EFFECT OF HEAT TREATMENT AND EQUAL CHANNEL ANGULAR PRESSING ON THE MICROSTRUCTURES, HARDNESS AND WEAR RESISTANCE OF A356 ALUMINIUM ALLOY WITH TiB $_2$

by

MUHAMMAD SYUKRON

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENTS

Alhamdulillah wassholatu wassalamu 'ala Rosulillah. All praises to Allah for His blessings and the strength given to me to complete this thesis. I would like to express my deepest and sincerest gratitude to my supervisor Prof. Dr. Zuhailawati Hussain for the supervision, advice, guidance and encouragement throughout this research project. I also would like to extend my sincerest gratitude to my cosupervisor Dr. Anasyida Abu Seman @ Hj Ahmad, who has given me a very helpful advice and invaluable assistance. Unforgettably, a sincere appreciation is accorded to Prof. Toshihiko Koseki for his helpful assistance.

I would like to acknowledge the financial support given by AUN/Seed Netprogram. Thank you very much for giving this opportunity to me to pursue doctoral degree at Universiti Sains Malaysia.

I would like to convey my special thanks to Dean, Deputy Dean, lecturers and all staffs of School of Materials and Mineral Resources Engineering (SMMRE), Engineering campus, Universiti Sains Malaysia for their assistants and supports.

I am very grateful to my parents who always pray for my success and support me in pursuing higher education. I would like to express my appreciation to my sisters (Farichah, Faridah, Anis Juwairiyah, Azizah) and also my brother (Abdul Mukhit) for supporting me. My appreciation also goes to my wife, Anita Fauziah, for her support and patience.

I owe my thanks to all my friends at SMMRE USM and Indonesian friends at USM, Mr. Dody Ariawan, Dede Miftahul Anwar, Mr. Aris Warsita, Mr. Indra S. Dalimunthe, Mr. Teguh Darsono, and Denny Hadiwinata.

Muhammad Syukron

TABLE OF CONTENTS

			Page
ACI	KNOWI	LEDGEMENTS	ii
TAE	BLE OF	CONTENTS	iii
LIS	Γ OF TA	ABLE	vii
LIS	Γ OF FI	IGURES	viii
LIS	Γ OF A	BBREVIATION	xviii
LIS	Γ OF SY	YMBOLS	xxii
ABS	TRAK		xxiii
ABS	STRAC	Γ	XXV
CHA	APTER	ONE: INTRODUCTION	
1.1	Resea	arch background	1
1.2	Proble	em statement	6
1.3	Resea	arch objectives	8
1.4	Scope	es of work	8
CHA	APTER	TWO: LITERATURE REVIEW	
2.1	Introd	luction	10
2.2	Alum	inium and aluminium alloys	10
	2.2.1	A356 aluminium alloys	13
2.3	Castin	ng of aluminium alloys	15
2.4	Streng	gthening mechanisms in aluminium alloys	19
	2.4.1	Strengthening by grain size reduction	19

	2.4.2	Solid-solution strengthening	24
	2.4.3	Strain hardening	27
	2.4.4	Precipitation hardening	28
2.5	Heat tr	reatment	30
2.6	Severe	plastic deformation (SPD)	31
	2.6.1	The formation of fine grains having HAGBs during SPD process	33
	2.6.2	Types of severe plastic deformation (SPD)	35
	2.6.3	Equal channel angular pressing (ECAP)	38
2.7	ECAP	processing and heat treatment	44
	2.7.1	ECAP processing before aging treatment	44
	2.7.2	ECAP processing after aging treatment	44
2.8	The ef	fect of dispersoids or particles on grain refinement during SPD	45
2.9	Wear		46
	2.9.1	Abrasive wear	48
	2.9.2	Adhesive wear	49
	2.9.3	Fatigue and corrosive wears	50
	2.9.4	Wear in aluminium alloys processed by ECAP	50
2.10	Summ	ary	55
СНА	PTER 7	THREE: MATERIALS AND METHODOLOGY	
3.1	Introdu	uction	57
3.2	Raw m	naterials	57
3.3	Prepar	ation of A356 aluminium alloy with and without TiB2 addition	59
3.4	Castin	g process	60
3.5	Heat tr	reatment processes	61

