AN IMPROVED RECTENNA DESIGN FOR RF ENERGY HARVESTING

E SUN YE

UNIVERSITI SAINS MALAYSIA

2017

AN IMPROVED RECTENNA DESIGN FOR RF ENERGY HARVESTING

by

E SUN YE

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

April 2017

ACKNOWLEDGEMENTS

This dissertation is dedicated to everyone in the field of RF energy harvesting who embarks the journey of expanding the collection of knowledge and transcendent passion for continuous improvement of the rectenna designed for RF energy harvesting circuit for WSN application.

First of all, I would like to express my thankfulness to Dr Nor Muzlifah Mahyuddin, my research adviser, for seeing the promise of this research project and achieving research conducted under her watchful eyes. Her guidance and patience throughout this research carried out are much appreciated. Besides, her priceless support and insightful advice and opinion have resulted in the completion of this project. I would also like to express my acknowledgement to Universiti Sains Malaysia for providing financial support (USM RUI Grant 1001/PELECT/814206) for this research.

My special thanks reached out to all Professors, lectures, technicians and staffs in School of Electric and Electronic Engineering, USM that have lend their helping hands to me when I faced problems. They always provide helpful comments and support during the completion of this project. They also shared ideas by providing incessant information on the research techniques and skills. I sincerely appreciate their feedback and suggestion in providing me a deeper understanding to the project.

Lastly, I offer my regards and blessing to my beloved family especially my parents and Ah Wong who supported me in every aspect during the completion of this project.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENTS	ii
TABI	LE OF CONTENTS	iii
LIST	OF TABLES	vii
LIST	OF FIGURES	Х
LIST	OF ABBREVIATIONS	xviii
ABST	TRAK	xix
ABST	TRACT	xxi
CHA	PTER ONE : INTRODUCTION	
1.1	Significant of Project	1
1.2	Introduction	5
1.3	Problem Statements	6
1.4	Research Objectives	7
1.5	Research Contributions	8
1.6	Research Scope	9
1.7	Report Outline	11
CHA	PTER TWO : LITERATURE REVIEW	
2.1	Overview	13
2.2	RF Energy Harvesting	13
2.3	RF Energy Harvester Architecture	15
2.4	Frequencies Suitable for RF Energy Harvesting	19
2.5	Main Issues Faced by RF Energy Harvesting	27
2.6	Potential Solution for Current Implementation Of RF Energy Harveste	r 29
2.7	Antenna	31

	2.71 Antenna Basic Parameters	31
	2,7.1(a) Input Impedance	31
	2.7.1(b) Voltage Standing Wave Ratio (VSWR)	32
	2.7.1(c) Bandwidth	33
	2.7.1(d) Antenna Gain	33
	2.7.1(e) Directivity	34
	2.7.1(f) Radiation Pattern	34
	2.7.1(g) Polarization	35
	2.7.1(h) Scattering Parameter	35
	2.7.2 Antennas Used in Previous RF Energy Harvesting Circuit	36
	2.7.3 Microstrip Printed Wide Slot Antennas	47
2.8	Rectifiers Used in Previous Work	55
	2.8.1 Effects of Number of Multiplier Stages on Output Voltage	56
	2.8.2 Types of Multiplier Used	57
	2.8.3 Types of Diode Used	60
2.9	Impedance Matching For Rectifier Circuit	62
2.10	Summary	65

CHAPTER THREE : DEVELOPMENT OF RF-TO-DC CONVERSION CIRCUIT DESIGN FOR RF ENERGY HARVESTING SYSTEM

3.1	Overv	view		68
3.2	Multiplier Design		gn	69
	3.2.1	Study Or	n Diodes	71
	3.2.2	915 MH	z Dickson Multiplier	73
		3.2.2(a)	915 MHz Rev A Dickson Multiplier	73
		3.2.2(b)	915 MHz Rev B Dickson Multiplier	81
		3.2.2(c)	Test and Measurements for 915 MHz Dickson Multiplier	r 87

