UTILIZATION OF ELECTRIC ARC FURNACE STEEL SLAG AS PARTIAL REPLACEMENT OF RAW MATERIALS IN CERAMIC TILE

TEO PAO TER

UNIVERSITI SAINS MALAYSIA

2016

UTILIZATION OF ELECTRIC ARC FURNACE STEEL SLAG AS PARTIAL REPLACEMENT OF RAW MATERIALS IN CERAMIC TILE

by

TEO PAO TER

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

December 2016

DECLARATION

I hereby declare that I have conducted, completed the research work and written the dissertation entitled "Utilization of Electric Arc Furnace Steel Slag as Partial Replacement of Raw Materials in Ceramic Tile". I also declare that it has not been previously submitted for the award of any degrees or diploma or other similar title of this for any other examining body or university.

Name of Student	:	Teo Pao Ter
Date	:	2 December 2016
Signature	:	

Witnessed by

Main Supervisor	:	Associate Professor Dr. Nurulakmal Mohd Sharif
Date	:	2 December 2016
Signature	:	

ACKNOWLEDGEMENTS

First, I would like to take this opportunity to thank Universiti Sains Malysia for offering me the Doctor of Philosophy program. I am deeply indebted to my supervisor, Associate Professor Dr. Nurulakmal Mohd Sharif who has wide experiences in Materials Engineering field. She really gave me a lot of encouragement and guidance in this project. She is very supportive and willing to share her experiences without any hesitation. With her guidance and help, I have learnt a lot of new knowledge during completion of this PhD project.

I wish to express my warm and sincere thanks to Dr. Projjal Basu (former R&D Chief, Southern Steel Berhad), Dr. Anasyida Abu Seman, collaborator for this project and Professor Ahmad Shukri Yahya, USM's Statistical Advisor, for their final touch, interest and support in this particular research. Also, my heartfelt gratitude to Professor Dr. Zuhailawati Hussain, Dean, School of Materials and Mineral Resources Engineering for opportunity given and facilities provided to complete the PhD project in the school.

Besides, I would like to thank Ministry of Higher Education (MOHE) for awarding My Brain 15 (under My PhD scheme) sponsorship throughout the PhD study. Also, my sincere appreciation goes to Universiti Sains Malaysia and Southern Steel Berhad for providing financial fund in the form of USM Short Term Grant (Grant No: 60312029) and Contract Research Fund (P251 – SSB) to support the research works for this project. I would also like to thank Southern Steel Berhad and RST Technology Sdn. Bhd. for providing electric arc furnace (EAF) slag in this project. I am also greatly indebted to all the management staffs, lecturers and technicians for their willingness to help and guild me during this entire PhD project. Thousands of thanks dedicated to Mr. Mokhtar, Mr. Shahrul, Mr. Shafiq, Mrs. Mahani, Madam Fong Lee Lee, Mr. Farid and other technicians who has either directly or indirectly guild me throughout the project. Also, special thanks to postgraduate fellow friends including Kho Chun Min, Dr. Tham Wei Ling, Lim Zhe Xi, Lee Kar Chun, Ooi Chee Hiong, Mustaffa Ali Azhar Taib, Nor Fasihah Zaaba, Shuhairiah Daud, Mohd Fariz Ab Rahman and other coursemates for their continuous motivations and advices along my PhD journey.

Last but not least, I would like to convey my gratitude and appreciation to my mother, Madam Wee Lian Chin and siblings for their boundless support on me.

