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PENGUAT PERALATAN KASKOD TERLIPAT PINCANG-KENDIRI 

MENGGUNAKAN TEKNIK PEMENGGAL UNTUK EKG 

 

ABSTRAK 

 

Abad kedua puluh satu telah menyaksikan pertumbuhan teknologi bagi aplikasi 

rakaman bioperubatan terutamanya sistem rakaman elektrokardiogram (EKG) dan 

mempunyai kesan yang mendalam kepada kehidupan harian kita. Sistem rakaman 

EKG lazim yang terlalu besar lalu mengehadkan masa perolehan telah membawa 

kepada rekabentuk peranti EKG mudah alih terkendali bateri kuasa rendah. Ia 

membantu untuk memastikan kemudahalihan yang baik dan meningkatkan 

kemudahgerakan, membebaskan pesakit daripada wayar yang memberi kegusaran dan 

ketidakselesaan. Selain itu, hingar kerlipan (1/f) yang berkekerapan rendah menjadi 

halangan yang paling besar bagi peranti EKG yang boleh diharap, memandangkan 

isyarat EKG mempunyai ciri-ciri yang beramplitud rendah dan juga berkekerapan 

rendah. Oleh sebab itu, matlamat kajian ini adalah untuk merekabentuk sebuah 

penguat kebezaan bahagian depan kuasa rendah sebagai peranti pemantauan EKG dan 

mencapai penguat dengan hingar dirujuk masukan yang rendah khususnya hingar 

kerlipan berkekerapan rendah. Litar ini adalah berdasarkan teknik pemenggal yang 

dilaksanakan bersama struktur kaskod terlipat pincang-kendiri dengan penggunaan 

kuasa yang lebih rendah daripada pendekatan sebelumnya tanpa menjejaskan prestasi. 

Skim pincang-kendiri yang menjimatkan kuasa dan mengurangkan keluasan litar telah 

dipilih untuk menghapuskan keperluan litar pincangan luar dengan menjana voltan 

pincang dari nod dalaman litar. Ia terbentuk melalui satu siri pelarasan berlelar nilai 

xv 



 

komponen dan saiz transistor. Bagi kes pelaksanaan pemenggal, teknik pemodulatan 

menukarkan isyarat masukan dengan julat kekerapan rendah kepada julat kekerapan 

yang lebih tinggi daripada hingar kerlipan perusa. Modul pemenggal yang kedua pula 

bertindak sebagai penyahmodulat yang membawa keluaran yang dikehendaki kembali 

ke jalur dasar dan mengubahkan hingar kepada kekerapan pemenggal yang 

berkekerapan tinggi. Hingar termodulat dan pepaku terpenggal yang tidak diingini 

juga disinggirkan oleh satu penapis lulus jalur yang berkekerapan rendah. Dengan 

menggunakan cara yang sama, penguat kaskod terlipat telah dimanfaatkan dalam 

hingar rendah disebabkan saiz peranti yang lebih kecil memberikan nisbah isyarat 

hingar yang baik kerana keluasan mutlak bagi rekabentuk tersebut menyumbangkan 

hingar. Litar ini direka menggunakan pemprosesan teknologi SILTERRA 0.18 µm 

CMOS dengan VIRTUOSO CADENCE. Keputusan simulasi pra-bentangan bagi 

penguat yang tersebut telah menunjukkan kuasa yang amat rendah, iaitu 1.926 µW 

serta hingaran rendah, iaitu 415 nV/√Hz pada 10 Hz, telah mengatasi prestasi seni 

bina penguat bioperubatan yang terkenal. Tambahan pula, gandaan kebezaan voltan 

yang tinggi, iaitu 54.32 dB dan 102.82 dB dalam nisbah penolakan ragam sepunya 

tercapai. 
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SELF-BIASED FOLDED CASCODE INSTRUMENTATION AMPLIFIER 

USING CHOPPER TECHNIQUE FOR ECG 

 

ABSTRACT 

 

In twenty-first century, it has been witness the tremendous growth of technology in 

biomedical recording application particularly electrocardiogram (ECG) recording 

system and has had a profound impact on our daily life. The conventional ECG 

monitoring systems that are too bulky in nature which restrict the acquisition time has 

led to the design of low power battery operated portable ECG device. It helps to ensure 

good portability and enhanced mobility, freeing the patient from entanglement of wires 

which conceives annoyance and discomfort.  In addition, the low frequency flicker 

noise (1/f) has been the biggest hindrance for reliable ECG monitoring application 

device since ECG signals have the characteristics of low amplitude and low frequency. 