	3.2.3	1.8 GHz	Dickson Multiplier	92
		3.2.3(a)	1.8 GHz Rev A Dickson Multiplier	92
		3.2.3(b)	1.8 GHz Rev B Dickson Multiplier	97
		3.2.3(c)	Test and Measurements for 1.8 GHz Dickson Multiplier	101
	3.2.4	2.4 GHz	Dickson Multiplier	105
		3.2.4(a)	2.4 GHz Rev A Dickson Multiplier	105
		3.2.4(b)	2.4 GHz Rev B Dickson Multiplier	110
		3.2.4(c)	Test and Measurements for 2.4 GHz Dickson Multiplier	114
3.3	Summ	nary		118

CHAPTER FOUR : DEVELOPMENT OF THE ANTENNA DESIGN FOR RF ENERGY HARVESTING SYSTEM

4.1	Overview	119
4.2	Microstrip Line Fed Printed Wide Slot Antenna	120
	4.2.1 915 MHz Microstrip Line Fed Printed Wide Slot Antenna	124
	4.2.2 1.8 GHz Microstrip Line Fed Printed Wide Slot Antenna	133
	4.2.3 2.4 GHz Microstrip Line Fed Printed Wide Slot Antenna	139
4.3	Summary	144

CHAPTER FIVE : DEVELOPMENT OF RECTENNA DESIGN FOR RF ENERGY HARVESTING SYSTEM

5.1	Overview	145
5.2	Measurement Using Dedicated RF Sources	147
5.3	Measurement Using Mobile Phone	149
5.4	Measurement Using Ambient RF Sources	154
5.5	Related Works: Bench-marking	157

CHAPTER SIX : CONCLUSION

APPENDICES		
REFERENCES		165
6.3	Future Works	163
6.2	Limitations in Works	162
6.1	Research Summary	161

- Appendix A HSMS 282X
- Appendix B HSMS 285X
- Appendix C SMS 7630
- Appendix D LB880
- Appendix E Rogers 4003
- Appendix F PCB Board Layouts

LIST OF TABLES

Table 1.1	Current Market Availability for Energy Sources	3
Table 2.1	Estimated Power from Various Energy Harvesting Sources	14
Table 2.2	Termination voltage and conversion efficiency	23
Table 2.3	Summary of London RF Survey Measurement	23
Table 2.4	Summary of RF frequency used or researched in previous work	25
Table 2.5	Summary of GSM 900, GSM 1800 and Wi-Fi bandwidths	26
Table 2.6	Antenna Types	31
Table 2.7	S-Parameter (two port network)	36
Table 2.8	Simulated gain and 10-dB return loss fractional bandwidth for folded-dipole single-band antenna	39
Table 2.9	Summary of the antenna used by previous researchers	47
Table 2.10	Simulation results for output voltage for different stages circuit with different input frequency	57
Table 2.11	Summary of the diodes used by previous researchers	61
Table 2.12	Summary of the matching techniques used by previous researchers	65
Table 2.13	Summary of all previous work done	66
Table 3.1	Types of diodes and characteristic	71
Table 3.2	Impedance for different stages of 915 MHz Rev A Dickson multiplier	76
Table 3.3	Lumped elements for each stages of 915 MHz Rev A Dickson multiplier 1	77
Table 3.4	Lumped elements for each stages of 915 MHz Rev A Dickson multiplier 2	77
Table 3.5	Impedance for different stages of 915 MHz Rev B Dickson multiplier	83
Table 3.6	Lumped element for each stage of 915 MHz Rev B Dickson multiplier 1	83