TEO PAO TER Universiti Sains Malaysia 2016

TABLE OF CONTENTS

			Page
ACK	KNOWL	EDGEMENTS	ii
TAB	BLE OF	CONTENTS	iv
LIST	Г ОГ ТА	ABLES	xii
LIST	ſ OF FI	GURES	xvi
LIST	Г OF SY	MBOLS	xxiv
LIST	Г OF AB	BBREVIATIONS	XXV
ABS	TRAK		xxvii
ABS	TRACT		xxix
CHA	APTER (ONE : INTRODUCTION	
1.1	Backg	ground of Research	1
1.2	Proble	em Statement	4
1.3	Resear	rch Objectives	6
1.4	Thesis	s Outline	7
CHA	APTER 7	TWO : LITERATURE REVIEW	
2.1	Steel I	Making Industry	9
	2.1.1	An Overview	9
	2.1.2	Electric Arc Furnace (EAF)	11
	2.1.3	Solid Wastes/By-Products Issues	13
2.2	Electr	ic Arc Furnace (EAF) Slag Waste	15

	2.2.1	An Overview	15
	2.2.2	Formation Process	17
	2.2.3	Physical Properties	18
	2.2.4	Chemical Composition	19
	2.2.5	Mineralogical Property	21
	2.2.6	Leaching Behaviour and Hazardous Concern	23
2.3	Potentia	l Utilization of EAF Slag Waste into Valuable Products	24
	2.3.1	An Overview	24
	2.3.2	Aggregate for Construction Industry	25
	2.3.3	Filter/Adsorbent in Waste Water Treatment Plant	28
	2.3.4	Partial Replacement for Portland Cement	29
	2.3.5	EAF Slag Waste's Reusing and Recycling Policy/Standard	in
		Malaysia	30
2.4	Ceramic	e Tile Production	31
	2.4.1	Body Formulation	31
	2.4.2	Processing Route	32
	2.4.3	Effects of Slurry's Milling and Particle Size Reduction	34
2.5	Utilizati	on of Industrial's Waste into Ceramic Tile	35
	2.5.1	An Overview	35
	2.5.2	Blast Furnace Slag from Iron Making Process	36
	2.5.3	Glass Wastes	38
	2.5.4	Fly Ash	38

	2.5.5	Sewage Sludge	40	
2.6	Develo	pment of Ceramic Tile from EAF Slag	41	
	2.6.1	An Overview	41	
	2.6.2	Body Formulation and Firing Temperature	43	
	2.6.3	Properties of the Ceramic Tile and Their Sintering Investigation	47	
2.7	Design	of Experiment (DOE) using General Full Factorial Design	52	
	2.7.1	An Overview	52	
	2.7.2	General Full Factorial Design	53	
2.8	Summa	ry	54	
CHA	PTER T	HREE : MATERIALS AND METHODOLOGY		
3.1	An Ove	erview	56	
3.2	STAGE	E 1: Characterization of EAF Slag and Other Raw Materials for Cera	imic	
	Tile Fabrication			
	3.2.1	Collection and Crushing of EAF Steel Slag Waste	59	
	3.2.2	Other Raw Materials	60	
	3.2.3	Sampling Method	60	
	3.2.4	True Density	61	
	3.2.5	Particle Size Analysis	61	
	3.2.6	Loss of Ignition (L.O.I.)	62	
	3.2.7	Chemical Composition Analysis	62	
	3.2.8	Phases and Mineralogical Analyses	63	
	3.2.9	Leaching Test	64	

	3.2.10	Thermog	gravimetric Analysis (TGA)	64
	3.2.11	Flow Bu	tton Test	65
	3.2.12	Microstr	ucture Analysis	65
	3.2.13	XPS Ana	alysis	66
	3.2.14	Potential	Contamination of EAF Slag during Crushing Process	66
3.3	STAGE	E 2: Prelin	ninary Assessment of Incorporating EAF Slag into Cera	ımic
	Tile For	rmulation	via Simple Wet Mixing Process	67
	3.3.1	Body For	rmulation and Firing Temperature	69
	3.3.2	Preparati	on of Ceramic Tile Body	70
	3.3.3	Characte	rization of Fired Ceramic Tile	72
		3.3.3.1	Linear and Volume Firing Shrinkage	72
		3.3.3.2	Water Absorption, Apparent Porosity and Bulk Density	y 73
		3.3.3.3	Modulus of Rupture (MOR)	74
		3.3.3.4	Phase Analysis	75
		3.3.3.5	Microstructure Analysis	75
		3.3.3.6	Leaching Test	76
	3.3.4	Benchma	arking with Commercial Ceramic Tile	76
3.4	STAGE	E 3: Modif	ication of Process Parameters (Combination of Wet Mix	xing
	and Mil	ling) and l	Functions of EAF Slag in Ceramic Tile	77
	3.4.1	Body Fo	rmulation and Firing Temperature	78
	3.4.2	Characte	rization of Ceramic Tile Powder Mixture	80
		3.4.2.1	Preparation of Powder Mixture	80
		3.4.2.2	True Density and Particle Size Analysis	80
		3.4.2.3	Differential Thermal Analysis (DTA)	81
	3.4.3	General	Full Factorial Design	81

