravimetric analysis (TGA)	117
		4.3.2(b)	Nitrogen adsorption-desorption	119
		4.3.2(c)	X-ray diffraction (XRD) analysis	122
		4.3.2(d)	Fourier-transformed infra red (FTIR) analysis	123
		4.3.2(e)	SEM-EDX analysis	125
		4.3.2(f)	TPD and acid-base concentration analysis	128
	4.3.3	Catalytic a	activity based on catalyst synthesis conditions	131
		4.3.3(a)	Effect of catalyst molar ratio	131
		4.3.3(b)	Effect of calcination temperature	134
		4.3.3(c)	Effect of calcination time	135
	4.3.4.	Catalytic _I	performance at various reaction parameters	136
		4.3.4(a)	Effect of reaction temperature	137
		4.3.4(b)	Effect of reaction time	139
		4.3.4(c)	Effect of DMC-to-oil molar ratio	141
		4.3.4(d)	Effect of amount of catalyst loading	143
	4.3.5	Reusabilit	y and stability of Ca–La mixed-oxide catalyst	145
	4.3.6	Catalytic	activity of the synthesized CL-1:3 catalyst on	151
		transesteri	fication of other oils with DMC	
	4.3.7	Concludin	g remarks for Ca-La mixed-oxide catalyst and	152
		justificatio	on for development of Ca-La-Al mixed-oxide	
		catalyst		
4.4	Screen	ing of Ca–I	a catalyst for transesterification of five different	153

4.4 Screening of Ca–La catalyst for transesterification of five different 153

types of oil

	v 1			
4.5	Calciu	m-lanthanui	m-aluminum mixed-oxide catalyst	158
	4.5.1	Synthesis	of Ca-La-Al mixed-oxide catalyst	158
	4.5.2	Character	ization of the synthesized Ca-La-Al mixed-oxide	166
		catalyst		
		4.5.2(a)	Thermogravimetric analysis (TGA)	166
		4.5.2(b)	Nitrogen adsorption-desorption	167
		4.5.2(c)	X-ray diffraction (XRD)	169
		4.5.2(d)	Fourier-transformed infra red (FTIR) analysis	170
		4.5.2(e)	SEM-EDX analysis	171
		4.5.2(f)	Temperature-programmed desorption (TPD) and	173
			acid-base concentration analysis	
	4.5.3	Catalytic	performance at various reaction parameters	175
		4.5.3(a)	Effect of reaction temperature	175
		4.5.3(b)	Effect of reaction time	180
		4.5.3(c)	Effect of DMC-to-oil molar ratio	185
		4.5.3(d)	Effect of amount of catalyst loading	189
	4.5.4	Reusabili	ty study	194
4.6	Kineti	c of transest	terification of five different types of oil with DMC	203
	over th	e synthesize	ed CLA-6:2:1 catalyst	
	4.6.1	Reaction	rate constant, k	203
	4.6.2	Activation	n energy, Ea	206
4.7	Produc	et characteri	zation	207
СЦА	DTED FI	WE CON	CLUSIONS AND DECOMMENDATIONS	

CHAPTER FIVE – CONCLUSIONS AND RECOMMENDATIONS

REFE	RENCES	213
5.2	Recommendations	212
5.1	Conclusions	210

APPENDICES

Appendix A	Reactor set up for transesterification of vegetable oil with	h
	DMC	

- Appendix B Sample of chromatogram of GC results
- Appendix C Sample calculation of GC result of transesterification of CJO with DMC
- Appendix D Plot of TG conversion versus time of each oil at different reaction temperature
- Appendix E Arrhenius plot for the activation energy determination of each oil

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Approximate concentration of fatty acid in non-edible oils	17
Table 2.2	Some physical and thermodynamic properties of DMC	19
Table 2.3	Summary of heterogeneous catalysts for transesterification of various vegetable oils with methanol	35
Table 2.4	Transesterification of various vegetable oils with DMC	50
Table 2.5	Reaction order and activation energy for transesterification with DMC	57
Table 3.1	Physical and chemical properties of non-edible and waste cooking oils	62
Table 3.2	List of chemicals used for this study	63
Table 3.3	List of gases used for this study	64
Table 3.4	Technical specification of the reactor	67
Table 3.5	Instrument setting for GC analysis	68
Table 3.6	Various reaction conditions for transesterification reaction of non-edible and waste cooking oils	80
Table 4.1	Textural properties of the synthesized Ca–Zn catalysts	86
Table 4.2	Acid and base concentration of the synthesized Ca–Zn catalysts	97
Table 4.3	Textural properties of the synthesized Ca-La catalysts	119
Table 4.4	Acid and base concentration of the synthesized Ca-La catalysts	130

