COMPACT DUAL-LAYER SIW STRUCTURE FOR WIRELESS SYSTEM SOLUTION

by

MUHAMAD HAFIZ BIN MOHD NOOR

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

June 2017

ACKNOWLEDGMENT

Praise be to Allah s.w.t. for giving me the strength and guide me through thick and thin. First and foremost, my greatest honor and appreciation go to Dr. Aftanasar bin Md. Shahar, my supervisor for his tireless dedication, thoughts, encouragement and suggestions in guiding me to complete this research.

It is also my pleasure to thank Assistant Engineer, Mr. Abdul Latip and Madam Shamira for guiding and helping me during the measurement in Communication Lab. My gratitude also goes to Fabrication Lab technicians, En. Elias and En. Zubir for their endless assistant during the fabrication process.

Last but least, I would like to thank my family and friends, who have always encouraged me to strive for my best in this project. Without their prayer and caring, this thesis can't be completed.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xviii
ABSTRAK	xix
ABSTRACT	xxi

CHAPTER ONE - INTRODUCTION

1.1	Overview	1
1.2	Problem Statement	3
1.3	Aim and Objectives	4
1.4	Scope of Research	4
1.5	Limitation of Research	5
1.6	Thesis Contribution	6
1.7	Thesis Outline	7

CHAPTER TWO - LITERATURE REVIEW

2.1	Introdu	action	10	
2.2	2 Theoretical Background			
	2.2.1	Rectangular Waveguide (RWG)	11	
2.3	Overv	ew of Substrate Integrated Waveguide (SIW) Technology	13	
	2.3.1	Basic Structure and Mode in SIW Technology	14	
	2.3.2	Design Parameters of SIW Technology	15	
	2.3.3	Design Equations of SIW Technology	16	

	2.3.4	Advantages of SIW Technology	18
	2.3.5	SIW Circuits and Components	19
2.4	Trend	of SIW Technology	20
	2.4.1	Multilayer Transition Design	21
		2.4.1(a) Multilayer Transition between SIW and Microstrip	21
		2.4.1(b) Multilayer transition between SIW and RWG	24
	2.4.2	Fabrication Techniques	28
		2.4.2(a) LTCC	28
		2.4.2(b) PCB	29
2.5	Equiva	alent circuit Model of Multilayer Transition Design	31
2.6	Coupli	ing Propagation in Multilayer Transition Design	33
2.7	Slot C	oupling in Multilayer Transition Design	34
2.8	Micros	strip Feeder in Multilayer Transition Design	36
2.9	SIW S	lot Array Antenna	39
	2.9.1	Radiating Theorem of Slot Array Antenna	39
	2.9.2	Design Layout of SIW Slot Array Antenna	41
2.10	Summ	ary	45

CHAPTER THREE - METHODOLOGY

3.1	Introdu	uction	49
3.2	Propos	ed Design Layout of Dual-layer SIW Structure	55
	3.2.1	Design Parameter and Calculated Values of Basic SIW Structure	56
	3.2.2	Design Parameter and Calculated Values of Microstrip Taper-via	
		Transition	57
3.3	Equiva	alent circuit and Physical Model of Proposed Dual-layer SIW Struct	ture
	with R	ectangular Slot Coupling	59
	3.3.1	Physical Parameter of Rectangular Slot Coupling Design	61
	3.3.2	Initial Physical Dimension Values of Rectangular Slot Coupling	
		Design	62

	3.3.2(a) Case	1: Parametric Study Analysis on the Phy	sical Slot
	Lengt	h	64
	3.3.2(b) Case Width	2: Parametric Study Analysis on the Phy	sical Slot 64
3.3.	3 Final Physical 2 Design	Dimension Values of Rectangular Slot C	oupling 65
3.4 Equi	valent circuit and	Physical Model of Proposed Dual-lay	er SIW Structure
with	Cross Slot Coupli	ing	66
3.4.	Physical Param	neter of Cross Slot Coupling	68
3.4.	2 Initial Physical	Dimension Values of Cross Slot Coupli	ng 69
	3.4.2(a) Case	1: Parametric Study Analysis on Physica	l Longitudinal
	Slot L	Length	71
	3.4.2(a) Case Slot V	2: Parametric Study Analysis on Physica Width	l Longitudinal 72
3.4.	3 Final Physical	Dimension Values of Cross Slot Couplin	ıg 72
3.5 Sim	lation Set-up of P	Proposed Dual-layer SIW Structure	73
3.5.	Configuration	of Simulation Software	74
3.5.	2 Defining of Die	electric Substrate Material	74
3.5.	3 Creating of Via	a Holes in Proposed Structure	74
3.5.4	Setting of Micr	costrip-taper Transition	74
3.5.	5 Defining of Wa	aveguide Port	75
3.5.	5 Settings for Fai	r-field Monitor	75
3.5.	7 Settings for Tra	ansient Solver	75
3.6 Fabr	cation Process of	Proposed Dual-layer SIW Structure	75
3.6.	Fabricated of P	Proposed Dual-layer SIW Structure	76
	3.6.1(a) Fabric Coup	cated Dual-layer SIW Structure with Rec	tangular Slot 77
	3.6.1(b) Fabric Coup	cated Dual-layer SIW Structure with Cro	ss Slot 77