Table 3.7	Lumped element for each stage of 915 MHz Rev B Dickson multiplier 2	84
Table 3.8	Impedance for different stages of 1.8 GHz Rev A Dickson multiplier	93
Table 3.9	Lumped elements for each stages of 1.8 GHz Rev A Dickson multiplier 1	93
Table 3.10	Lumped elements for each stages of 1.8 GHz Rev A Dickson multiplier 2	94
Table 3.11	Impedance of different stages of 1.8 GHz Rev B Dickson multiplier	98
Table 3.12	Lumped elements for each stages of 1.8 GHz Rev B Dickson multiplier 1	98
Table 3.13	Lumped elements for each stages of 1.8 GHz Rev B Dickson multiplier 2	98
Table 3.14	Summary of impedance of different stages of 2.4 GHz Dickson multiplier	106
Table 3.15	Values of lumped elements for each stages of 2.4 GHz Rev A Dickson multiplier 1	106
Table 3.16	Values of lumped elements for each stages of 2.4 GHz Rev A Dickson multiplier 2	106
Table 3.17	Summary of impedance of different stages of 2.4 GHz Rev B Dickson multiplier	110
Table 3.18	Values of lumped elements for each stages of 2.4 GHz Rev B Dickson multiplier 1	111
Table 3.19	Values of lumped elements for each stages of 2.4 GHz Rev B Dickson multiplier 2	111
Table 4.1	Overall parameters for mircrostrip line fed printed wide slot antenna	123
Table 4.2	Microstrip line fed printed wide slot antenna parameters values for 915 MHz	125
Table 4.3	Minimum distance requirement for LB-880 far field measurement	130
Table 4.4	1.8 GHz microstrip line fed printed wide slot antenna parameters	133
Table 4.5	2.4 GHz microstrip line fed printed wide slot antenna parameters	139

Table 5.1	Output voltage measured by harvesting from a 915 MHz dedicated RF source	148
Table 5.2	Output voltage measured by harvesting from a 1.8 GHz dedicated RF source	148
Table 5.3	Output voltage measured by harvesting from a 2.4 GHz dedicated RF source	149
Table 5.4	Minimum distance requirement for far field measurement	150
Table 5.5	Output voltage measured by harvesting 915 MHz RF signal from Nokia 100 mobile phone	152
Table 5.6	Output voltage measured by harvesting 1.8 GHz RF signal from Nokia 100 mobile phone	152
Table 5.7	Output voltage measured by harvesting 2.4 GHz RF signal from TP-Link modem	152
Table 5.8	Output voltage measured by harvesting ambient RF sources at 915 MHz, 1.8 GHz and 2.4 GHz	156
Table 5.9	Comparison results for 915 MHz rectifier deigned with Kitazawa's rectifier	157
Table 5.10	Comparison results for 2.45 GHz rectifier designed with Khansalee's rectifier	159

LIST OF FIGURES

		Page
Figure 1.1	Energy Harvesting Systems	2
Figure 1.2	Energy Harvesting Diagram	3
Figure 1.3	Radio Frequency Energy Harvesting Block Diagram	5
Figure 2.1	Potential Source of Energy Harvesting	13
Figure 2.2	Parallel array architectures with switching/summing at the: (a) antenna, (b) output of multiple antennas, (c) output of multiple rectifiers and (d) output of multiple PMMs	16
Figure 2.3	Effect of multiple antennas on EH circuit's voltage	18
Figure 2.4	Effect of multiple antennas on EH circuit's efficiency	18
Figure 2.5	Measured GSM 900 peak power density	20
Figure 2.6	Measured GSM 900 summed power density	20
Figure 2.7	RF power density on GSM 900 in Nanyang Polytechnic, Singapore	21
Figure 2.8	RF power density on GSM 1800 in Nanyang Polytechnic, Singapore	21
Figure 2.9	Max allowable receive power vs distance	22
Figure 2.10	Input RF power density measurements	23
Figure 2.11	Two Port Network	36
Figure 2.12	Printed dipole antenna with integrated microstrip via-hole balun, back and front	37
Figure 2.13	Receiving coil antenna	37
Figure 2.14	Differential microstrip antenna: (a) top view and (b) side view	38
Figure 2.15	50 W folded-dipole antennas next to a British 1 pound coin	38
Figure 2.16	3G copper tape antenna on Perspex	39
Figure 2.17	Three dimensional RFID "Scavenging" antenna using meander line configuration	40
Figure 2.18	Antenna design with meander lines	41