Table 4.5	Textural properties of CLA-6:2:1 mixed-oxide catalyst	168
Table 4.6	Various conditions for kinetic study of each oil	203
Table 4.7	Reaction rate constant for the transesterification of different types of oil with DMC at different temperature	205
Table 4.8	Properties of the transesterification products	208

LIST OF FIGURES

		Page
Figure 2.1	Reaction mechanisms with DMC: (a) methoxycarbonylation reaction, (b) methylation reaction	20
Figure 2.2	The overall transesterification reaction of triglyceride with methanol	23
Figure 2.3	The overall transesterification reaction of triglyceride with dimethyl carbonate	24
Figure 2.4	Transesterification of biodiesel synthesis: (a) stepwise and overall reaction of transesterification of triglyceride with DMC; (b) conventional transesterification reaction of triglyceride with methanol	26
Figure 2.5	Effect of reaction temperature on reaction rate constant	43
Figure 2.6	Effect of the increasing reactants molar ratio on conversion	46
Figure 3.1	Schematic diagram of the research study	60
Figure 3.2	Schematic diagram of reactor set up for transesterification of vegetable oil with DMC	66
Figure 4.1	Thermal decomposition pattern of the uncalcined CZ-1:3 catalyst	85
Figure 4.2	N_2 adsorption-desorption isotherm of Ca–Zn mixed-oxide catalysts: (a) CZ-1:1; (b) CZ-1:3; (c) CZ-3:1	87
Figure 4.3	XRD patterns of synthesized Ca–Zn mixed-oxide catalyst; (a) CZ-1:1, (b) CZ-1:3, (c) CZ-3:1; ● CaO, □ ZnO, ◊ CaCO ₃	89
Figure 4.4	FTIR spectra of Ca–Zn mixed-oxide catalysts; (a) CZ-1:1, (b) CZ-1:3, (c) CZ-3:1	90
Figure 4.5	SEM images of the synthesized Ca–Zn mixed-oxide catalysts (magnification 1000x): (a) CZ-1:1, (b) CZ-1:3, (c) CZ-3:1	91
Figure 4.6	EDX analysis results of the synthesized Ca–Zn mixed-oxide	93

Figure 4.6 EDX analysis results of the synthesized Ca–Zn mixed-oxide 93 catalysts: (a) CZ-1:1, (b) CZ-1:3, (c) CZ-3:1

- Figure 4.7 TPD profiles of the synthesized CZ-1:3 catalyst; (a) CO₂- 96 TPD, (b) NH₃-TPD
- Figure 4.8 Effect of Ca:Zn catalyst molar ratio on transesterification of 98 CJO. Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.9 Effect of reaction temperature on transesterification of CJO. 101 Reaction condition: 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.10 Effect of reaction time on transesterification of CJO. 103 Reaction condition: 150 °C reaction temperature, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.11 Effect of DMC/CJO molar ratio on transesterification of CJO. 105 Reaction condition: 150 °C reaction temperature, 180 min reaction time and 5 wt.% catalyst loading
- Figure 4.12 Effect of catalyst loading amount on transesterification of 107 CJO. Reaction condition: 150 °C reaction temperature, 180 min reaction time and 9:1 DMC/CJO molar ratio
- Figure 4.13 Reusability and stability test of the synthesized CZ-1:3 109 catalyst on transesterification of CJO. Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.14 FTIR spectra of Ca-Zn catalysts: (a) fresh CZ-1:3; (b) reused 110 CZ-1:3 (after five cycles of reaction)
- Figure 4.15 SEM images of Ca-Zn catalysts (magnification 1000x): (a) 111 fresh CZ-1:3; (b) reused CZ-1:3 (after five cycles of reaction) and EDX analysis of reused CZ-1:3 (after five cycles of reaction)
- Figure 4.16 XRD patterns of synthesized Ca–Zn mixed-oxides catalyst; 113 (a) CZ-1:3, (b) reused CZ-1:3 (after five cycles of reaction);
 CaO, □ ZnO, ◊ CaCO₃