	3.5.1	Annealing treatment	62
	3.5.2	Solution and aging treatments	63
3.6	Equal	channel angular pressing (ECAP)	65
3.7	Sampl	e preparation for ECAP processing	66
3.8	ECAP	processing	67
3.9	Charac	eterization of as-cast and ECAP specimens	72
	3.9.1	X-ray fluorescence	72
	3.9.2	X-ray diffraction analysis	72
	3.9.3	Optical microscopy	73
	3.9.4	Vickers hardness	74
	3.9.5	Scanning Electron Microscopy (SEM)	75
	3.9.6	Electron backscattered diffraction (EBSD)	76
	3.9.7	Transmission Electron Microscopy (TEM)	78
	3.9.8	Wear test	79
СНА	PTER	FOUR: RESULTS AND DISCUSSION	
4.1	Introd	uction	83
4.2	Charac	eterization of Al-Si-Mg ingot, A356 aluminium alloy	and A356
	alumir	nium alloy with TiB ₂ addition	83
4.3	Micros	structure of as-cast A356 aluminium alloy specimens with a	nd without
	TiB ₂ a	ddition	87
4.4	Hardn	ess of as-cast A356 aluminium alloy specimens with and wi	thout TiB ₂
	additio	on	91
4.5	Heat t	reatment of as-cast A356 aluminium alloy specimens with a	nd without
	TiB ₂ a	ddition	92

	4.5.1	Annealing treatment	93
	4.5.2	Solution treatment followed by aging treatment	96
4.6	Equal	channel angular pressing (ECAP)	102
4.7	Pre-EC	CAP annealing (Annealing-ECAP)	104
4.8	Pre-EC	CAP aging (ST-Aging-ECAP)	110
4.9	Post-E	CAP aging (ST-ECAP-Aging)	118
4.10	EBSD	characterization	124
	4.10.1	Grain size	138
	4.10.2	Length of high-angle grain boundary per area	142
	4.10.3	Effect of particles on grain refinement during ECAP	144
4.11	Wear s	studies	149
	4.11.1	Wear response of pre-ECAP aging specimens	149
	4.11.2	Wear response of selected specimens	150
	4.11.2.	1 Volume loss	150
	4.11.2.	2 Wear rate	154
	4.11.2.	3 Coefficient of friction (COF)	157
	4.11.2.	4 Worn surface	160
4.12	Improv	vement by ECAP processing	163
СНА	PTER I	FIVE: CONCLUSIONS AND FUTURE RECOMMEND.	ATION
5.1	Conclu	asions	169
5.2	Future	recommendation	171
REFI	ERENC	ES	

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

	P	Page
Table 2.1	Designation of wrought and cast alloys from the Aluminium Association (AA) (Kaufman, 2011; Singh, 2012)	11
Table 2.2	Typical end use of Al-Si castings (Parton, 1998)	12
Table 2.3	Chemical composition of standard A356 aluminium alloy (ASM International, 1998)	13
Table 2.4	Characteristics of eutectic phase diagrams of aluminium with principal alloying elements (Zolotorevsky, 2007)	17
Table 2.5	Standard heat treatment for A356.0 (ASTM Standards, 2001)	29
Table 3.1	Specimens and their compositions	60
Table 3.2	The four specimens in the experiment	72
Table 4.1	Chemical composition of Al-Si-Mg ingot and Al-5Ti-1B master alloy	85
Table 4.2	Chemical composition of as-cast A356 aluminium alloy	85
Table 4.3	Chemical composition of standard A356 aluminium alloy (ASM International, 1998)	85
Table 4.4	Test results of A356 aluminium alloy with 1.5 wt.% TiB_2 addition	169