Figure 2.19	Dual-linear polarized antenna	41
Figure 2.20	Fabricated rectenna: (a) top view and (b) bottom view	42
Figure 2.21	Proposed antenna design: (a) top view and (b) side view	42
Figure 2.22	Inkjet-printed dipole antenna	43
Figure 2.23	Effect of multiple antennas on EH circuit's voltage	45
Figure 2.24	Effect of multiple antennas on EH circuit's efficiency	45
Figure 2.25	Printed hexagonal slot antenna	48
Figure 2.26	Rhombus-like wide slot antenna with an offset microstrip fed line	49
Figure 2.27	Microstrip line fed printed square slot antenna with a rotated slot	49
Figure 2.28	Antenna design with parasitic patch at the ground plane	50
Figure 2.29	Microstrip line fed printed wide slot antennas with: (a) a fork-like tuning stub and (b) a microstrip line tuning stub	51
Figure 2.30	Microstrip line fed printed wide slot antennas with: (a) semicircle arc-shape slot and a square patch and (b) equilateral triangular patch	51
Figure 2.31	Microstrip square split ring slot antenna with fork like tuning stub	52
Figure 2.32	Geometry and dimensions of the proposed microstrip line fed printed fractal slot antenna	53
Figure 2.33	Geometry and dimensions of the proposed microstrip line fed printed wide slot antenna with a fractal shaped slot	53
Figure 2.34	Microstrip line fed printed wide slot antenna after two iteration	54
Figure 2.35	Design of the dual band notched slot antenna for WiMAX application	55
Figure 2.36	Top view of the antenna	55
Figure 2.37	Effect of number of stages on the voltage of energy harvesting circuit	56
Figure 2.38	Effect of number of stages on the efficiency of energy harvesting circuit	56
Figure 2.39	Villard multiplier	58
Figure 2.40	Dickson multiplier	60

Figure 3.1	Overall design block diagram	69
Figure 3.2	Multiplier design block diagram	70
Figure 3.3	Schematic diagram of 915 MHz 2 stages Dickson multiplier	74
Figure 3.4	Schematic diagram of 915 MHz 3 stages Dickson multiplier	74
Figure 3.5	Schematic diagram of 915 MHz 4 stages Dickson multiplier	75
Figure 3.6	Schematic diagram of 915 MHz 5 stages Dickson multiplier	75
Figure 3.7	Schematic diagram of 915 MHz 6 stages Dickson multiplier	75
Figure 3.8	915 MHz 5 Stages Dickson multiplier circuit with 50W term	76
Figure 3.9	915 MHz Rev A 5-Stages Dickson multiplier with matching circuit	78
Figure 3.10	Vout against RF input for 915 MHz Rev A Dickson multiplier	79
Figure 3.11	Pout against RF input for 915 MHz Rev A Dickson multiplier	79
Figure 3.12	Pout efficiency VS RF input for 915 MHz Rev A Dickson multiplier	80
Figure 3.13	915 MHz Rev A Dickson multiplier PCB Board	81
Figure 3.14	Schematic diagram of 915 MHz Rev B 2 stages Dickson multiplier	81
Figure 3.15	Schematic diagram of 915 MHz Rev B 3 stages Dickson multiplier	82
Figure 3.16	Schematic diagram of 915 MHz Rev B 4 stages Dickson Multiplier	82
Figure 3.17	Schematic diagram of 915 MHz Rev B 5 stages Dickson multiplier	82
Figure 3.18	Schematic diagram of 915 MHz Rev B 6 stages Dickson multiplier	83
Figure 3.19	915 MHz Rev B 5-Stages Dickson multiplier with matching Circuit	84
Figure 3.20	Vout VS RF input for 915 MHz Rev B Dickson multiplier	85
Figure 3.21	Pout VS RF input for 915 MHz Rev B Dickson multiplier	85
Figure 3.22	Pout efficiency VS RF input for 915 MHz Rev B Dickson	86