- Figure 4.17 Catalytic activity of the synthesized CZ-1:3 catalyst on 114 different types of oil. Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.18 Thermal decomposition pattern of the uncalcined CL-1:3 118 catalyst
- Figure 4.19 N₂ adsorption-desorption isotherm of Ca–La mixed-oxide 120 catalysts: (a) CL-1:1; (b) CL-1:3; (c) CL-3:1
- Figure 4.20 XRD patterns of Ca–La mixed-oxide catalysts: (a) CL-1:1, (b) 123 CL-1:3, (c) CL-3:1; CaO, \circ La₂O₃, * La(OH)₃, \diamond CaCO₃
- Figure 4.21 FTIR spectra of the synthesized Ca–La mixed-oxide catalysts; 124 (a) CL-1:1, (b) CL-1:3, (c) CL-3:1
- Figure 4.22 SEM images of the synthesized Ca–La mixed-oxide catalysts 125 (magnification 10.000 x): (a) CL-1:1, (b) CL-1:3, (c) CL-3:1
- Figure 4.23 EDX analysis results of the synthesized Ca–La mixed-oxide 127 catalysts: (a) CL-1:1, (b) CL-1:3, (c) CL-3:1
- Figure 4.24 TPD profiles of the synthesized CL-1:3 catalyst; (a) CO_2 129 TPD, (b) NH₃-TPD
- Figure 4.25 Effect of catalyst molar ratio on transesterification of CJO. 132 Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.26 Effect of calcination temperature on transesterification of 135 CJO. Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.27 Effect of calcination time on transesterification of CJO. 136 Reaction condition: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading

- Figure 4.28 Effect of reaction temperature on transesterification of CJO. 137 Reaction condition: 180 min reaction time, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.29 Effect of reaction time on transesterification of CJO. 140 Reaction condition: 150 °C reaction temperature, 9:1 DMC/CJO molar ratio and 5 wt.% catalyst loading
- Figure 4.30 Effect of DMC/oil molar ratio on transesterification of CJO. 141 Reaction condition: 150 °C reaction temperature, 120 min reaction time and 5 wt.% catalyst loading
- Figure 4.31 Effect of amount of catalyst loading on transesterification of 143 CJO. Reaction condition: 150 °C reaction temperature, 120 min reaction time and 4:1 DMC/CJO molar ratio
- Figure 4.32 Reusability and stability test of the synthesized CL-1:3 146 catalyst on transesterification of CJO. Reaction conditions: 150 °C reaction temperature, 120 min reaction time, 4:1 DMC/CJO molar ratio and 3 wt.% catalyst loading
- Figure 4.33 FTIR spectra of CL-1:3 catalyst: a) fresh CL-1:3; b) reused 147 CL-1:3 (after five cycles of reaction)
- Figure 4.34 SEM image of the synthesized Ca–La mixed-oxide catalysts 147 (magnification 10,000x): (a) fresh CL-1:3, (b) reused CL-1:3 (after five cycles of reaction) and EDX analysis of reused CL-1:3 (after five cycles of reaction)
- Figure 4.35 XRD spectra of the synthesized Ca–La mixed-oxide catalysts: 150 (a) fresh CL-1:3, (b) reused CL-1:3; \bullet CaO, \circ La₂O₃, * La(OH)₃, \diamond CaCO₃
- Figure 4.36 Catalytic activity of the synthesized CL-1:3 catalyst on 152 transesterification of different types of oil.

Reaction conditions: CJO, CKO, CPKO, CPO: 150 °C reaction temperature, 120 min reaction time, 4:1 DMC/oil molar ratio and 3 wt.% catalyst loading. WCO: 170 °C reaction temperature, 300 min reaction time, 15:1 DMC/WCO molar ratio, and 10 wt.% amount of catalyst loading Figure 4.37 Screening of catalysts on transesterification of different types 155 of oil.