LIST OF FIGURES

	P	age
Figure 2.1	Schematic domains of wrought and casting alloys of a binary phase diagram Al-B (2 nd component) of the eutectic type (Zolotorevsky, 2007)	16
Figure 2.2	Phase diagram of commercial cast Al-Si alloys and microstructures of (a) hypoeutectic, (b) eutectic and (c) hypereutectic alloys (Warmuzek, 2004)	18
Figure 2.3	Hall-Petch plot of 0.2% proof stress of the UFG AA1100 fabricated by the ARB and annealing process and conventionally grain-sized 5N-Al (Tsuji, 2006)	23
Figure 2.4	(a) Representation of tensile lattice strains imposed on host atoms by a smaller substitutional impurity atom and (b) Representation of compressive strains imposed on host atoms by a larger substitutional impurity atom (Callister, 2006)	25
Figure 2.5	Influence of alloying element's radii on mechanical properties of aluminum (Warmuzek, 2004)	26
Figure 2.6	Solution and precipitation heat treatments of precipitation hardening (Callister, 2006)	29
Figure 2.7	The distribution of (a) Mg and (b) Si across secondary dendrite arms in the A356 aluminum alloy in as-cast condition and during heat treatment at 540°C for 2, 15, 30 and 240 minutes (Colley, 2011)	30
Figure 2.8	Slip planes of FCC crystal structure	32

Figure 2.9	(a) A {111} <110> slip system shown within an FCC unit cell. (b) The (111) plane from (a) and three <110> slip directions (Callister, 2006)	33
Figure 2.10	Schematic representation of deformation structure during SPD process	34
Figure 2.11	Schematic representation of misorientation angle	35
Figure 2.12	Major severe plastic deformation (SPD) processes (Zrnik et al., 2008)	37
Figure 2.13	Schematic representation of ECAP mould	38
Figure 2.14	The four pressing routes in equal channel angular pressing (ECAP) (Iwahashi et al., 1998; Furukawa et al., 2001)	39
Figure 2.15	Shear strain planes for each ECAP routes for dies with (a) Φ =90° and (b) Φ =120° (Zhu and Lowe, 2000)	41
Figure 2.16	Illustrations for (a) X , Y , and Z planes of ECAP specimen, (b) the distortions introduced into cubic elements when viewed on the X , Y , and Z planes for processing routes A , B_A , B_C and C (Valiev et al., 2006)	42
Figure 2.17	Stress-strain curves for as-cast and ECAP of Na-modified hypoeutectic Al-7%Si casting alloy (Garcia-Infanta et al., 2008)	43
Figure 2.18	The descriptions of wear and their interrelation (Kato and	48

Figure 2.19	Schematic representation of abrasive wear (ASM Handbook, 1992a)	49
Figure 2.20	Schematic representation of adhesive wear (ASM Handbook, 1992a)	49
Figure 2.21	Wear mass loss vs ECAP number of passes (Abd El Aal et al., 2010)	51
Figure 2.22	Mass loss versus ECAP number of passes (Ortiz-Cuellar et al., 2011). C1 and C2 conditions correspond to T6 and solution heat treatment respectively	52
Figure 2.23	Weight loss as a function of sliding distance for Zn–40Al–2Cu–2Si alloy in the as-cast and ECAE-processed conditions (Purcek et al., 2010)	53
Figure 2.24	The effect of number of ECAP passes on the wear mass loss in AA1050 at load of 5N and 23N (Wang et al., 2011)	54
Figure 2.25	The weight loss as a function of sliding distance for as-cast and ECAP-processed Al-12Si alloy (Kucukomeroglu, 2010)	55
Figure 3.1	Flow chart of overall experimental work	58
Figure 3.2	Steel mould for casting, (a) the channel shape and (b) the complete mould	61
Figure 3.3	The shape of specimen after casting	61
Figure 3.4	Profile of annealing process	62
Figure 3.5	Profile of solution and aging treatment process	63