multiplier

Figure 3.23	915MHz Rev B Dickson multiplier board	86
Figure 3.24	Block diagram for cable loss measurement	87
Figure 3.25	Cable loss measuring set up	88
Figure 3.26	Block diagram for output voltage measurement	88
Figure 3.27	Output voltage measuring set up	88
Figure 3.28	Comparison between simulated and measured Vout for 915 MHz Rev A Dickson multiplier	89
Figure 3.29	Comparison between simulated and measured Pout efficiency for 915 MHz Rev A Dickson multiplier	90
Figure 3.30	Comparison between simulated and measured Vout for 915 MHz Rev B Dickson multiplier	90
Figure 3.31	Comparison between simulated and measured Pout efficiency for 915 MHz Rev B Dickson multiplier	91
Figure 3.32	Comparison of Vout between 915 MHz Rev A and B	91
Figure 3.33	Comparison of Pout efficiency between 915 MHz Rev A and B	92
Figure 3.34	1.8 GHz Rev A 2-Stages Dickson multiplier with matching circuit	94
Figure 3.35	Vout VS RF input for 1.8 GHz Rev A Dickson multiplier	95
Figure 3.36	Pout VS RF input for 1.8 GHz Rev A Dickson multiplier	96
Figure 3.37	Pout efficiency VS RF input for 1.8 GHz Rev A Dickson Multiplier	96
Figure 3.38	1.8 GHz Rev A Dickson multiplier PCB Board	97
Figure 3.39	1.8 GHz Rev B 5-Stages Dickson multiplier with matching circuit	99
Figure 3.40	Vout VS RF input for 1.8 GHz Rev B Dickson multiplier	99
Figure 3.41	Pout VS RF input for 1.8 GHz Rev B Dickson multiplier	100
Figure 3.42	Pout efficiency VS RF input for 1.8 GHz Rev B Dickson multiplier	101
Figure 3.43	1.8 GHz Rev B Dickson multiplier PCB Board	101
Figure 3.44	Comparison between simulated and measured Vout for 1.8 GHz	102

Rev A Dickson multiplier

Figure 3.45	Comparison between simulated and measured Pout efficiency for 1.8 GHz Rev A Dickson multiplier	103
Figure 3.46	Comparison between simulated and measured Vout for 1.8 GHz Rev B Dickson multiplier	103
Figure 3.47	Comparison between simulated and measured Pout efficiency for 1.8 GHz Rev B Dickson multiplier	104
Figure 3.48	Comparison of Vout between 1.8 GHz Rev A and B	104
Figure 3.49	Comparison of Pout efficiency between 1.8 GHz Rev A and B	105
Figure 3.50	2.4 GHz Rev A 2-Stages Dickson multiplier with matching Circuit	107
Figure 3.51	Vout VS RF input for 2.4 GHz Dickson multiplier Rev A	108
Figure 3.52	Pout VS RF input for 2.4 GHz Dickson multiplier Rev A	108
Figure 3.53	Pout efficiency VS RF input for 2.4 GHz Dickson multiplier Rev A	109
Figure 3.54	2.4 GHz Rev A Dickson multiplier PCB Board	109
Figure 3.55	2.4 GHz Rev B 5-Stages Dickson multiplier with matching Circuit	111
Figure 3.56	Vout VS RF input for 2.4 GHz Rev B Dickson multiplier	112
Figure 3.57	Pout VS RF input for 2.4 GHz Rev B Dickson multiplier	113
Figure 3.58	Pout efficiency VS RF input for 2.4 GHz Rev B Dickson Multiplier	113
Figure 3.59	2.4 GHz Rev B Dickson multiplier PCB Board	114
Figure 3.60	Comparison between simulated and measured Vout for 2.4 GHz Rev A Dickson multiplier	115
Figure 3.61	Comparison between simulated and measured Pout efficiency for 2.4 GHz Rev A Dickson multiplier	115
Figure 3.62	Comparison between simulated and measured Dout for 2.4 GHz Rev B Dickson multiplier	116
Figure 3.63	Comparison between simulated and measured Pout efficiency for	116