		3.4.3.1	Factors and Responses	82
		3.4.3.2	Experimental Design Matrix	83
		3.4.3.3	Run Experiment	84
	3.4.4	Phase A	nalysis	85
	3.4.5	Microstr	ucture Analysis	85
	3.4.6	Leaching	g Test	85
	3.4.7	Benchma	arking with Commercial Ceramic Tile	86
3.5	Summa	ary		86

CHAPTER 4 : RESULTS AND DISCUSSION

4.1	STAGE	E 1: Characterization of EAF Slag and Other Raw Materials for	or The		
	Preparation of Ceramic Tile Fabrication				
	4.1.1	An Overview	88		
	4.1.2	True Density	88		
	4.1.3	Particle Size Distribution	89		
	4.1.4	Chemical Composition	91		
	4.1.5	XRD Phase Analysis	94		
	4.1.6	XPS Analysis for EAF Slag	106		
	4.1.7	Microstructure and Elemental Analysis	109		
	4.1.8	Thermogravimetric Analysis (TGA)	115		
	4.1.9	Flow Button Test for EAF Slag	117		
	4.1.10	Leaching Assessment for EAF Slag	118		
	4.1.11	Potential Contamination of EAF Slag upon Crushing Process	125		
	4.1.12	Summary	127		

4.2	STAGE 2: Preliminary Assessment of Incorporating EAF Slag into Ceram			ramic	
	Tile Formulation via Simple Wet Mixing Process127				
	4.2.1 An Overview				
	4.2.2	True Der	nsity and Particle Size Distribution of Tile Powder M	ixture	
				128	
	4.2.3	Physical	Appearance	130	
	4.2.4	Firing Sl	nrinkage, Apparent Porosity, Water Absorption and	Bulk	
		Density		131	
	4.2.5	Modulus	of Rupture (MOR)	137	
	4.2.6	Phase An	alysis	138	
		4.2.6.1	XRD Profile Peaks and Rietveld Refinement Analysi	.s 138	
		4.2.6.2	EDX Elemental Analysis	144	
		4.2.6.3	Correlation between MOR and Major Crystalline Pha Present (Anorthite and Wollastonite)	uses 150	
		4.2.6.4	Minor Crystalline Phase (Hematite) Present in Ceram Tile Incorporated with EAF Slag	nic 154	
	4.2.7	Glassy Pl	hase and Micro-cracking	155	
	4.2.8	Leaching	Assessment	159	
	4.2.9	Benchma	rking with Commercial Ceramic Floor Tiles	166	
	4.2.10	Summary	/	168	
4.3	STAGE	2 3: Modif	ication of Process Parameters (Combination of Wet M	lixing	
	and Mil	ling) and I	Functions of EAF Slag in Ceramic Tile	169	
	4.3.1	An Overv	view	169	
	4.3.2	Character	rization of Tile Powder Mixture	170	
		4.3.2.1	True Density and Particle Size Distribution	170	

