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SINTESIS DAN KEBERALIRAN HABA NANOZARAH KUPRUM YANG 

DIBALUT OLEH GRAFENA 

 

ABSTRAK 

 Kaedah mudah aplikasi pemendapan wap kimia (CVD) telah digunakan 

untuk mensintesis grafena yang dimangkin oleh kuprum yang disokong di atas MgO. 

Penggunaan komposit grafena-CuO-MgO (iaitu produk selepas proses CVD) sebagai 

bahan tambah untuk meningkatkan keberaliran haba dalam bahan penyimpan tenaga 

haba juga dikaji. CuO-MgO telah disediakan dengan memendap kuprum berzarah 

nano di atas permukaan serbuk MgO dengan menggunakan teknik impregnasi. 

Kajian melalui mikroskop pengimbas elektron digandingkan dengan teknik serakan 

tenaga sinar-X menunjukkan yang zarah-zarah kuprum berskala nano telah 

dimendapkan secara seragam di atas permukaan MgO. Pertumbuhan grafena 

dilakukan pada tekanan atmosfera di dalam sebuah reaktor unggun tetap yang 

mendatar tanpa adanya langkah penurunan yang khusus sebelum proses tindakbalas 

CVD; oleh yang demikian, zarah kuprum berada dalam keadaan oksida semasa 

proses pertumbuhan grafena berlaku. Mekanisme pertumbuhan grafena di atas 

kuprum oksida telah dikaji dengan teliti dengan menggunakan spektroskopi 

fotoelektron sinar-X dan pembelauan sinar-X. Buat pertama kalinya dibuktikan 

dengan jelas bahawa kuprum (5 mol.%) dalam bentuk oksida, secara efektif 

memangkin pertumbuhan grafena yang berlapis nipis apabila tindakbalas CVD 

dijalankan pada suhu 950 °C selama 60 min, 980 °C selama 30 min and 1000 °C 

selama 30 min di bawah aliran gas metana (50 mL/min), nitrogen (100 mL/min) dan 

hidrogen (100 mL/min). Mekansime pertumbuhan grafena diusulkan mengikut 

turutan berikut: (i) CuO mengalami proses penurunan oleh gas hidrogen yang 
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mengakibatkan terbentuknya kekosongan kedudukan atom oksigen pada permukaan, 

(ii) penyah-hidrogenan terhadap metana pada kedudukan tersebut, dan (iii) 

seterusnya pembentukan jaringan grafitik yang menjadikan lapisan-lapisan grafena. 

Berdasarkan cara alternatif, terus dan tepat menerusi analisis termogravimetri, 

kandungan grafena yang tinggi berjaya dihasilkan (lingkungan 9.6 % dalam 

peratusan jisim) apabila tindakbalas CVD dijalankan pada suhu 1000 °C selama 30 

minit. Berbanding dengan kaedah lain yang sedia ada, kaedah mensintesis grafena 

yang digunakan di dalam kajian ini adalah lebih cekap (125 % dalam peratusan jisim 

terhadap pemangkin) dan memberikan kadar pertumbuhan grafena yang tinggi (42 

mg/ min/ g pemangkin) serta dihasilkan pada kos yang lebih rendah disebabkan oleh 

penggunaan bahan mentah yang lebih murah. Bahan yang dihasilkan selepas CVD 

(iaitu grafena beserta CuO-MgO) berpotensi tinggi untuk digunakan dalam aplikasi 

penyimpanan tenaga haba kerana ia dijangka boleh meningkatkan mutu 

kebolehaliran haba dengan wujudnya rangkaian terus sesama juzuk-juzuk unsur 

(iaitu antara grafena, CuO dan MgO) bagi saluran pengaliran haba. Berdasarkan data 

kajian yang diperolehi daripada kaedah sumber alihan tarahan, bahan in memberikan 

51% peningkatan terhadap keberaliran haba terhadap bahan penyimpan haba. 
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SYNTHESIS AND THERMAL CONDUCTIVITY OF COPPER 

NANOPARTICLE ENCAPSULATED BY GRAPHENE 

 

ABSTRACT 

 A facile chemical vapor deposition (CVD) method was used to synthesize 

graphene, which was catalyzed by copper supported on MgO. The use of graphene-

CuO-MgO composite (i.e. the product after CVD) as additive for thermal 

conductivity enhancement in thermal energy storage material was also investigated. 

