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KAJIAN PRESTASI PENCAMPURAN DALAM REAKTOR MIKRO 

MENGGUNAKAN PENGKOMPUTERAN DINAMIK BENDALIR 

ABSTRAK 

Bergerak menuju masa depan kejuruteraan kimia yang lebih sebagai tindak balas 

kepada perubahan keperluan and kehendak, memerlukan keseimbangan antara alam 

sekitar, keselamatan and kos dalam penghasilan sesuatu produk. Pertumbuhan proses 

intensifikasi dilihat sebagai satu jalan untuk mencapai matlamat ini. Reaktor mikro 

merupakan salah satu peranti terintensif yang terhasil daripada proses intensifikasi 

memerlukan pemahaman tentang ilmu asas supaya ianya boleh digunakan secara 

menyeluruh. Justeru itu, tujuan kajian ini dilakukan untuk mencirikan percampuran 

dan menilai prestasi percampuran dalam elemen pencampur milik Standard Slit 

Interdigital Micro Mixer (SSIMM) dengan konfigurasi saluran mikro yang berbeza. 

Penyiasatan ke atas kesan konfigurasi saluran mikro, halaju masuk dan pekali 

resapan terhadap keamatan pencampuran dilakukan dengan menggunakan simulasi 

pengkomputaran dinamik bendalir (CFD). Keputusan menunjukkan halaju masuk 

mempunyai kesan yang nyata kepada prestasi pencampuran yang diwakili oleh 

keamatan pencampuran dalam kajian ini. Halaju yang lebih tinggi menghasilkan 

kualiti pencampuran yang rendah. Halaju 1000 µm/s dan 10000 µm/s menunjukkan 

nilai keamatan pencampuran yang rendah dan pencampuran yang rendah di 

penghujung slit keluar. Pekali resapan yang tinggi menyebabkan proses pencampuran 

lebih cepat. Pencampuran berlaku serta merta pada pekali resapan 1.0x10-8 m2/s. 

Profil keamatan pencampuran milik saluran mikro yang beralun yang mewakili 

elemen pencampur dalam SSIMM menunjuk trend yang licin berbanding dua 

konfigurasi saluran mikro yang lain.   
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A STUDY OF MIXING PERFORMANCE IN A MICROREACTOR USING 

COMPUTATIONAL FLUIDS DYNAMIC (CFD) 

ABSTRACT 

Moving towards better future of chemical engineering in respond to the changing 

need and demand requires complementary of environmental, safety and cost in 

production of a product. The growth of process intensification has found to be the 

path to achieve this goal. Microreactor is one of the intensified equipment which is a 

product of process intensification, which requires understanding of the fundamental 

knowledge in order for it to be fully utilised. Therefore, the purpose of this study is to 

characterize mixing and to evaluate mixing performance of the Standard Slit 

Interdigital Micro Mixer (SSIMM) mixing element with different configurations of 

microchannel. Investigation on the effects of microchannel configurations, inlet 

velocity and diffusion coefficient toward mixing intensity was conducted using 

Computational Fluid Dynamics (CFD) simulation. The result showed that inlet 

velocity has significance effects on the mixing performance which represented by 

mixing intensity in this study. Higher inlet velocity resulted in lower mixing quality. 

The inlet velocity of 1000 µm/s and 10000 µm/s give low mixing intensity and 

incomplete mixing at the end of discharge slit position. High diffusion coefficient 

value gave faster mixing process. The mixing process occurred instantaneously at 

diffusion coefficient value of 1.0x 10-8 m2/s.  

The mixing intensity profile of corrugated microchannel which represents the mixing 

element of the SSIMM showed a smooth trend as compared to the other two 

microchannel configurations.  
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CHAPTER 1  

INTRODUCTION 

1.1 Future of Chemical Engineering 

      Nowadays, chemical and process engineering especially in the area chemical 

reactor engineering has to respond aptly to the changing need of chemical and related 

process industries in order to meet the market demands (Jean-Claude 2005; 

Charpentier 2002; Jean-Claude 2007). Producing high quality of product, at lower 

cost and at the same time managing the environment and safety issues is paramount 

and provides challenge in chemical industries. So, being a key to survival in 

globalization of trade and competition, the evolution of chemical engineering is thus 

necessary (Jean-Claude 2005).  