(a) CJO. 15:1 DMC/CJO ratio, 150 °C reaction temperature, 180 min reaction time, and 7 wt.% catalyst loading amount
(b) CKO. 9:1 DMC/CKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(c) CPKO. 9:1 DMC/CPKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(d) CPO. 15:1 DMC/CPO ratio, 170 °C reaction temperature, 180 min reaction time, and 10 wt.% catalyst loading amount
(e) WCO. 15:1 DMC/WCO ratio, 170 °C reaction temperature, 300 min reaction time, and 10 wt.% catalyst loading amount

Figure 4.38 Effect of various calcination temperature of CLA–6:2:1 159 catalyst on transesterification of different types of oil:

(a) CJO. 15:1 DMC/CJO ratio, 150 °C reaction temperature, 180 min reaction time, and 7 wt.% catalyst loading amount
(b) CKO. 9:1 DMC/CKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(c) CPKO. 9:1 DMC/CPKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(d) CPO. 15:1 DMC/CPO ratio, 170 °C reaction temperature, 180 min reaction time, and 10 wt.% catalyst loading amount
(e) WCO. 15:1 DMC/WCO ratio, 170 °C reaction temperature, 300 min reaction time, and 10 wt.% catalyst loading amount

Figure 4.39 Effect of various calcination time of CLA–6:2:1 catalyst on 163 transesterification of different types of oil:

(a) CJO. 15:1 DMC/CJO ratio, 150 °C reaction temperature, 180 min reaction time, and 7 wt.% catalyst loading amount
(b) CKO. 9:1 DMC/CKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(c) CPKO. 9:1 DMC/CPKO ratio, 150 °C reaction temperature, 180 min reaction time, and 5 wt.% catalyst loading amount
(d) CPO. 15:1 DMC/CPO ratio, 170 °C reaction temperature, 180 min reaction time, and 10 wt.% catalyst loading amount

(e) WCO. 15:1 DMC/WCO ratio, 170 °C reaction temperature, 300 min reaction time, and 10 wt.% catalyst loading amount

- Figure 4.40 Thermogravimetric analysis of the synthesized CLA-6:2:1 167 catalyst N₂ adsorption-desorption isotherm of the synthesized CLA-Figure 4.41 168 6:2:1 catalyst Figure 4.42 XRD pattern of CLA-6:2:1 mixed-oxide catalysts; • CaO, 169 \circ La₂O₃, Δ Al₂O₃, \Diamond CaCO₃ Figure 4.43 FTIR spectra of the synthesized CLA-6:2:1catalyst 170 Figure 4.44 SEM image (magnification 10,000x) and EDX analysis of the 172 synthesized CLA-6:2:1 mixed-oxide catalyst TPD profiles of the synthesized CLA-6:2:1 catalyst; (a) CO₂-Figure 4.45 174 TPD, (b) NH₃-TPD Figure 4.46 Effect of reaction temperature on transesterification reaction 176 over the synthesized CLA-6:2:1 catalyst (a) CJO. Reaction conditions: 180 min reaction time, 15:1 DMC/CJO molar ratio and 7 wt.% catalyst loading (b) CKO. Reaction conditions: 180 min reaction time, 9:1 DMC/CKO molar ratio and 5 wt.% catalyst loading (c) CPKO. Reaction conditions: 180 min reaction time, 9:1 DMC/CPKO molar ratio and 5 wt.% catalyst loading (d) CPO. Reaction conditions: 180 min reaction time, 15:1 DMC/CPO molar ratio and 10 wt.% catalyst loading (e) WCO. Reaction conditions: 300 min reaction time, 15:1 DMC/WCO molar ratio and 10 wt.% catalyst loading Figure 4.47 Effect of reaction time on transesterification reaction over the 181 synthesized CLA-6:2:1 catalyst (a) CJO. Reaction conditions: 150 °C reaction temperature, 15:1 DMC/CJO molar ratio and 7 wt.% catalyst loading (b) CKO. Reaction conditions: 150 °C reaction temperature, 9:1 DMC/CKO molar ratio and 5 wt.% catalyst loading (c) CPKO. Reaction conditions: 160 °C reaction temperature, 9:1 DMC/CPKO molar ratio and 5 wt.% catalyst loading (d) CPO. Reaction conditions: 170 °C reaction temperature, 15:1 DMC/CPO molar ratio and 10 wt.% catalyst loading
 - (e) WCO. Reaction conditions: 170 °C reaction temperature,
 - 15:1 DMC/WCO molar ratio and 10 wt.% catalyst loading

Figure 4.48 Effect of DMC-to-oil molar ratio on transesterification 186 reaction over the synthesized CLA–6:2:1 catalyst