3.7	Measu	urement Set-up of Assembled Dual-layer SIW Structure	78
	3.7.1	S-Parameters Measurement Set-up	78
3.8	Multil	ilayer SIW System	79
	3.8.1	SIW Slot Array Antenna in Multilayer SIW System	79
	3.8.2	Design Layout of Multilayer SIW System	81
3.9	Simula	lation and Fabrication Process of Multilayer SIW System	82
	3.9.1	Fabricated Structure of Multilayer SIW System	83
		3.9.1(a) Fabricated Multilayer SIW System with Rectan	gular Slot
		Coupling	83
		3.9.1(b) Fabricated Multilayer SIW System with Cross	Slot Coupling84
3.10) Measi	surement Set-up of Assembled Multilayer SIW System	84
	3.10.1	1 S-Parameters Measurement Set-up	84
	3.10.2	2 Far-field Radiation Pattern and Gain Measurement Set-u	p 85
3.11	l Summ	nary	87

CHAPTER FOUR - RESULTS AND DISCUSSION

4.1	Introdu	uction								89
4.2	Analys	sis Resul	ts of	Parametric	Study	on	the	Physical	Slot	Coupling
	Dimen	sion								89
	4.2.1	Simulate	d Rest	lts of Parame	etric Stu	dy A	nalys	sis on Rect	angula	ır Slot
		Coupling	Dime	nsions						90
		4.2.1(a)	Physic	cal Slot Leng	th Effec	t				90
		4.2.1(b)	Physic	cal Slot Widt	h Effect					92
	4.2.2	Simulate	d Rest	lts of Parame	etric Stu	dy A	nalys	sis on Cros	s Slot	Coupling
										94
		4.2.2(a)	Physic	cal Longitudi	nal Slot	Leng	gth E	ffect		94
		4.2.2(b)	Physic	cal Longitudi	nal Slot	Wid	th Ef	fect		95
4.3	Model	ling, Simu	lation	, and Measur	ement R	esult	S			97
	4.3.1	Dual-lay	er SIW	Structure wi	ith Recta	angu	lar Sl	ot Couplir	ng	97

		4.3.1(a)	Modeled, Simulated, and Measured S-parameter Results	98
	4.3.2	Dual-lay	er SIW Structure with Cross Slot Coupling	100
		4.3.2(a)	Modeled, Simulated and Measured S-Parameter Results	101
4.4	Comp	arison for	Measured Bandwidth of Assembled Dual-layer SIW Stre	ucture
	with R	lectangula	r and Cross Slot Coupling	104
4.5	Multil	ayer SIW	System	106
	4.5.1	Multilay	er SIW System with Rectangular Slot Coupling	106
		4.5.1(a)	Simulated and Measured Return Loss	107
		4.5.1(b)	Simulated and Measured VSWR	108
		4.5.1(c)	Simulated and Measured Radiation Pattern	109
		4.5.1(d)	Simulated and Measured Gain	111
	4.5.2	Multilay	er SIW System with Cross Slot Coupling	112
		4.5.2(a)	Simulated and Measured Return Loss	113
		4.5.2(b)	Simulated and Measured VSWR	114
		4.5.2(c)	Simulated and Measured Radiation Pattern	115
		4.5.2(d)	Simulated and Measured Gain	117
4.6	Comp	arison of	Proposed Dual-layer SIW Structure with Conventional SI	W-to-
	Rectar	ngular Wa	veguide Transition	119
4.7	Comp	arison of	Proposed Multilayer SIW System with Conventional S	Single
	Layer	SIW Syst	em	120
4.8	Summ	ary		122