      In the frame of globalization and sustainability, the future of chemical 

engineering can be summarized by four main objectives: (1) a total multiscale control 

of the process (or the procedure) to increase selectivity and productivity; (2) a design 

of novel equipment based on scientific principles and new operation modes and 

methods of production: process intensification; (3) product design and engineering: 

manufacturing end-use properties with a special emphasis on complex fluids and 

solids technology; (4) an implementation of the multiscale and multidisciplinary 

computational chemical engineering modelling and simulation to real-life situations: 

from the molecule to the overall complex production scale into the entire production 

site (Jean-Claude 2005).  

Focusing on the second objective, process intensification is a path to make this 

objective achievable (Jean-Claude 2007). 
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1.2 Process Intensification 

      The chemical, pharmaceutical and bio-based industries produce products that are 

essential for modern society. Nevertheless, these industries face considerable 

challenges because of the need to develop sustainable production methods for the 

future (Lutze et al. 2010).  

      Process intensification technology proposes substantially smaller, cleaner and 

more energy efficient technology which can be categorically divided into equipment 

and methods. While cost reduction was the original target for process intensification, 

it quickly became apparent that there were other important benefits, particularly in 

respect of improved intrinsic safety, reduced environmental impact and energy 

consumption. For example, in reducing production plant volume, the toxic and 

flammable inventories of intensified plant are correspondingly reduced, thereby 

making a major contribution to intrinsic safety. In addition, the cost of effluent 

treatment systems will be less, allowing tighter emission standards to be reached 

economically (Choe et al. 2003).  

      The high heat and mass transfer coefficients which can be generated in 

intensified equipment can be exploited to reduce the concentration or temperature 

driving forces needed to operate energy transformers such as heat pumps, furnaces, 

electrochemical cells etc. This enhances the equipment's thermodynamic reversibility 

and hence its energy efficiency (Ramshaw 1999). Process intensification 

technologies give these goals achievable together with the development of 

microsystems technology. The intensified equipment has a parallel function as 

microsystems technology with combination of chemistry which leads to micro 
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process engineering that play important role in providing better future of engineering 

(Choe et al. 2003).  

      Microreactor is more commonly known in the field of process intensification and 

microsystems technology that has attracted significant interest in several years. 

Numerous plausible advantages of microreactors for the pharmaceutical and fine 

chemicals industries has been realised, thanks to their excellent capability for mixing 

and for thermal exchanges which increase yields and selectivity of reactions (Choe et 

al. 2003; Haverkamp et al. 1999; Lomel et al. 2006; Song et al. 2006). 

      Microreactors have two major advantages with respect to smaller physical size 

and the increase in numbers of units. Benefits from reduction of physical size became 

more apparent in chemical engineering aspects. The difference of physical properties 

such as temperature, concentration, density or diffusional flux increase with 

decreasing of linear dimension (Ponce-Ortega et al. 2012; Tsouris & Porcelli 2003). 

Consequently the driving forces for heat transfer, mass transport increase when using 

the microreactors. In addition, significant reduction in volume for microreactor as 

compared to conventional reactors lead to smaller hold up that increase process 

safety and improves selectivity due to shorter residence time (Ehrfeld et al. 2000; 

Moulijn et al. 2008). 

      Parallel units of microreactors in a system could lead to fast and cost saving 

whilst maintaining the high throughput. An increase in throughput in microreactors is 

achieved by a numbering-up approach, rather than by scaling-up. The functional unit 

of a microreactor for example the mixing element is multiply repeated. This 

technique guarantees that desired features of a basic unit are kept when increasing the 

total system size (Ehrfeld et al. 1999; Ehrfeld et al. 2000). 
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1.3 Problem Statement 

      The exponential increase of research in miniaturization and microfluidic 

applications highlights the importance of understanding the theory of microfluidic 

environment and their applications in the context of mixing. Since mixing has a 

decisive impact on the overall performance of micro reaction processes, there is 

increased desire for measuring and comparing mixing performance. In recent years, 

many researches on mixing characterization of T-shaped (Zhendong et al. 2012; 

Bothe et al. 2006) and Y-shaped (Bhagat et al. 2007; Shi et al. 2012) and other type 

of micromixers have been done via experimental and computer simulation 

approaches. 