(a) CJO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time and 7 wt.% catalyst loading
(b) CKO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time and 5 wt.% catalyst loading
(c) CPKO. Reaction conditions: 160 °C reaction temperature, 180 min reaction time and 5 wt.% catalyst loading
(d) CPO. Reaction conditions: 170 °C reaction temperature, 180 min reaction time and 10 wt.% catalyst loading
(e) WCO. Reaction conditions: 170 °C reaction temperature, 300 min reaction time and 10 wt.% catalyst loading

Figure 4.49 Effect of amount of catalyst loading on transesterification 190 reaction over the synthesized CLA–6:2:1 catalyst

(a) CJO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time and 15:1 DMC/CJO molar ratio
(b) CKO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time and 9:1 DMC/CKO molar ratio
(c) CPKO. Reaction conditions: 160 °C reaction temperature, 180 min reaction time and 9:1 DMC/CPKO molar ratio
(d) CPO. Reaction conditions: 170 °C reaction temperature, 180 min reaction time and 15:1 DMC/CPO molar ratio
(e) WCO. Reaction conditions: 170 °C reaction temperature, 300 min reaction time and 15:1 DMC/WCO molar ratio

Figure 4.50 Reusability test on transesterification of different types of oil 195

(a) CJO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time, 15:1 DMC/CJO molar ratio and 7 wt.% catalyst loading

(b) CKO. Reaction conditions: 150 °C reaction temperature, 180 min reaction time, 9:1 DMC/CKO molar ratio and 5 wt.% catalyst loading

(c) CPKO. Reaction conditions: 160 °C reaction temperature, 180 min reaction time, 9:1 DMC/CPKO molar ratio and 5 wt.% catalyst loading

(d) CPO. Reaction conditions: 170 °C reaction temperature, 180 min reaction time, 15:1 DMC/CPO molar ratio and 10 wt.% catalyst loading

(e) WCO. Reaction conditions: 170 $^{\circ}$ C reaction temperature, 300 min reaction time, 15:1 DMC/WCO molar ratio and 10 wt.% catalyst loading

Figure 4.51 FTIR spectra of CLA-6:2:1 mixed-oxide catalysts: (a) fresh 198 CLA-6:2:1, (b) reused CPKO (after 6 cycles of reaction), (c)

reused CJO (after 7 cycles of reaction), (d) reused WCO (after
6 cycles of reaction), (e) reused CPO (after 6 cycles of
reaction), (f) reused CKO (after 6 cycles of reaction)

- Figure 4.52 SEM images and EDX analysis of the synthesized CLA–6:2:1 200 mixed-oxide catalysts: (a) fresh CLA–6:2:1, (b) reused CJO (after 7 cycles of reaction), (c) reused CKO (after 6 cycles of reaction), (d) reused CPKO (after 6 cycles of reaction), (e) reused CPO (after 6 cycles of reaction), (f) reused WCO (after 6 cycles of reaction)
- Figure 4.53 X-ray diffraction patterns of the synthesized CLA-6:2:1catalysts: (a) fresh CLA-6:2:1, (b) reused CJO (after 7 cycles of reaction), (c) reused CKO (after 6 cycles of reaction), (d) reused WCO (after 6 cycles of reaction), (e) reused CPO (after 6 cycles of reaction), (f) reused CPKO (after 6 cycles of reaction); \bullet CaO; \circ La₂O₃; Δ Al₂O₃; \diamond CaCO₃
- Figure 4.54 The overall transesterification of triglyceride with DMC 204
- Figure B.1 GC chromatogram of FAME from reaction of Jatropha oil with DMC, conditions: (a) 130 °C, 180 min, 15:1 DMC/CJO, 5 wt.% loading; (b) 150 °C, 180 min, 15:1 DMC/CJO, 7 wt.% loading

Figure D.1Plot $-ln(1 - X_{ME})$ versus time at different temperature
(a) CJO. Reaction conditions: 15:1 DMC/CJO molar ratio and
7 wt.% amount of catalyst loading.
(b) CKO. Reaction conditions: 9:1 DMC/CKO molar ratio
and 5 wt.% amount of catalyst loading.
(c) CPKO. Reaction conditions: 9:1 DMC/CPKO molar ratio
and 5 wt.% amount of catalyst loading.
(d) CPO. Reaction conditions: 15:1 DMC/CPO molar ratio
and 10 wt.% amount of catalyst loading.
(e) WCO. Reaction conditions: 15:1 DMC/WCO molar ratio
and 10 wt.% amount of catalyst loading.