Figure 3.6	ECAP dies made of steel	65
Figure 3.7	Specimens which are ready for ECAP processing	66
Figure 3.8	Sketch of ECAP processing	67
Figure 3.9	ECAP specimen: (a) cross-sectional plane, and (b) longitudinal plane	67
Figure 3.10	Universal testing machine used for ECAP processing	68
Figure 3.11	Principle of ECAP pressing	69
Figure 3.12	Four passes of route B _A	70
Figure 3.13	Indentation for Vickers hardness (Callister, 2006; Dieter, 1988)	75
Figure 3.14	Diagram of wear test machine	79
Figure 3.15	Rotational pin-on-disc wear testing	80
Figure 4.1	EDS analysis of A356 aluminum alloy with 1.5 wt.% TiB_2 addition	84
Figure 4.2	XRD analysis of A356 aluminium alloy with 0, 1.5 and 2.63 wt.% TiB_2	85
Figure 4.3	Optical micrographs of as-cast A356 aluminum alloy with TiB ₂ addition of (a) 0%, (b) 0.75%, (c) 1.5%, and (d) 2.63%	87

Figure 4.4	Optical micrographs of (a) as-cast A356 aluminum alloy with 1.5 wt.% TiB ₂ addition, (b) magnification of the rectangular area in (a)	89
Figure 4.5	SEM images of as-cast A356 Al alloy: (a) 0 wt.% TiB_2 and (b) 1.5 wt.% TiB_2	89
Figure 4.6	Grain size of as-cast A356 aluminum alloy with various TiB_2 addition	90
Figure 4.7	Hardness of as-cast A356 specimens with various ${\rm TiB}_2$ content	91
Figure 4.8	Optical micrographs of as-cast A356 aluminium alloy with TiB_2 addition of (a) 0 wt.%, (b) 1.5 wt.% and (c) 2.63 wt.%	94
Figure 4.9	Optical micrographs of annealed A356 aluminum alloy with TiB_2 addition of (a) 0 wt.%, (b) 1.5 wt.% and (c) 2.63 wt.%	94
Figure 4.10	Hardness of annealed A356 aluminum alloy specimens with various TiB_2 addition	95
Figure 4.11	Fragmentation and spheroidization of eutectic Si	97
Figure 4.12	Optical micrographs of eutectic phase of A356 Al alloy specimen with 1.5% TiB ₂ addition: (a) before solution treatment, and (b) after solution treatment	98
Figure 4.13	SEM image of A356 Al alloy specimen with $1.5\%~{\rm TiB_2}$ addition after solution treatment. White particles are ${\rm TiB_2}$ and dark particles are silicon	98

Figure 4.14	Optical micrographs of A356 aluminum alloy with 1.5 wt.% TiB ₂ addition of (a,b) ST, (c,d) ST-Aging 155°C, and (e,f) ST-Aging 200°C	99
Figure 4.15	Hardness of solution treated A356 aluminum alloy specimens with various ${\rm TiB_2}$ addition followed by aging treatment as a function aging temperature	101
Figure 4.16	ST-Aging 155°C specimen with 2.63 wt.% TiB ₂ addition after ECAP of (a) 1-pass and (b) 2-pass	103
Figure 4.17	ST-Aging 155°C specimen with 1.5 wt.% TiB ₂ addition after 4-pass ECAP processing	104
Figure 4.18	SEM image shows distribution of Si particles of pre-ECAP annealing specimen. Black color is silicon particles	105
Figure 4.19	Hardness of pre-ECAP annealing specimens as a function of ECAP pass	106
Figure 4.20	Illustrations for (a) X, Y, and Z planes of ECAP specimen, (b) the distortions introduced into cubic elements when viewed on the X, Y, and Z planes for B_A route (Valiev et al., 2006)	107
Figure 4.21	Optical micrographs of A356 aluminum alloy with 1.5 wt.% TiB ₂ addition of (a) Annealing and (b) Pre-ECAP annealing	108
Figure 4.22	SEM image of pre-ECAP annealing specimen with 1.5 wt.% TiB ₂ addition. Red arrows point some TiB ₂ particles	108
Figure 4.23	Hardness of annealed A356 aluminum alloy with 1.5 wt.% TiB_2 addition before and after ECAP	109