      However, little information on simulation study was found with regards to 

Standard Slit Interdigital Micro Mixer (SSIMM) which is the micromixer used in this 

work. Comprehensive understanding of fundamental SSIMM is still incomplete and 

lacking which being agreed upon by several literatures that mentioned fundamental 

knowledge on the underlying mixing processes in interdigital mixers was so far not 

broadly accessible (Hessel et al. 2003; Hardt & Schönfeld 2003; Löb et al. 2006). 

Numerous experimental studies of SSIMM have been done in recent (Ehrfeld et al. 

1999; Song et al. 2006; Löb et al. 2006; Haverkamp et al. 1999; Hessel et al. 2003; 

Panić et al. 2004). Hessel et al, (2003) managed to fabricate rectangular walls in their 

study to represent the slit-shaped structure which later was simulated by Hardt et al, 

(2003).  

      However none of the simulations resemble the geometric structure of mixing 

element of SSIMM was found in literatures so far. The unique feature of mixing 

element in SSIMM which has corrugated microchannel configuration has not been 



5 

 

fully investigated yet. Owing to this situation, this research took the opportunity to 

construct the geometry of the mixing element of SSIMM and analysis via 

computational simulation. Additional geometry configurations were also constructed 

for the purpose of comparison. Investigation on the effect of inlet velocity, diffusion 

coefficient and microchannel configurations towards mixing and evaluation of the 

mixing performance of all the three geometry configurations were also included in 

this study. 

 

1.4 Research Objective 

1. To develop model geometry domain of the Standard Slit Interdigital Micro 

Mixer (SSIMM) mixing element that consist of corrugated microchannel and 

discharge slit together with another two geometry configurations. 

2. To conduct a Computational Fluid Dynamics mixing simulation of the 

geometries domain based on mass and momentum conservation and 

convection-diffusion concept. 

3. To evaluate mixing performance at different inlet velocities and diffusion 

coefficients and make comparison among the geometric configurations. 

 

1.5 Scope of Study 

      In this work, a model of geometric domain of the Standard Slit Interdigital Micro 

Mixer (SSIMM) mixing element that consists of microchannel and discharge slit is 

developed together with another two geometry configurations. Geometric domain 

model consist of corrugated microchannel to represents the mixing element of 
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SSIMM with another two geometry configurations namely straight microchannel and 

T-shaped microchannel.  

      A Computational Fluid Dynamics mixing simulation of the geometries is 

conducted. The mixing simulation is based on mass and momentum conservation and 

convection-diffusion concept. The governing equations for this simulation are Navier 

Stokes equation and Convective-Diffusion equation. COMSOL Multiphysic software 

tool is used to simulate this mixing process.  

      A study of mixing characterization by numerical analysis is done by evaluating 

the mixing performance of the geometries configurations. Mixing performance is 

evaluated by mixing intensity in this study. Mixing intensity is calculated in respond 

to the change of inlet velocity and diffusion coefficient values. Finally, the 

simulation results are compared among the geometries configurations and literatures.  

 

1.6 Thesis Organization 

Chapter 1 describes the general knowledge of process intensification, microreactor 

and computational fluid dynamics. The research background together with the 

problem statement, research objective and research summary are also stated in this 

chapter. 

Chapter 2 provides the review on process intensification, microreactor and mixing 

in microfludic. The literature review also covers types of microreactors with their 

different geometric configuration and principles of mixing characterization in a 

microreactor. Brief explanations about the Computational Fluid Dynamics (CFD) are 

also included.  
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Chapter 3 provides the methodology of the research which includes the project flow 

chart, simulation of the microreactor, the physical geometry dimensional and 

parameters used in this study. The introduction of data collection, verification and 

validation are also discussed. 

Chapter 4 provides brief explanation on Computational Fluid Dynamics (CFD) 

simulation used in this research. The construction of the computational geometry 

structure domain and meshing of the micromixer were explained and discussed. The 

physical models together with the data interpretation are also have been briefly 

explained in this chapter. 

Chapter 5 presents the result and discussion of this research. This chapter consist of 

four sections of result and discussion including the velocity, concentration and 

mixing intensity profile of the micromixer together with the comparison of the result.  

Chapter 6 presents the conclusion that can be deduced from the research. In 

additional of recommendation of further improvement of the research are also 

included.  
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