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KAEDAH PEMANTULAN DOMAIN MASA UNTUK MENGESANKAN 

KECACATAN RETAKAN MIKRO PADA IKATAN DAWAI TEMBAGA 

 

ABSTRAK 

 

 Kecacatan struktur ikatan dawai telah memberikan kesan yang penting 

terhadap kualiti sesebuah peranti mikroelektronik. Kaedah tradisi yang menggunakan 

ujian elektrik tidak dapat mengesan retakan ikatan dawai tembaga yang berpanjangan 

dari 1 hingga 20 m. Kejadian ini dikenali sebagai retakan mikro yang wujud pada 

peranti MOSFET kuasa Pembungkusan Tanpa-dawai Bertuangan (MLP) dengan 

ikatan dawai tembaga berdiameter 38 µm dan panjang 800 µm. Dalam penyelidikan 

ini, sejumlah 1368 peranti MOSFET telah menjalankan ujian elektrik dengan 

instrumen Credence ASL1000. Kajian kaedah alternatif Pemantulan Domain Masa 

(TDR) yang mengesani kecacatan retakan dari segi ciri-ciri fizikal dan simulasi 

dijalankan untuk tujuan menangani masalah ini. Parameter-parameter kajian 

merangkumi input TDR (frekuensi 20 dan 50 GHz dan domain masa antara 10 

hingga 23 psec) dan keluaran TDR (voltan TDR dari 0 hingga 250 mV dan impedans) 

pada retakan ikatan dawai (panjang retakan dawai dari hingga 20 m dan kawasan 

retakan dawai). 50 GHz TDR berjaya mengesan 10, 50 and 90 % dimensi retakan 

dengan panjang fizikal 1, 4 and 10 m masing-masing. Kaedah 2D & 3D 

Tomographi X-ray Terkomputer (CT) dan Mikroskop Imbasan Elektron (SEM) 

digunakan untuk membandingkan keputusan ujian TDR. Simulasi panjang retakan 

dawai dan kawasan retakan membolehkan dimensi retakan dianggarkan tanpa 

menggunakan ujian instrumentasi TDR. Selain daripada itu, simulasi voltan dan 

impedans TDR menyediakan maklumat yang penting terhadap keadaan ikatan dawai 

pada peranti mikroelektronik. Kaedah pemantulan domain masa bernovel ini 



xx 

membolehkan retakan mikro pada ikatan dawai tembaga dalam peranti MOSFET 

kuasa diuji dengan dimensi fizikal 1 m dan simulasi dimensi 10 m berbanding 

dengan kaedah-kaedah lain. TDR telah mengatasi had ujian tradisi dan mencapai 

kaedah novel melalui resolusi pengesanan retakan ikatan dawai. 
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TIME DOMAIN REFLECTION METHOD TO DETECT COPPER WIRE 

MICRO CRACK WELD DEFECT 

 

ABSTRACT 

 

Structural integrity of wire bonding interconnection is having a significant 

impact on the quality of microelectronic devices. Conventional electrical test 

methodology is unable to detect 1 to 20 m of cracks that exists in wire bond stitch 

weld. This micro crack has becomes prominent in Power MOSFET Molded Leadless 

Package (MLP) with copper wire of 38 m in diameter and 800 m long. In this 

research, total 1368 units of Power MOSFETs was tested using a Credence ASL1000 

tester. The aim of this research is to investigate an alternative methodology by 

establishing a comprehensive physical and simulation characterization technique 

namely Time Domain Reflectometry (TDR) to address this issue. Parameters that 

have been investigated included TDR input (frequency of 20 and 50 GHz and time 

domain between 10 to 23 psec) and output (reflection voltage from 0 to 250 mV and 

characteristic impedance) responses on the wire crack geometries (length from 1 to 

20 m and crack area). 50 GHz TDR successfully detected 10, 50 and 90 % of crack 

size with physical length of 1, 4 and 10 m respectively.  In order to complement 

with the TDR results, other non-destructive 2D & 3D X-ray Computed Tomography 

(CT) and destructive Scanning Electron Microscopy (SEM) characterization 

techniques have been used. Simulation of crack weld length and crack area has also 

been performed, in order to estimate the physical crack dimension without using the 

actual TDR instrument. Besides, a prediction of TDR response on both reflection 

voltage and impedance change have also been verified. Novelty of this work is on the 

non-destructive electrical test methodology that able to detect micro crack defect at 



xxii 

wedge bond in a Power MOSFET gate wire. This effective technique offers up to 

physical dimension of 1 m and simulated dimension of 10 m comparing with other 

techniques. TDR has overcome the conventional test limitation and achieved a novel 

approach through the defined detection resolution for micro crack weld. 

 

 



1 

CHAPTER ONE 

INTRODUCTION 

 

1.0 Introduction 

This chapter introduces the wire bond micro crack weld defect in 

semiconductor devices and the problem that manufacturers facing to screen out this 

defect by using multiple type of test methodologies effectively. The objective of the 

study that is focused on non-destructive test technique will be discussed in details. 

No non-destructive electrical measurement method is developed for bond wires small 

cracks detection (Krüger et al,. 2014). In this research, Time Domain Reflectometry 

(TDR) test measurement technique is the main test methodology used for detection 

of micro crack. Existing well-known non-destructive and destructive test techniques 

are used for benchmarking and comparing TDR measurement test results. Research 

methodology which involving experimental measurement and simulation will be 

included as well. 

 

1.1 Background 

The integrated circuit (IC) is the electronic circuits that attached to the 

semiconductor substrate, usually silicon substrate. IC packaging process or 

semiconductor assembly is the back-end electronic manufacturing process of 

semiconductor device fabrication where the IC is encapsulated into the supporting 

dielectric body case that prevents physical damage and causing a functionality or 

application failure on the microelectronic circuit lifespan. Microelectronic devices 

are electrically connected to the packaging exterior through the conductive pad or 

lead (Livshits et al., 1996). Power MOSFET in Molded Leadless Package (MLP) is 



2 

selected as Device Under Test (DUT) on this research. Micro crack weld located on 

gate wire on this Power MOSFET is the interconnect under investigation. 

 

Wire bond technology is the interconnections that connect between IC or 

semiconductor package to its packaging during semiconductor assembly process 

(Appelt et al., 2010). In semiconductor industry, wire bonding is the primary method 

of making interconnections between an IC and a printed circuit board (PCB) during 

semiconductor device manufacturing process. This interconnect is bonded by ball 

bonding with a loop wire to the wedge bond at the conductive pad. The wire bond 

interconnect technology has been the most flexible and common in the 

semiconductor packaging industry since the last two decade. It usually used the 

aluminium (Al), copper (Cu) and gold (Au) material as the bond wire (Ano, 2003) 

with various types of wire diameters and wire length in between connection from IC 

to the packaging leadframe. Traditionally, Au is the main selection for interconnect 

material with the aluminium metallized bond pads by a thermosonic process 

(Srikanth et al., 2004). However, Cu wire bonded on NiPdAu metallization is 

selected for this research. An efforts to replace the Au wire with Cu wire in the 

microelectronics packaging technology in recent years due to soaring price of Au 

(Chen et al., 2011). 

 

Wire bonding is one of the very important method in packing interconnect 

technology. It will continue to prosper in microelectronic packaging industry. The 

demand for lighter in weight, smaller in dimension and good reliability products is a 

challenge in wire bond quality control. The reliability of the wire bond will 
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