Figure 4.24	Optical micrographs of pre-ECAP aging (ST-Aging-ECAP) specimens with 1.5 wt.% TiB ₂ addition at aging temperature of (a) 110°C, (b) 155°C, (c) 200°C, (d) 245°C and (e) 290°C	111
Figure 4.25	Hardness of ST-Aging and pre-ECAP aging (ST-Aging-ECAP) specimens with 1.5 wt.% TiB ₂ addition as a function of aging temperature	112
Figure 4.26	TEM images show size of precipitates for (a) ST-ECAP and (b) ST-Aging-ECAP at aging 200°C	113
Figure 4.27	Increment in hardness due to ECAP processing of ST-Aging specimens	115
Figure 4.28	TEM images of (a) ST-ECAP specimen and (b) pre-ECAP aging 200°C (ST-Aging 200°C-ECAP) specimen. Red arrow indicates Mg _x Si _y precipitate	117
Figure 4.29	Optical micrographs of post-ECAP aging specimens with 1.5 wt.% TiB_2 addition as a function of aging temperature: (a) $110^{\circ}C$, (b) $155^{\circ}C$, (c) $200^{\circ}C$, (d) $245^{\circ}C$ and (e) $290^{\circ}C$	119
Figure 4.30	Hardness of pre-ECAP solution treatment and post-ECAP aging specimens with 1.5 wt.% TiB ₂ addition as a function of aging temperature	120
Figure 4.31	EBSD shows grain size of post-ECAP aging specimens at aging temperature of: (a) 155°C and (b) 290°C	122
Figure 4.32	Microstructure of solution treatment (ST) specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	125

Figure 4.33	Microstructure of ST-Aging 155°C specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	126
Figure 4.34	Microstructure of pre-ECAP aging 155°C specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps. Red arrows indicate TiB ₂ and Si particles	128
Figure 4.35	The average applied load for ECAP processing of (1) pre-ECAP solution treatment and (2) pre-ECAP aging at 155°C specimens	129
Figure 4.36	Microstructure of post-ECAP aging 155°C specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	131
Figure 4.37	Microstructure of pre-ECAP solution treatment (ST-ECAP) specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	132
Figure 4.38	Microstructure of post-ECAP aging 290°C specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	134
Figure 4.39	Microstructure of pre-ECAP annealing specimen: (a) Index quality (IQ) and (b) Inverse pole figure (IPF) maps	136
Figure 4.40	The average grain size of the specimens	137
Figure 4.41	A dislocation motion as it encounters a grain boundary (Callister, 2006)	138
Figure 4.42	Grain size distribution of A356 Al alloys with 1.5 wt.% TiB_2 addition with and without ECAP processing	140
Figure 4.43	Length per area of HAGBs	141

Figure 4.44	Blue lines represent HAGBs of (a) Pre-ECAP aging 155°C and (b) Post-ECAP aging 155°C specimens	142
Figure 4.45	High-angle grain boundaries shown by blue lines of (a) Pre-ECAP aging 155°C, (b) Post-ECAP aging 155°C, (c) Pre-ECAP solution treatment, and (d) Pre-ECAP annealing	144
Figure 4.46:	Concentration of lines of force near particles in a specimen pulled by force F. Blue lines represent lines of force	146
Figure 4.47	The Orowan mechanism (Hull and Bacon, 2001)	147
Figure 4.48	Volume wear loss of pre-ECAP aging specimens with 1.5 wt.% TiB_2 addition at applied load of $50N$	149
Figure 4.49	Volume loss of specimens with 1.5 wt.% TiB_2 addition as a function of sliding distance at a load of 30N	150
Figure 4.50	Volume loss of specimens with 1.5 wt.% TiB_2 addition as a function of sliding distance at a load of $50N$	151
Figure 4.51	Volume loss of specimens with 1.5 wt.% TiB_2 addition as a function of load for total sliding distance of 5km	152
Figure 4.52	Wear rate of various specimens at different applied loads	153
Figure 4.53	Specific wear rate of specimens with 1.5 wt.% TiB ₂ addition as a function of load at total sliding distance of 5km	155