	4.3.2.2	Differential Thermal Analysis (DTA)	172
4.3.3	Physical	Appearance	175
4.3.4	General	Full Factorial Design	177
	4.3.4.1	Experimental Design Matrix	178
	4.3.4.2	Model Adequacy Checking	179
	4.3.4.3	Analysis of Variance (ANOVA)	185
	4.3.4.4	Main Effects and Interaction Plots	187
	4.3.4.5	Regression Analysis	196
	4.3.4.6	Contour Plot and Its Application	207
	4.3.4.7	Response Optimizer and Its Validation	212
4.3.5	Discussi	on on Properties of Ceramic Tile Incorporated wit	h EAF Slag
			213
	4.3.5.1	Firing Shrinkage	213
	4.3.5.2	Apparent Porosity, Water Absorption and Bulk	Density
			216
	4.3.5.3	Modulus of Rupture (MOR)	226
4.3.6	XRD Pro	ofile Peaks and Rietveld Refinement Analysis	229
4.3.7	SEM/ED	DX Analysis	235
4.3.8	Discussi	on on Sintering Mechanism in Ceramic Tile In	ncorporated
	with EA	F Slag Waste	242
	4.3.8.1	Stage I	246
	4.3.8.2	Stage II	246
	4.3.8.3	Stage III	246
4.3.9	Discussi	on on Effects of Particle Size Reduction of T	ile Powder
	Mixture		249
4.3.10	Leaching	g Assessment	252
4.3.11	Benchma	arking with Commercial Ceramic Floor Tiles	261

	4.3.12	Summary	263
СНАР	TER 5 :	CONCLUSION AND FUTURE RECOMMENDATIONS	
5.1	Conclus	ion	265
5.2	Future F	Recommendations	266
REFE	REFERENCES		

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1	Water absorption and true density of EAF slag reported by various researchers	18
Table 2.2	Typical chemical composition of EAF slag reported by several researchers	20
Table 2.3	Typical crystalline phases present in EAF slag proposed by various researchers	23
Table 2.4	Typical body formulation of ceramic tile reported by various researchers	32
Table 2.5	Typical body formulations and firing temperatures of ceramic tile incorporated with slag reported by researchers	44
Table 2.6	Comparison of chemical composition between EAF slag, general steel slag, clay, feldspar, silica and talcum reported by various researchers (Badiee <i>et al.</i> , 2008; Sarkar <i>et al.</i> , 2010; Ai <i>et al.</i> , 2013; Chukwudi and Okorie, 2014; Zhao <i>et al.</i> , 2014)	46
Table 2.7	Typical crystalline phases present in ceramic tile incorporated with general steel slag waste	51
Table 2.8	Optimized composition (design of mixture experiment) of ceramic products reported by researchers	53
Table 3.1	Body formulations for ceramic tile incorporated with SSB's EAF slag for Stage 2	69
Table 3.2	Body formulations for ceramic tile incorporated with SSB's EAF slag for Stage 3	79
Table 3.3	Factors and their respective number of levels investigated in general full factorial design	82
Table 3.4	Experimental design matrix for general full factorial design (without values of responses)	83
Table 4.1	True density for 6 batches of EAF slag	89
Table 4.2	True density for ball clay, K-feldspar and silica	89
Table 4.3	Particle size distribution of different batches of EAF slag	90

Table 4.4	Particle size distribution of EAF slag, ball clay, K-feldspar and silica	90
Table 4.5	Chemical composition for 6 batches of EAF slag	91
Table 4.6	Comparison of chemical composition between SSB's EAF slag, Iran's EAF slag, India's EAF slag, ball clay, K-feldspar and silica	93
Table 4.7	Weight percentage of crystalline phases present in EAF slag and agreement indices upon Rietveld refinement analysis (from XRD)	99
Table 4.8	Weight percentage of Al ₂ O ₃ , CaO, SiO ₂ and Total Fe (from XRF) before and after normalization to 100 wt.%	101
Table 4.9	Comparison of crystalline phases present in EAF slag obtained from SSB, Iran and India	103
Table 4.10	Weight percentage of crystalline phases present in ball clay and agreement indices upon Rietveld refinement analysis	105
Table 4.11	Weight percentage of crystalline phases present in K- feldspar and agreement indices upon Rietveld refinement analysis	106
Table 4.12	Weight percentage of crystalline phases present in silica and agreement indices upon Rietveld refinement analysis	106
Table 4.13	XPS elemental quantification of EAF slag (Batch 300813)	107
Table 4.14	Wavelength of elements used and their detection limit in ICP-OES (Perkin Elmer Optima 7300DV)	118
Table 4.15	Calibration standards used (denoted as I, II, III and IV) and concentration of elements in the standards	119
Table 4.16	Concentration of heavy metal elements (in ppm) leached-out from EAF slag (Batch 300813 to 300415) with tap water as leaching medium	122
Table 4.17	Concentration of heavy metal elements (in ppm) leached out from EAF slag (Batch 300813 to 300415) with rain water as leaching medium	123
Table 4.18	Vickers micro-hardness (HV) for 6 batches of EAF slag aggregate and ring mill media	126
Table 4.19	True density of tile powder mixture (Composition A to F)	129