2.4 GHz Rev B Dickson multiplier

Figure 3.64	Comparison of Vout between 2.4 GHz Rev A and B	117
Figure 3.65	Comparison of Pout efficiency between 2.4 GHz Rev A and B	117
Figure 4.1	Antenna design block diagram	120
Figure 4.2	Top layer of microstrip line fed printed wide slot antenna	122
Figure 4.3	Bottom layer of microstrip line fed printed wide slot antenna	122
Figure 4.4	Calculate port extension coefficient in CST Studio Suite 2014	123
Figure 4.5	Parameter sweep in CST Studio Suite 2014	124
Figure 4.6	915 MHz microstrip line fed printed wide slot antenna parameters at: (a) top layer and (b) bottom layer	125
Figure 4.7	915 MHz microstrip line fed printed wide slot antenna: (a) top layer and (b) bottom layer	125
Figure 4.8	S11 for microstrip line fed printed wide slot antenna at 915 MHz	126
Figure 4.9	915 MHz microstrip line fed printed wide slot antenna: (a) E-field and (b) H-field radiation pattern	126
Figure 4.10	Gain for 915 MHz microstrip line fed printed wide slot antenna	126
Figure 4.11	(a) Top layer and (b) bottom layer of fabricated microstrip line fed printed wide slot antenna at 915 MHz	127
Figure 4.12	S11 return loss and input impedance measurement block diagram	128
Figure 4.13	S11 return loss and input impedance measurement set-up	128
Figure 4.14	S11 results of 915 MHz antenna	128
Figure 4.15	915 MHz antenna input impedance measurement	129
Figure 4.16	Antenna under test set up block diagram	130
Figure 4.17	Antenna under test set up	131
Figure 4.18	915 MHz antenna E-field radiation pattern	131
Figure 4.19	915 MHz antenna H-field radiation pattern	132
Figure 4.20	1.8 GHz microstrip line fed printed wide slot antenna: (a) top layer and (b) bottom layer	134
Figure 4.21	S11 parameters for 1.8 GHz microstrip line fed printed wide slot antenna	134

Figure 4.22	1.8 GHz microstrip line fed printed wide slot antenna: (a)E-field and (b) H-field radiation patterns	135
Figure 4.23	Gain for 1.8 GHz microstrip line fed printed wide slot antenna	135
Figure 4.24	Fabricated 1.8 GHz microstrip line fed printed wide slot antenna: (a) top layer and (b) bottom layer	136
Figure 4.25	S11 results of 1.8 GHz antenna	136
Figure 4.26	1.8 GHz antenna input impedance measurement	137
Figure 4.27	1.8 GHz antenna E-field radiation pattern	138
Figure 4.28	1.8 GHz antenna H-field radiation pattern	138
Figure 4.29	2.4 GHz microstrip line fed printed wide slot antenna: (a) top layer and (b) bottom layer	140
Figure 4.30	S11 parameters for 2.4 GHz microstrip line fed printed wide slot Antenna	140
Figure 4.31	2.4 GHz microstrip line fed printed wide slot antenna: (a) E-field and (b) H-field radiation pattern	140
Figure 4.32	Gain for 2.4 GHz microstrip line fed printed wide slot antenna	141
Figure 4.33	Fabricated 2.4 GHz microstrip line fed printed wide slot antenna: (a) top layer and (b) bottom layer	141
Figure 4.34	S11 results of 2.4 GHz antenna	142
Figure 4.35	2.4 GHz antenna input impedance measurement	142
Figure 4.36	2.4 GHz antenna E-field radiation pattern	143
Figure 4.37	2.4 GHz antenna H-field radiation pattern	143
Figure 5.1	Straight 50 W RF adapter SMA male to SMA male connector	146
Figure 5.2	Complete rectenna design	146
Figure 5.3	Dedicated RF energy harvesting measurement block diagram	148
Figure 5.4	Dedicated RF energy harvesting real measurement set up	148
Figure 5.5	Mobile phone RF energy harvesting measurement block diagram	151
Figure 5.6	Mobile RF energy harvesting real measurement set up	151
Figure 5.7	Modem RF energy harvesting real measurement set up	151