CuO-MgO was prepared by depositing 5 mol. % of copper nanoparticle on MgO 

powder using an impregnation technique. Investigation under scanning electron 

microscope coupled with energy dispersive X-ray spectrometry revealed that the 

copper nanoparticles were evenly deposited on the surface of MgO powders. The 

CVD process was carried out at atmospheric pressure in a horizontal fixed bed 

reactor without a dedicated reduction step prior to CVD reaction process; hence 

copper nanoparticle was in its oxidized state during the growth process of graphene. 

The mechanism by which graphene grows on copper oxide was deeply investigated 

by X-ray photoelectron spectroscopy and X-ray diffraction. For the first time, it was 

unambiguously proven that copper oxide (5 mol.%) efficiently catalyze the growth of 

few- and multi-layered graphene when the CVD reaction was conducted at 950 °C 

for 60 min, 980 °C for 30 min and 1000 °C for 30 min under the flow of methane (50 

mL/min), nitrogen (100 mL/min) and hydrogen (100 mL/min). The mechanism of 

graphene growth was proposed in the following order: (i) reduction process of CuO 

by hydrogen that creates oxygen vacancies on the surface, (ii) methane 

dehydrogenation on the oxygen vacancy site and (iii) subsequent construction of 

graphitic network forming graphene layers. Based on the result from an alternative, 
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direct and accurate approach of thermogravimetric analyses, high content of 

graphene was able to be produced (around 9.6 wt. %) when the CVD reaction was 

conducted at 1000°C for 30 min. Compared to the existing methods, this corresponds 

to a high efficiency (125 wt.%) and growth rate of graphene (42 mg/ min/ g of 

catalyst), produced at a considerably lower cost since cheaper raw materials were 

utilized. The as-produced material after CVD (i.e. graphene together with CuO-

MgO) has high potential to be used in thermal energy storage applications due to the 

expected high thermal conductivity enhancement it could offer from the 

establishment of direct contact between the constituents, i.e. graphene, CuO and 

MgO, forming an interconnected network for heat conduction pathway. Based on the 

thermal investigation using a transient plane source method, 51% enhancement to the 

thermal conductivity of the thermal storage material was recorded. 
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CHAPTER ONE 

INTRODUCTION 

 

 This chapter presents the background of the current research work which 

covers topics such as graphene, renewable energy and thermal energy storage for 

solar applications. Separate sections are assigned for each of these topics. Then, the 

motivations of the present work are expressed after identifying the current issues 

faced. A set of objectives are outlined and the scope of the present study is described. 

Finally, the organization of chapters in this thesis is given. 

 

1.1 Graphene 

Graphene, a one-atom thick film of sp2-bonded carbon atom with hexagonal 

arrangement, has ignited strong interest from the scientific community ever since its 

discovery in 2004 by Professor Andre Geim and Professor Konstantin Novoselov 

from the University of Manchester, United Kingdom.  This discovery won them the 

Nobel Prize in Physics 2010 for “groundbreaking experiments regarding the two-

dimensional material graphene”. The high attention toward graphene is due to its 

unique properties that have not been previously observed in other nanomaterials such 

as outstanding electronic properties (Novoselov et al., 2005; Bonaccorso et al., 

2010), superior optical (Bonaccorso et al., 2010; Li et al., 2009a) and mechanical 

(Lee et al., 2008) properties as well as exceptional ability to conduct electricity (Li et 

al., 2009a) and heat (Ghosh et al., 2008; Balandin et al., 2008). The combination of 

these incredible properties allows it to be used, in the future, in myriad applications 

such as sensors and biosensors (Liu et al., 2015; Green and Norton, 2015), 

bioengineering (Gao and Duan, 2015), biomedical (Liu et al., 2013; Krishna et al., 
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2013), composite materials (Wang et al., 2014a), energy technology (Hu et al., 2015; 

Wang and Liu, 2015) and solar cells (Das et al., 2014).  