Table 4.20	Particle size distribution of tile powder mixtures (Compositions A to F)	130
Table 4.21	Weight percentage of crystalline phases present in ceramic tile incorporated with EAF slag (Compositions A to F) and agreement indices upon Rietveld refinement analysis	143
Table 4.22	Possible transformation of wustite (FeO) into hematite (Fe ₂ O ₃) during firing of clay and EAF slag reported by researchers	155
Table 4.23	Concentration of heavy metal elements (in ppm) leached-out from ceramic tile incorporated with EAF slag (Compositions C and F) with tap water and rain water as leaching mediums	163
Table 4.24	True density of milled tile powder mixture (Composition G to J)	171
Table 4.25	Particle size distribution of milled tile powder mixture	171
Table 4.26	Comparison of average particle size between Stage 2 (un-milled powder) and Stage 3 (milled powder) and percentage of reduction in the average particle size upon mechanical milling of slurry	172
Table 4.27	Experimental design matrix for general full factorial design (including values for all responses)	178
Table 4.28	ANOVA for linear shrinkage	186
Table 4.29	ANOVA for volume shrinkage	186
Table 4.30	ANOVA for water absorption	186
Table 4.31	ANOVA for apparent porosity	187
Table 4.32	ANOVA for bulk density	187
Table 4.33	ANOVA for MOR	187
Table 4.34	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for linear shrinkage	197
Table 4.35	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for volume shrinkage	198
Table 4.36	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for water absorption	202

Table 4.37	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for apparent porosity	203
Table 4.38	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for bulk density	204
Table 4.39	Estimated regression coefficient, correlation of coefficient (R ²) and regression equation for MOR	206
Table 4.40	Comparison between contour plot and repeated experimental data for EAF slag incorporated with 50 wt.% EAF slag (coded as '3') and fired at 1180 °C (coded as '3')	211
Table 4.41	Samples selected for XRD phase analysis in Stage 3	230
Table 4.42	Weight percentage of crystalline phases present in ceramic tile incorporated with EAF slag (Stage 3) and agreement indices upon Rietveld refinement analysis	234
Table 4.43	Concentration of heavy metal elements (ppm) leached-out from ceramic tile incorporated with EAF slag (Composition G to J; Firing temperature of 1100 °C, 1150 °C and 1180 °C) with tap water as leaching medium	257
Table 4.44	Concentration of heavy metal elements (ppm) leached-out from ceramic tile incorporated with EAF slag (Composition G to J; Firing temperature of 1100 °C, 1150 °C and 1180 °C) with rain water as leaching medium	258

