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KESAN RAWATAN HABA DAN PENEKANAN SUDUT SALUR SAMA KE 

ATAS MIKROSTRUKTUR, KEKERASAN DAN RINTANGAN HAUS ALOI 

ALUMINIUM A356 DENGAN TiB2  

 

ABSTRAK 

Penekanan sudut salur sama (ECAP) adalah satu prosedur yang relatif mudah 

untuk menghasilkan ira ultra-halus dan mempunyai potensi untuk digunakan dalam 

pemprosesan logam komersial. Namun kesukaran pemprosesan mungkin timbul 

semasa ECAP kerana berlakunya keretakan. Dalam kajian ini, aloi aluminium A356 

dan aloi aluminium A356 dengan pelbagai kandungan penghalus ira TiB2 (0.75, 1.5, 

2.63 wt.%) disediakan melalui tuangan acuan graviti. Spesimen aloi aluminium A356 

tuang ditambah TiB2 mengandungi fasa keras Si eutektik, zarah keras TiB2 dan TiAl3 

yang berpotensi menyebabkan keretakan semasa pemprosesan ECAP oleh kerana itu 

rawatan haba dijalankan sebelum ECAP. Rawatan haba sepuh lindap pada suhu 

540°C selama 8 jam diikuti dengan penyejukan dalam relau, rawatan larutan pada 

suhu 540°C selama 4 jam diikuti dengan lindap kejut dalam air, dan rawatan penuaan 

pada suhu 110°C, 155°C, 200°C, 245°C dan 290°C selama 3 jam. Spesimen yang 

telah melalui proses rawatan haba kemudian diproses 4-turutan ECAP mengikut 

laluan BA (putaran 90°). Gabungan antara rawatan haba dan ECAP dilakukan untuk 

menganalisis kesan kedua-dua proses pada mikrostruktur, kekerasan dan rintangan 

haus spesimen. Spesimen dicirikan dengan mikroskop optik, SEM, EBSD, TEM, 

kekerasan dan ujian haus. Pemprosesan 4-turutan ECAP meningkatkan kekerasan 

dengan ketara spesimen yang mempunyai matriks relatif lembut. Matriks yang relatif 

lembut dalam gabungan dengan zarah TiB2 dan Si memberi manfaat dalam 

mempercepatkan peningkatan ketumpatan kehelan membawa kepada penghalusan ira 
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semasa pemprosesan ECAP. Dari keseluruhan pertimbangan kekerasan, saiz ira 

purata dan kadar haus, spesimen rawatan larutan pra-ECAP mempunyai nilai terbaik 

secara umum, kemudian diikuti spesimen penuaan pada 155°C selepas ECAP pada 

kedudukan kedua. 
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