Figure E.1 Arrhenius plot for activation energy determination: (a) CJO, (b) CKO, (c) CPKO, (d) CPO, (e) WCO

LIST OF PLATES

Page

- Plate 3.1 Different kinds of non-edible oil and waste cooking oil used 62 in the transesterification reaction
- Plate A.1 Reactor set up for transesterification of vegetable oil with DMC

LIST OF ABBREVIATIONS

ASTM	American Society for Testing Material
B7	7% Biodiesel
B10	10% Biodiesel
B20	20% Biodiesel
B100	100% Biodiesel
BET	Brunnauer-Emmet-Teller
СЈО	Crude Jatropha Oil
СКО	Crude Karanj Oil
СРКО	Crude Palm Kernel Oil
СРО	Crude Palm Oil
DDGC	Distillers Dried Grain Solubles
DMC	Dimethyl Carbonate
EDX	Energy Dispersive X-ray
FAGC	Fatty Acid Glycerol Carbonate
FAME	Fatty Acid Methyl Ester
FFA	Free Fatty Acid
FTIR	Fourier Transform Infra Red
GC	Glycerol Carbonate
GDC	Glycerol Dicarbonate
GHG	Greenhouse Gases
IEA	International Energy Agency
JCPDS	Joint Committee of the Powder Diffraction Standard
MPOB	Malaysia Palm Oil Board
RED	Renewable Energy Directive

SAP	Super Absorbent Polymer
SEM	Scanning Electron Microscopy
TG	Triglyceride
TGA	Thermogravimetric Analyzer
TPD	Temperature Programmed Desorption
US EIA	United States-Energy Information Administration
WCO	Waste Cooking Oil

LIST OF SYMBOLS

θ Theta

- ρ Rho
- γ Gamma

SINTESIS, PENCIRIAN DAN PRESTASI MANGKIN OLEH MANGKIN BERASAS CaO DALAM TRANSESTERIFIKASI MINYAK SAYUR TIDAK BOLEH DIMAKAN DAN SISA MINYAK SAYUR UNTUK MENGHASILKAN METIL ESTER ASAM BERLEMAK BEBAS GLISEROL

ABSTRAK

Biodiesel juga dikenali sebagai asid lemak metil ester (ALME), telah menjadi lebih menarik sebagai bahan api alternatif disebabkan oleh keboleh perbaharui dan pengeluaran bahan cemar yang rendah. Sintesis biodiesel telah dijalankan melalui transesterifikasi menggunakan dimetil karbonat (DC) untuk pengganti metanol menggunakan pemangkin heterogen untuk mengatasi produk hasil sampingan gliserol yang berlebihan dan untuk mengelakkan penggunaan air sisa yang besar untuk proses penulenan. Penyelidikan ini bertujuan untuk membangunkan mangkin heterogen yang aktif, stabil dan boleh diguna semula untuk transesterifikasi minyak sayur tidak boleh dimakan dan sisa minyak masak (SMM) dengan DC untuk menghasilkan ALME bebas gliserol. Mangkin-mangkin campuran oksida berasas CaO (Ca-Zn, Ca-La dan Ca-La-Al) telah dibangunkan melalui kaedah permendakan diikuti oleh pengkalsinan antara suhu 300 °C hingga 900 °C dan masa 1 jam hingga 5 jam. Analisis termal gravimetri, isoterma penjerapan-nyah jerapan N₂, penyerakan X-ray, Infra merah pengubahan Fourier, mikroskopi elektron imbasan-X-ray taburan tenaga dan analisis penyahjerapan program suhu telah dijalankan untuk mencirikan mangkin. Prestasi mangkin telah dinilai berdasarkan tindak balas transesterifikasi menggunakan proses kelompok pada keadaan operasi yang berbeza, termasuk suhu (110-190 °C), masa tindak balas (30-360 min), nisbah DC kepada minyak (2:1-18:1) dan jumlah mangkin (1-13 % berat, bergantung kepada berat minyak). Keputusan menunjukkan bahawa mangkin campuran oksida