LIST OF FIGURES

Figure 2.1	Total world steel production from 2009 to 2015 (World Steel Association, 2016)	9
Figure 2.2	Typical iron and steel making process (LeTourneau University Civil Engineering for Sustainability, 2015)	10
Figure 2.3	Total world steel production from 2009 to 2015 based on EAF route (World Steel Association, 2016)	12
Figure 2.4	Malaysia's steel production from 2009 to 2015 based on EAF route (World Steel Association, 2016)	12
Figure 2.5	Schematic diagram of typical EAF (Yildirim and Prezzi, 2011)	13
Figure 2.6	EAF slag waste generated in worldwide and Malaysia from 2009 to 2015 (World Steel Association, 2016)	15
Figure 2.7	Percentage of EAF slag per total solid wastes generated by worldwide steel making industry (Hosseini <i>et al.</i> , 2016)	16
Figure 2.8	Complex and overlapped XRD peaks of EAF slag reported by Cornacchia <i>et al.</i> (2015)	22
Figure 2.9	Chronology of utilizing EAF and general steel slag wastes in ceramic tile body reported by worldwide researchers	43
Figure 3.1	Flowchart for Stage 1	58
Figure 3.2	Aggregate form of EAF slag	59
Figure 3.3	Powder form of EAF slag	59
Figure 3.4	(a) Sample splitter (b) Schematic diagram for splitting process	60
Figure 3.5	Flowchart for Stage 2	68
Figure 3.6	Shrinkage reference lines of tile sample	72
Figure 3.7	Flowchart for Stage 3	78
Figure 4.1	Mean and standard deviation error bar of chemical composition for 6 batches of EAF slag	92
Figure 4.2	XRD profile peaks for 6 batches of EAF slag	95

Figure 4.3	XRD profile peak for Batch 300813 EAF slag	96
Figure 4.4	XRD profile peak for Batch 301213 EAF slag	96
Figure 4.5	XRD profile peak for Batch 300414 EAF slag	97
Figure 4.6	XRD profile peak for Batch 300814 EAF slag	97
Figure 4.7	XRD profile peak for Batch 301214 EAF slag	98
Figure 4.8	XRD profile peak for Batch 300415 EAF slag	98
Figure 4.9	Comparison between total weight percentage of Al ₂ O ₃ , CaO and SiO ₂ (from XRF) and total weight percentage of gehlenite and larnite (from XRD)	101
Figure 4.10	Comparison between weight percentage of Total Fe (from XRF) and weight percentage of wustite (from XRD)	102
Figure 4.11	XRD profile peak for ball clay	104
Figure 4.12	XRD profile peak for K-feldspar	104
Figure 4.13	XRD profile peak for silica	105
Figure 4.14	XPS wide-scan spectrum for EAF slag (Batch 300813)	107
Figure 4.15	XPS narrow-scan spectrum of Fe 2p for EAF slag (Batch 300813)	108
Figure 4.16	Powder morphology (a) EAF slag, (b) ball clay, (c) K-feldspar, (c) silica	110
Figure 4.17	EDX elemental analysis for EAF slag (Batch 300813)	111
Figure 4.18	EDX elemental analysis for ball clay	113
Figure 4.19	EDX elemental analysis for K-feldspar	114
Figure 4.20	EDX elemental analysis for silica	115
Figure 4.21	TGA curve for EAF slag (Batch 300813), ball clay, K-feldspar and silica	116
Figure 4.22	Fusing and melting of EAF slag buttons at different temperatures	117
Figure 4.23	Calibration curves for Standard I, II, III and IV in Stage 1's experimental works	120
Figure 4.24	Calibration curves for Standard I, II, III and IV in Stage 1's experimental works	121