Figure 5.8	RF signal from Nokia 100	153
Figure 5.9	Ambient RF energy harvesting measurement block diagram	155
Figure 5.10	Ambient RF energy harvesting measurement block diagram	155
Figure 5.11	Ambient RF energy harvesting real measurement set up	156
Figure 5.12	Comparison results for 915 MHz Rev B rectifier designed with Deep Patel's rectifier	158
Figure F.1	915MHz Rev A Dickson multiplier layout	230
Figure F.2	915MHz Rev B Dickson multiplier layout	230
Figure F.3	1.8GHz Rev A Dickson multiplier layout	230
Figure F.4	1.8GHz Rev B Dickson multiplier layout	231
Figure F.5	2.4GHz Rev A Dickson multiplier layout	231
Figure F.6	2.4GHz Rev B Dickson multiplier layout	231

LIST OF ABBREVIATIONS

RF	radio frequency
WSN	wireless sensor network
IPS	Institut Pengajian Siswazah
USM	Universiti Sains Malaysia
WLAN	wireless local area network
VSWR	voltage standing wave ratio
VS	versus
etc	et cetera
TV	television
DC	direct current
AC	alternating current
РСВ	printed circuit board
ADS	Advanced Design System
GSM	Global System for Mobile Communications
DTV	digital television
3 G	third generation
FCC	Federal Communication Commission
MCMC	Malaysian Communications and Multimedia Commission

REKA BENTUK REKTENA YANG DITAMBAHBAIK BAGI PENUAIAN TENAGA RF

ABSTRAK

Pada masa ini, penuaian tenaga frekuensi radio (RF) telah menjadi semakin popular dalam teknologi hijau kerana penambahan daripada stesen pangkalan televisyen, stesen pangkalan telefon mudah alih, Wi-Fi, Bluetooth dan lain-lain. Banyak kajian telah dilakukan ke atas penuaian tenaga RF. Walau bagaimanapun, tenaga RF yang terdapat di sekitar masih terlalu kecil dan kecekapan penukaran di bahagian pengganda adalah sangat rendah. Oleh itu, dalam kajian ini, reka bentuk rektena untuk litar penuaian tenaga RF dalam aplikasi penderia untuk menuai tenaga RF daripada sumber berdedikasi dan ambien telah direka dan dibentangkan. Kajian ini membentangkan tiga reka bentuk rektena yang memberi tumpuan kepada tiga frekuensi yang berbeza iaitu GSM 900, GSM 1800 dan band Wi-Fi kerana kewujudan isyarat tersebut di sekeliling kita. Kajian ini dijalankan dalam beberapa peringkat yang melibatkan reka bentuk litar pengganda, reka bentuk antena, ujian dan pengukuran bagi setiap bahagian, kombinasi pengganda dan antena untuk membentuk rektena serta ujian dan pengukuran untuk rektena. Rektena yang beroperasi pada 915 MHz dapat mencapai voltan pengeluaran sebanyak 0.115 V apabila menuai isyarat RF dari Nokia 100 pada jarak 30 cm. 0.067 V boleh diukur apabila rektena 915 MHz menuai tenaga RF sekitar USM. Rektena yang beroperasi pada 1.8 GHz dapat mencapai voltan pengeluaran sebanyak 0.273 V apabila ia menuai tenaga RF daripada Nokia 100 pada jarak 30 cm. Apabila rektena yang menuai tenaga RF daripada sekeliling, 0.042 V voltan pengeluaran boleh dicapai. Voltan keluaran 0.214 V boleh dicapai apabila rektena 2.4 GHz menuai tenaga RF dari modem router TP-Link dengan jarak 50 cm. 0.037 V voltan pengeluaran boleh diperolehi apabila rektena 2.4 GHz menuai tenaga RF sekeliling. Rektena yang direka menunjukkan prestasi yang baik dan menunjukkan peningkatan daripada kajian sebelumnya tetapi masih mempunyai ruang untuk diperbaiki pada masa akan datang.