The discovery of graphene had brought forth new area of carbon 

nanomaterials after carbon nanotubes (CNTs). Since its discovery, research and 

technology innovations based on graphene has been rising exponentially. The 

number of patent applications and granted patents on graphene has even surpassed 

that of CNTs in 2013 and 2014 (Zurutuza and Marinelli, 2014). Based on the latest 

data on the worldwide patent landscape from the Informatics team at the UK 

Intellectual Property Office (2015), there are over 25,000 published patents related to 

graphene from 2005 to 2014 as compared to only 50 patents application submitted 

prior to that. It is natural to expect growth in graphene innovations in 2015 and 

beyond considering the observed upward trend.  

Despite many significant breakthroughs in the laboratories, the commercial 

adoption of graphene is deemed slow (Zurutuza and Marinelli, 2014; Levchenko et 

al., 2016) and many of its touted application is yet to be fully materialized. One of 

the main reasons for this is related to the problem of high production cost for 

graphene, thus limiting their scalability from the laboratory tested techniques 

(Raccichini et al., 2014; Novoselov et al., 2012). In this scenario, closing the gap 

between laboratory-scale research and practicle applications has beeen one of the 

main agenda among research scientists. This effort is important in order to meet its 

increasing demand for the coming years. Graphene markets is projected to grow from 

USD 20 million in 2014 to more than USD 390 million in 2024 (ReportBuyer, 2015). 

One major sector that graphene is expected to be heavily invested upon is in the area 

of renewable energy (Novoselov et al., 2012). 
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1.2 Solar thermal energy storage 

A shift towards green energy and power generation from renewable resources 

has garnered increasing interest worldwide (IRENA, 2015) due to great concern over 

the depletion of fossil fuels and also the climate change and greenhouse emissions 

brought by the usage of these conventional energy sources. In this situation, 

harnessing power from natural resources such as solar, wind, hydro, ocean, 

geothermal and biomass for renewable energy is undoubtedly the best option because 

it can offer sustainable energy generation and certainly can minimize the negative 

impact to the environment. Rapid deployment of technologies based on renewable 

energies such as solar photovoltaic (PV) technologies (Radomes Jr and Arango, 

2015; Ghafoor and Munir, 2015), solar thermal concentrating solar power (CSP) 

(Nonnenmacher et al., 2016), on- and off- shore wind energy (Zhao et al., 2015), 

hydropower (Hennig, 2016) and bio-energy (Guo et al., 2015) has been established 

around the world and they are projected to grow substantially in the coming years 

(IRENA, 2015) to meet the increasing energy demand.  

Globally, there is a good mix of the technologies based on renewable energy 

that are currently being heavily utilized for energy generation such as solar 

photovoltaic in Germany, solar CSP in Spain, on-shore wind power in the United 

States, hydropower in China, biomass in Finland and geothermal energy in 

Indonesia. The type of technology being deployed is inherently governed by specific 

geographical factors whereas different parts of the world vary by the different types 

of natural abundance and energy requirements. However, the current global energy 

provider is still dominated by fossil fuels, while renewable energy accounts to around 

13.5% of the global energy demand (Sahoo, 2016). The main drawback of renewable 

energy sources is that they are naturally intermittent and this may generate high 
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fluctuations of power output that would hinder power network stability and reliability 

(Luo et al., 2015). The use of energy storage is very important to deal with this issue 

in order to make these renewable sources more stable and dependable for practical 

applications (Daim et al., 2012). This is done by storing the excess energy being 

generated and then released for later use when needed (Hadjipaschalis et al., 2009). 