Figure 4.25	Physical appearance of ceramic tile incorporated with EAF slag (Compositions A to F); (a) Before firing, (b) After firing	130
Figure 4.26	Firing shrinkage (linear and volume shrinkages), water absorption, apparent porosity and bulk density of ceramic tile incorporated with EAF slag (Compositions A to F)	132
Figure 4.27	Closed porosity of tile with 40 wt.% and 60 wt.% EAF slag (before and after quantification of pores)	134
Figure 4.28	Closed porosity of tile added with various weight percentages (10 to 20 wt.%) of silica and K-feldspar (before and after quantification of pores)	135
Figure 4.29	Correlation between MOR and apparent porosity for ceramic tile incorporated with EAF slag (Composition A to F)	137
Figure 4.30	XRD profile peak for ceramic tile incorporated with 40 wt.% EAF slag (Composition A)	139
Figure 4.31	XRD profile peak for ceramic tile incorporated with 50 wt.% EAF slag (Composition B)	139
Figure 4.32	XRD profile peak for ceramic tile incorporated with 60 wt.% EAF slag (Composition C)	140
Figure 4.33	XRD profile peak for ceramic tile incorporated with 20 wt.% K-feldspar and 10 wt.% silica (Composition D)	140
Figure 4.34	XRD profile peak for ceramic tile incorporated with 10 wt.% K-feldspar and 10 wt.% silica (Composition E)	141
Figure 4.35	XRD profile peak for ceramic tile incorporated with 10 wt.% K-feldspar and 20 wt.% silica (Composition F)	141
Figure 4.36	EDX analysis of ceramic tile with Composition A	145
Figure 4.37	EDX analysis of ceramic tile with Composition C	146
Figure 4.38	EDX analysis of ceramic tile with Composition D	147
Figure 4.39	EDX analysis of ceramic tile with Composition E	148
Figure 4.40	EDX analysis of ceramic tile with Composition F	149
Figure 4.41	Correlation of total percentage of anorthite and wollastonite, and MOR of ceramic tile incorporated with EAF slag (Compositions A to F)	152

Figure 4.42	SEM images (secondary electron mode) of polished cross-section of ceramic tile incorporated with EAF slag	156
Figure 4.43	Calibration curves for Standard I, II, III and IV (Stage 2's experimental work)	161
Figure 4.44	Calibration curves for Standard I, II, III and IV (Stage 2's experimental work)	162
Figure 4.45	Benchmarking of water absorption, apparent porosity and bulk density with commercial ceramic floor tiles and MS ISO 13006:2014 (Stage 2)	167
Figure 4.46	Benchmarking of MOR with commercial heavy-duty ceramic tiles and MS ISO 13006:2014 (Stage 2)	168
Figure 4.47	DTA curve for ceramic tile powder mixture incorporated with 30 wt.% of EAF slag (Composition G)	173
Figure 4.48	DTA curve for ceramic tile powder mixture incorporated with 40 wt.% of EAF slag (Composition H)	173
Figure 4.49	DTA curve for ceramic tile powder mixture incorporated with 50 wt.% of EAF slag (Composition I)	174
Figure 4.50	DTA curve for ceramic tile powder mixture incorporated with 60 wt.% of EAF slag (Composition J)	174
Figure 4.51	Physical appearance of ceramic tile incorporated with EAF slag before firing (Composition G to J)	176
Figure 4.52	Physical appearance of ceramic tile incorporated with EAF slag after firing (Composition G to J)	176
Figure 4.53	Residual plots for linear shrinkage; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	180
Figure 4.54	Residual plots for volume shrinkage; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	181
Figure 4.55	Residual plots for water absorption; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	181

Figure 4.56	Residual plots for apparent porosity; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	182
Figure 4.57	Residual plots for bulk density; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	182
Figure 4.58	Residual plots for MOR; (i) Normal probability plot, (ii) Histogram of frequency versus residual, (iii) Residual versus fits, (iv) Residual versus observation order of data	183
Figure 4.59	Anderson-Darling normality test for bulk density	184
Figure 4.60	Main effects plot for linear shrinkage	189
Figure 4.61	Interaction plot for linear shrinkage	189
Figure 4.62	Main effects plot for volume shrinkage	190
Figure 4.63	Interaction plot for volume shrinkage	190
Figure 4.64	Main effects plot for water absorption	192
Figure 4.65	Interaction plot for water absorption	192
Figure 4.66	Main effects plot for apparent porosity	193
Figure 4.67	Interaction plot for apparent porosity	193
Figure 4.68	Main effects plot for bulk density	194
Figure 4.69	Interaction plot for bulk density	194
Figure 4.70	Main effects plot for MOR	195
Figure 4.71	Interaction plot for MOR	196
Figure 4.72	Contour plot for linear shrinkage	208
Figure 4.73	Contour plot for volume shrinkage	208
Figure 4.74	Contour plot for water absorption	209
Figure 4.75	Contour plot for apparent porosity	209
Figure 4.76	Contour Plot for bulk density	210
Figure 4.77	Contour plot for MOR	210
Figure 4.78	Optimal conditions of controlled factors (wt.% of EAF slag and firing temperature) on selected responses of ceramic tile incorporated with EAF slag	212