Figure 4.54	Distribution of specific wear rate of metallic materials in sliding contact under different lubrication conditions. Data from Archard, 1953; Bhansali, 1980; Hirst, 1957; Hokkirigawa, 1997; Holm, 1946; Lancaster, 1978; Rabinowicz, 1980. (Kato and Adachi, 2001)	156
Figure 4.55	Coefficients of friction as a function of sliding distance at load of 30N. The solid lines represent trend lines	157
Figure 4.56	Coefficients of friction as a function of sliding distance at load of 50N. The solid lines represent trend lines	158
Figure 4.57	The average coefficient of friction of specimens with 1.5 wt.% TiB_2 addition as a function of load at sliding distance of 5km	159
Figure 4.58	Worn surfaces of wear tested specimens. Arrow: red, yellow and green indicate abrasive, adhesive and delamination wear respectively	161
Figure 4.59	Hardness of A356 aluminum alloy with 1.5 wt.% TiB ₂ addition at various processing conditions	162
Figure 4.60	Average grain size of A356 aluminum alloy with 1.5 wt.% TiB_2 addition at various processing conditions	164
Figure 4.61	High-angle grain boundaries of A356 aluminum alloy with 1.5 wt.% TiB ₂ addition	165
Figure 4.62	Wear rate at sliding distance of 5km	166

LIST OF ABBREVIATIONS

Abbreviation Description

AA Aluminum Association

Ag Argentum (Silver)

B Boron

Al-B Aluminum-Boron

Al-Si alloy Aluminum-Silicon alloy

Al-Si-Mg alloy Aluminum-Silicon-Magnesium alloy

Al-Sr Aluminum- Strontium

Al-Ti Aluminum-Titanium

Al-Ti-B Aluminum-Titanium-Boron

Al-5Ti-1B 5 wt.% Ti, 1 wt.% B, Balance Aluminum

ARB Accumulative Roll Bonding

ASTM American Standard Testing and Material

CCC Cylinder Covered Compression

CCDF Cyclic Close Die Forging

CEC Cyclic Extrusion-Compression

CGP Constrained Groove Pressing

COF Coefficient of Friction

Cu Cuprum (Copper)

DDW Dense Dislocation Walls

DIN Deutsches Institut für Normung (German Institute for

Standardization)