Therefore, technologies based on energy storage will play a crucial role in achieving 

a solid, efficient and cost-effective power distribution from renewable energy 

towards becoming the main energy contributors for the society’s energy supply 

(Kousksou et al., 2014).  

 Solar energy has been touted as the type of renewable energy with the 

brightest future due to its supreme resource potential compared to other renewable 

alternatives (Lewis, 2016; Khan and Arsalan, 2016). In the past decade, research and 

development (R&D) efforts and deployment activities concerning the utilization of 

solar energy has been intensified. Solar-derived PV and CSP are the two most 

prominent technologies in this sector (Lewis, 2016). PV dominates CSP in terms of 

the number of commercial deployment of power plant and worldwide installed 

capacities due to lower initial investment costs involved (Khan and Arsalan, 2016), 

but CSP is increasingly competing with PV and the number of countries with 

installed CSP seems to be rapidly growing (Baharoon et al., 2015). A recent report 

reveals that CSP plant produces greater energy than PV plant for the same nominal 

power output which suggests that the economic returns of CSP plant is, somehow, 

greater than a PV plant (Khan and Arsalan, 2016).  

Figure 1.1 shows the schematic diagram of a CSP power plant that uses a 

two-tank direct system. The CSP generates electricity through sunlight which is 

concentrated by arrays of mirrors (heliostats) to heat a molten salt used as heat 
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transfer fluid (HTF) in a receiver tube. The heated HTF is stored in the hot tank that 

could be used during non-sunlight periods by producing a steam which drives a 

turbine-generator set through heat exchangers. The cooled HTF is pumped and stored 

into the other tank for a heating cycle, thereafter.  

 

 

Figure 1.1 Schematic diagram of a CSP power plant (SolarReserve, 2016) 

 

In order to make CSP become more cost-effective, improvement in the 

capabilities of CSP systems for conversion of sunlight into heat is required. In 

particular, the thermal storage fluids have been pursued as one of the important 

subject for R&D in order to improve the energy storage capacity by operating at 

higher temperature (Lewis, 2016; Kousksou et al., 2014; Baharoon et al., 2015; Liu 

et al., 2012). Currently, many CSP plants especially the parabolic-trough type use 

synthetic oil as heat transfer fluid. For high temperature (> 400 °C), replacement of 

oil is required and molten salt- or metal-based phase change material (PCM) were 
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identified as excellent candidates since they can operate at high temperature due to 

their high melting temperature.  

For solar energy harvesting, latent-heat-based thermal energy storage (TES) 

system using PCMs has attracted attention because it offers high thermal storage 

density in comparison to sensible heat storage devices. Previous work has 

demonstrated that PCM has the capacity to store more heat per volume (around 3 – 4 

times) than sensible heat storage material (Mehling and Cabeza, 2008). PCM relies 

on phase change occurring between liquid and solid states for energy storage and 

release in an isothermal process. Salt (carbonates, nitrates etc…) and metallic 

materials are the candidates for PCMs in solar application due to their high melting 

point. Compared to metallic materials, salts are cheaper but they exhibit lower 

thermal conductivity which may limit their application. Enhancement of thermal 

conductivity is required to achieve high heat charging and discharging rates in the 

salt-based TES system.  

Introduction of materials with high thermal conductivity as filler such as 

carbon-based nanomaterials has been pursued to deal with this issue. Carbon 

nanofillers such as flaked graphite (Ge et al., 2014a, 2014b), carbon fibers (Elgafy 

and Lafdi, 2005; Wang et al., 2011; Fan et al., 2013), CNTs (Ye et al., 2014; Wang et 

al., 2010a; Fan et al., 2013; Wu et al., 2016) and graphene nanosheets/nanoplatelets 

(Yavari et al., 2011; Fan et al., 2013; Wu et al., 2016; Yuan et al., 2016) have been 

tested and studied in the past as potential nanofillers for the enhancement of thermal 

conductivity in PCMs. These carbon allotropes used as additives are good candidates 

to enhance the thermal conductivity in PCMs due to their excellent intrinsic thermal 

conductivity and low density.  
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