Figure 4.79	Linear shrinkage of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	214
Figure 4.80	Volume shrinkage of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	214
Figure 4.81	Water absorption of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	216
Figure 4.82	Apparent porosity of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	216
Figure 4.83	Bulk density of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 $^{\circ}$ C, 1150 $^{\circ}$ C and 1180 $^{\circ}$ C)	217
Figure 4.84	Porosity of ceramic tile incorporated with 30 wt.% of EAF slag (Composition G; fired at 1100 °C, 1150 °C and 1180 °C)	219
Figure 4.85	Porosity of ceramic tile incorporated with 40 wt.% of EAF slag (Composition H; fired at 1100 °C, 1150 °C and 1180 °C)	220
Figure 4.86	Porosity of ceramic tile incorporated with 50 wt.% of EAF slag (Composition I; fired at 1100 °C, 1150 °C and 1180 °C)	221
Figure 4.87	Porosity of ceramic tile incorporated with 60 wt.% of EAF slag (Composition J; fired at 1100 °C, 1150 °C and 1180 °C)	222
Figure 4.88	Trend of apparent porosity and closed porosity for ceramic tile incorporated with EAF slag (Compositions G to J; fired at 1100 °C, 1150 °C and 1180 °C)	223
Figure 4.89	Correlation between linear shrinkage and bulk density of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	224
Figure 4.90	Correlation between volume shrinkage and bulk density of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	225
Figure 4.91	Correlation between linear shrinkage and apparent porosity of ceramic tile incorporated with EAF slag	225

	(Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	
Figure 4.92	Correlation between volume shrinkage and apparent porosity of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	226
Figure 4.93	MOR of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 $^{\circ}$ C, 1150 $^{\circ}$ C and 1180 $^{\circ}$ C)	226
Figure 4.94	Correlation between MOR and apparent porosity of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	228
Figure 4.95	Correlation between MOR and closed porosity of ceramic tile incorporated with EAF slag (Composition G to J; fired at 1100 °C, 1150 °C and 1180 °C)	228
Figure 4.96	XRD profile peak for ceramic tile incorporated with 30 wt.% EAF slag (Composition G; fired at 1100 °C)	230
Figure 4.97	XRD profile peak for ceramic tile incorporated with 40 wt.% EAF slag (Composition H; fired at 1100 °C)	231
Figure 4.98	XRD profile peak for ceramic tile incorporated with 50 wt.% EAF slag (Composition I; fired at 1100 °C)	231
Figure 4.99	XRD profile peak for ceramic tile incorporated with 60 wt.% EAF slag (Composition J; fired at 1100 °C)	232
Figure 4.100	XRD profile peak for ceramic tile incorporated with 50 wt.% EAF slag (Composition I; fired at 1180 °C)	232
Figure 4.101	XRD profile peak for ceramic tile incorporated with 60 wt.% EAF slag (Composition J; fired at 1180 °C)	233
Figure 4.102	SEM image (etched) and EDX analysis of ceramic tile with Composition G (fired at 1100 °C)	235
Figure 4.103	SEM image (etched) and EDX analysis of ceramic tile with Composition H (fired at 1100 °C)	236
Figure 4.104	SEM image (etched) and EDX analysis of ceramic tile with Composition I (fired at 1100 °C)	237
Figure 4.105	SEM image (etched) and EDX analysis of ceramic tile with Composition J (fired at 1100 °C)	238
Figure 4.106	SEM image (etched) and EDX analysis of ceramic tile with Composition I (fired at 1180 °C)	240