Therefore, the goals of this work are to design a low power front end differential 

instrumentation amplifier for ECG monitoring device and to achieve low input referred 

noise of the amplifier specifically low frequency flicker noise. The circuit is based on 

the chopper technique which is implemented together with self-biased folded cascode 

structure that has significant lower power consumption than the predecessor’s 

approaches while keeping the performance unchanged. A self-biased scheme that 

saves power and reduces circuit area is chosen to eliminate the needs of external 

biasing circuitry by generating bias voltages from internal nodes of the circuit. It is 

developed through a series of iterative adjustments of component values and transistor 

sizes.  For the case of chopper implementation, the used modulation technique converts 
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the low frequency range of the input signals to a higher frequency range far above the 

dominant flicker noise. The second chopping module that acts as a demodulator brings 

the desired output back to the baseband and shifts the noise to the high chopping 

frequency. The modulated noise and the unwanted chopping spikes are then removed 

by a low frequency band pass filter. By the same token, folded cascode amplifier has 

benefit in low noise since smaller device size results in a better signal to noise ratio as 

the absolute area of the design contribute noises. The circuit is designed using 

SILTERRA 0.18 µm CMOS technology process with VIRTUOSO CADENCE. The 

pre-layout simulated results of the amplifier show ultra-low power of 1.926 µW and 

low noise of 415 nV/√Hz at 10 Hz which outperforms the renowned architectures of 

biomedical amplifier. Moreover, high differential voltage gain of 54.32 dB and 102.82 

dB in CMRR are achieved.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Project Overview and Motivation 

The heart is one of the most crucial organs in the human body. In order to keep the organs 

working, the heart functions as a pump to circulate oxygen and blood that carries nutrient 

throughout the body which shown in Figure 1.1. The flowing blood withdraws waste 

products produced from the body to the kidneys (Chong et al., 2006).  

 The heart is comprised of four chambers, two atriums and two ventricles. The 

right atrium takes in blood from the entire body returning to the heart. The blood flows 

through the right ventricle and is pumped to the lungs where it is oxygenated and passed 

back to the heart through the left atrium. Then, the blood flows through the left ventricle 

and is pumped again to be scattered to the whole body via the arteries (Casillas et al., 

2010). 
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Figure 1.1: Blood circulation scheme (Casillas et al., 2010) 

 

 An electrocardiogram (ECG), also known as EKG, is a graphical trace of the 

voltage produced by cardiac or heart muscle during a heartbeat. It indicates the 

performance of the heart precisely and accurately whereby the rate of the heartbeat 

generated by the heart is proportional to the amount of effort being exerted by body.  

 The heart shows a pumping characteristic as the electrochemical impulses that 

spreads out in the heart cause the cells to contract and relax in an orderly time when the 

heart is beating. Heartbeat can be measured at the surface of the body as the body is 

conductive with fluid content and this electrochemical action is electrical in nature. Figure 

1.2 reveals distinctive upward and downward deflections that reflect the alternate 

contraction of the atria and the ventricles of the heart. An approximately 1 mV voltage 

potential originates between several body locations.  
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Figure 1.2: Myocardium electrical activity (Casillas et al., 2010) 

 

 A sample trace of a typical ECG output for a single cardiac cycle waveform of a 

normal heartbeat is shown in Figure 1.3. There are commonly five identifiable points in 

an ECG trace which denoted by letters P, Q, R, S, and T. Atria depolarization, P is due to 

the action of atria contraction also known as atria complex whereas the rest are all due to 

polarization and depolarization of ventricles and are known as ventricular complexes 

(Raju, 2007). The cardiac cycle waveform that varies in time between the R’s which are 

the peaks of a heartbeat, is called heart rate variability (HRV). ECG that measures HRV 

plays a vital role in predicting a variety of diseases such as heart attack, diabetes and 

patients who have suffered from cardiac failure as they are shown with reduced HRV. 
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Figure 1.3: ECG waveform of a single cardiac cycle (Raju, 2007) 

 

In recent years, portable biomedical instrumentation has becoming a growing 

trend in patient diagnosis and treatment due to the reason that the conventional biomedical 

monitoring systems are too bulky in nature and time consuming. Portable ECG 

monitoring devices ensure good portability and enhanced mobility, freeing the patient 

from entanglement of wires. The advanced technology has led to the design of low power 

consumption battery operated portable medical instruments particularly in ECG device 

whereby continuous monitoring helps to improve patients’ quality of life, identify cardiac 

diseases and reduce hospitalization.  

 Figure 1.4 depicts the block diagram of the ECG monitoring system where it 

consists of heartbeat signal, electrodes, a front end instrumentation amplifier (IA), data 

acquisition or analog-to-digital converter (ADC), and transmitter. Electrodes receive 
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heartbeat signal from patients’ chest and then send them through an instrumentation 

amplifier for amplification. Due to the very small voltage ECG signal amplitudes of less 

than 1 mV, the instrumentation amplifier has to provide a high yet stable AC gain. Next, 

the amplified signal will be digitized by ADC in data acquisition part where it converts 

analog waveforms into digital values for processing before transmitting them to receiver 

module for display (Fuhrhop et al., 2009, Yama et al., 2007, Rehman et al., 2012).  

 

 

Figure 1.4: Block diagram of the ECG monitoring system 

 

 

1.2 Problem Statement 

Biomedical waves are typical bio-potential signals that are recorded regularly in modern 

clinical practice. Generally, patients are attached to a cumbersome and high-powered 

biomedical instruments which conceives annoyance, discomfort, and weaken their 

mobility. This restricts the acquisition time, rules out the continuous monitoring of 

patients, and disturb the diagnosis of the illness.  

 Portable monitoring and management requires the development of smart 

biomedical monitoring systems with stringent size and power autonomy constraint. 

Hence, there is a growing demand for low power, smaller size and ambulatory bio-
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