AN IMPROVED RECTENNA DESIGN FOR RF ENERGY HARVESTING

ABSTRACT

Nowadays, Radio Frequency (RF) energy harvesting has become increasingly popular in green technology due to the high rise of the television base stations, mobile phone base stations, Wi-Fi, Bluetooth and others. Many researches have been done on harvesting the RF energy. However, the RF energy available around is still too small and the conversion efficiency at the multiplier part is very low. Thus in this research, an improved rectenna design for RF energy harvesting circuit for WSN application has been designed to harvest the RF energy from a dedicated and ambient sources is presented. This research presents three rectenna design which focusing at three different frequencies which are GSM 900, GSM 1800 and Wi-Fi band due to the availability of those signal around us. This research is progressed in few stages involving designs of multiplier circuit, designs of antenna, test and measurement of each part, combination of multiplier and antenna to form rectenna and rectenna test and measurement. Rectenna operating at 915 MHz is able to achieve an output voltage of 0.115 V when harvesting RF signal from Nokia 100 at a distance of 30 cm. 0.067 V can be measured when 915 MHz rectenna harvest RF energy around USM. Rectenna operating at 1.8 GHz able to achieve an output voltage of 0.273 V when it harvest the RF energy from Nokia 100 at a distance of 30 cm. When the rectenna harvest the ambient RF Energy, 0.042 V of output voltage can be measured. Additionally output voltage of 0.214 V can be achieved when the 2.4 GHz rectenna harvest RF energy from a TP-Link modem router with a distance of 50 cm. A 0.037 V of output voltage can be obtained when 2.4 GHz rectenna is harvesting ambient RF energy. The designed rectenna are able to perform well under three conditions or environments. Subsequently they show significant improvements over other related works and in turns have space for further improvement in the future.

CHAPTER ONE

INTRODUCTION

1.1 Significant of Project

Advance developments in sensing technology or mobile handheld devices involving microprocessor and miniaturized radio transceivers have rapidly increased the development of smart structures and machines to be realized. The dream for the future is a universal smart wireless sensor network (WSN) which can autonomously operate and able to accommodate structural or systematic health monitoring, embedded test and evaluation and condition based maintenance of public properties such as bridges, trains and aircraft. WSN is able to alert users or systems of any in-coming disasters or even eliminating the unnecessary scheduled maintenance, thus reducing the cost of human resources. This in evidently improves the safety and reliability of public transportation, industrial manufacturing and military system infrastructure while greatly reduce the maintenance cost.

However in order for the sensor networks to be fully autonomous, there must be a need to eliminate the use of battery and provide alternatives that can both harvest and store the energy continuously; self-sustaining the whole network system. Without the need for battery replacement, there will be no service disruption, thus the maintenance cost will be low. Subsequently, energy harvesting technology has a high potential in replacing batteries or to prolong the life of rechargeable batteries for low power electronic devices.