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KESAN RAWATAN HABA DAN PENEKANAN SUDUT SALUR SAMA KE
ATAS MIKROSTRUKTUR, KEKERASAN DAN RINTANGAN HAUS ALOI

ALUMINIUM A356 DENGAN TiB,

ABSTRAK

Penekanan sudut salur sama (ECAP) adalah satu prosedur yang relatif mudah
untuk menghasilkan ira ultra-halus dan mempunyai potensi untuk digunakan dalam
pemprosesan logam komersial. Namun kesukaran pemprosesan mungkin timbul
semasa ECAP kerana berlakunya keretakan. Dalam kajian ini, aloi aluminium A356
dan aloi aluminium A356 dengan pelbagai kandungan penghalus ira TiB; (0.75, 1.5,
2.63 wt.%) disediakan melalui tuangan acuan graviti. Spesimen aloi aluminium A356
tuang ditambah TiB; mengandungi fasa keras Si eutektik, zarah keras TiB, dan TiAls
yang berpotensi menyebabkan keretakan semasa pemprosesan ECAP oleh kerana itu
rawatan haba dijalankan sebelum ECAP. Rawatan haba sepuh lindap pada suhu
540°C selama 8 jam diikuti dengan penyejukan dalam relau, rawatan larutan pada
suhu 540°C selama 4 jam diikuti dengan lindap kejut dalam air, dan rawatan penuaan
pada suhu 110°C, 155°C, 200°C, 245°C dan 290°C selama 3 jam. Spesimen yang
telah melalui proses rawatan haba kemudian diproses 4-turutan ECAP mengikut
laluan Ba (putaran 90°). Gabungan antara rawatan haba dan ECAP dilakukan untuk
menganalisis kesan kedua-dua proses pada mikrostruktur, kekerasan dan rintangan
haus spesimen. Spesimen dicirikan dengan mikroskop optik, SEM, EBSD, TEM,
kekerasan dan ujian haus. Pemprosesan 4-turutan ECAP meningkatkan kekerasan
dengan ketara spesimen yang mempunyai matriks relatif lembut. Matriks yang relatif
lembut dalam gabungan dengan zarah TiB, dan Si memberi manfaat dalam

mempercepatkan peningkatan ketumpatan kehelan membawa kepada penghalusan ira

xx1ii



semasa pemprosesan ECAP. Dari keseluruhan pertimbangan kekerasan, saiz ira
purata dan kadar haus, spesimen rawatan larutan pra-ECAP mempunyai nilai terbaik
secara umum, kemudian diikuti spesimen penuaan pada 155°C selepas ECAP pada

kedudukan kedua.
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