EBSD Electron Backscatter Diffraction

ECAE Equal Channel Angular Extrusion

ECAP Equal Channel Angular Pressing

EDS Energy Dispersive X-Ray Spectroscopy

FCC Face-Centered Cubic

Fe Ferrum

FESEM Field Emission Scanning Electron Microscopy

FSP Friction Stir Processing

Ge Germanium

GNBs Geometrically Necessary Boundaries

GPa Giga Pascal

HAGB High-Angle Grain Boundary

HAGBs High-Angle Grain Boundaries

HPT High Pressure Torsion

HRc Hardness Rockwell

HV Hardness Vickers

IDBs Incidental Dislocation Boundaries

IQ Index Quality

IPF Inverse Pole Figure

ISO International Organization for Standardization

LBs Lamellar Boundaries

LAGBs Low-Angle Grain Boundaries

Li Lithium

LPG Liquefied Petroleum Gas

Mg Magnesium

MML Mechanically Mixed Layer

Mn Manganese

Na Natrium

nc nanocrystalline

nm nano meter

OIM Analysis Orientation Imaging Microscopy Analysis

R Radii

RPM Rotation Per Minute

RCS Repetitive Corrugation and Straightening

S/L interface Solid/Liquid interface

SEM Scanning Electron Microscopy

SFE Stacking Fault Energy

SFSP Submerged Friction Stir Processing

Si Silicon

SiC Silicon Carbide

SPD Severe Plastic Deformation

ST Solution Treatment

ST-Aging Solution treatment, Quenching then Aging treatment

T6 Heat treatment process of Solution treatment,

Quenching and Artificial aging

T Temperature

T_m Melting temperature

TiAl₃ Titanium Aluminide

TiB₂ Titanium Diboride

UFG Ultrafine Grain

UTM Universal Testing Machine

Zr Zirconium

XRD X-Ray Diffraction

XRF X-Ray Fluorescence

Zn Zinc

LIST OF SYMBOLS

Symbol Description Φ Channel angle Ψ outer arc curvature Wave length λ Shear strain γ Strain 3 Equivalent strain ϵ_{eq} Shear strain after N-pass of ECAP ϵ_{N} Net interfacial energy $\Delta\sigma_0$ Interfacial energy between particle and solid σ_{ps} Interfacial energy between particle and liquid σ_{pl} Ultimate Tensile Strength σ_{UTS} Critical resolved shear stress τ_{CRSS} Е Young's Modulus n* constant Rotational speed (RPM) N radius of sliding (m) r time (s) t Translational/sliding speed (m/s) V

Rotational speed (rad/s)

ω

KESAN RAWATAN HABA DAN PENEKANAN SUDUT SALUR SAMA KE ATAS MIKROSTRUKTUR, KEKERASAN DAN RINTANGAN HAUS ALOI ALUMINIUM A356 DENGAN TiB $_2$

ABSTRAK

Penekanan sudut salur sama (ECAP) adalah satu prosedur yang relatif mudah untuk menghasilkan ira ultra-halus dan mempunyai potensi untuk digunakan dalam pemprosesan logam komersial. Namun kesukaran pemprosesan mungkin timbul semasa ECAP kerana berlakunya keretakan. Dalam kajian ini, aloi aluminium A356 dan aloi aluminium A356 dengan pelbagai kandungan penghalus ira TiB₂ (0.75, 1.5, 2.63 wt.%) disediakan melalui tuangan acuan graviti. Spesimen aloi aluminium A356 tuang ditambah TiB₂ mengandungi fasa keras Si eutektik, zarah keras TiB₂ dan TiAl₃ yang berpotensi menyebabkan keretakan semasa pemprosesan ECAP oleh kerana itu rawatan haba dijalankan sebelum ECAP. Rawatan haba sepuh lindap pada suhu 540°C selama 8 jam diikuti dengan penyejukan dalam relau, rawatan larutan pada suhu 540°C selama 4 jam diikuti dengan lindap kejut dalam air, dan rawatan penuaan pada suhu 110°C, 155°C, 200°C, 245°C dan 290°C selama 3 jam. Spesimen yang telah melalui proses rawatan haba kemudian diproses 4-turutan ECAP mengikut laluan B_A (putaran 90°). Gabungan antara rawatan haba dan ECAP dilakukan untuk menganalisis kesan kedua-dua proses pada mikrostruktur, kekerasan dan rintangan haus spesimen. Spesimen dicirikan dengan mikroskop optik, SEM, EBSD, TEM, kekerasan dan ujian haus. Pemprosesan 4-turutan ECAP meningkatkan kekerasan dengan ketara spesimen yang mempunyai matriks relatif lembut. Matriks yang relatif lembut dalam gabungan dengan zarah TiB₂ dan Si memberi manfaat dalam mempercepatkan peningkatan ketumpatan kehelan membawa kepada penghalusan ira

semasa pemprosesan ECAP. Dari keseluruhan pertimbangan kekerasan, saiz ira purata dan kadar haus, spesimen rawatan larutan pra-ECAP mempunyai nilai terbaik secara umum, kemudian diikuti spesimen penuaan pada 155°C selepas ECAP pada kedudukan kedua.