CHAPTER FIVE - CONCLUSION AND FUTURE WORK

5.1	Conclusion	124
5.2	Future Works	127

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Summarized on the several multilayer transition designs between SIW technology and other types of transmission lines	46
Table 2.2	Summarized on the existing fabrication techniques such as LTCC and PCB to realize the multilayer transition design with SIW component	47
Table 2.3	Summarized on the existing slot coupling in the multilayer transition design.	48
Table 2.4	Summarized on the existing SIW slot array antenna to be implemented as a compact multilayer SIW system	48
Table 3.1	Design specifications to design the proposed dual-layer SIW structure	52
Table 3.2	Design specifications to implement the proposed dual-layer SIW structure as a multilayer SIW system	53
Table 3.3	Calculated design parameter values of the basic SIW structure in the proposed dual-layer SIW structure at operating frequency of 10 GHz	57
Table 3.4	Calculated physical parameter values of the microstrip taper- via transition in the dual-layer SIW structure at 10 GHz	59
Table 3.5	Calculated scattering parameter values for the equivalent- circuit model of the proposed dual-layer SIW structure with rectangular slot coupling	61
Table 3.6	Calculated initial physical dimension values of the rectangular slot coupling design in the proposed dual-layer SIW structure	63
Table 3.7	Physical dimension values for the parametric study analysis of Case 1 on the slot length, longx	64
Table 3.8	Physical dimension values for the parametric study analysis of Case 2 on the slot width, longy	65
Table 3.9	Final physical dimension values of the rectangular slot coupling design in the proposed dual-layer SIW structure	66

Table 3.10	Calculated scattering parameters values for the equivalent- circuit model of the proposed dual-layer SIW structure with cross slot coupling	68
Table 3.11	Calculated initial physical dimension values of the cross slot coupling design in the proposed dual-layer SIW structure	70
Table 3.12	Physical dimension values for the parametric study analysis of Case 1 on the physical longitudinal slot length, longcx	71
Table 3.13	Physical dimension values for the parametric study analysis of Case 2 on the physical longitudinal slot width, longcy	72
Table 3.14	Physical dimension values for the parametric study analysis of Case 2 on the physical longitudinal slot width, longcy	73
Table 3.15	Calculated physical dimension values of the slotted array in the multilayer system at operating frequency of 10.0 GHz	81
Table 4.1	Comparison of simulated S-parameters of parametric study analysis on the physical slot length	92
Table 4.2	Comparison of simulated S-parameters of parametric study analysis on the physical slot width	93
Table 4.3	Comparison of simulated bandwidth for the parametric study analysis of Case 1 on the longitudinal slot length of the cross slot coupling	95
Table 4.4	Comparison of simulated bandwidth performance for the parametric study analysis of Case 2 on the longitudinal slot width of the cross slot coupling	97
Table 4.5	Comparison of S-parameters results of the modeled, simulated, and measured of dual-layer SIW structure with rectangular slot coupling	100
Table 4.6	Comparison of simulated S-parameters of the modelled, simulated, and measured of the dual-layer SIW structure with cross slot coupling	103
Table 4.7	Comparison of measured bandwidth of the assembled dual- layer SIW structure with rectangular slot coupling and cross slot coupling	105
Table 4.8	Comparison of simulated and measured return loss and bandwidth of multilayer SIW system with rectangular slot coupling design	108

- Table 4.9Comparison of simulated and measured VSWR and 108
bandwidth of the multilayer SIW system with rectangular slot
coupling design at 10.GHz
- Table 4.10Comparison of simulated and measured E-field radiation110pattern of the multilayer SIW system with rectangular slotcoupling at 10 GHz
- Table 4.11Comparison of simulated and measured H-field radiation110pattern of the multilayer SIW system with rectangular slotcoupling at 10 GHz
- Table 4.12Comparison of simulated and measured gain of the multilayer112SIW system with rectangular slot coupling over frequency
range studied112
- Table 4.13Comparison of simulated and measured return loss and
bandwidth of the multilayer SIW system with cross slot
coupling114
- Table 4.14Comparison of simulated and measured VSWR return loss115and bandwidth of multilayer SIW system with cross slotcoupling design at 10 GHz
- Table 4.15Comparison of simulated and measured E-field radiation116pattern of multilayer SIW system with cross slot coupling
design at 10 GHz frequency10
- Table 4.16Comparison of simulated and measured H-field radiation117pattern of multilayer SIW system with cross slot coupling
design at 10 GHz frequency10
- Table 4.17Comparison of simulated and measured gain of multilayer118SIW system with cross slot coupling over frequency range
studiedstudied
- Table 4.18Comparison between the previous transition design between120SIW to rectangular waveguide and proposed transition design
between SIW to SIW120
- Table 4.19Comparison between the previous literature on single layer122SIW system and the proposed multilayer SIW system

LIST OF FIGURES

		Page
Figure 2.1	Basic structure of the rectangular waveguide (Wu et al., 2015)	12
Figure 2.2	The electromagnetic field distribution in dominant TE10 mode of the rectangular waveguide (Wu et al., 2015)	13
Figure 2.3(a)	Basic SIW structure (Deslandes & Wu, 2006)	15
Figure 2.3(b)	Cross section with electromagnetic wave distribution in dominant TE10 mode (Deslandes & Wu, 2006)	15
Figure 2.4	Design parameter representation of SIW structure (Bozzi et al., 2007)	16
Figure 2.5(a)	Geometry of the multilayer transition design between SIW structure and microstrip line with a circular slot (Hizan et al., 2010)	22
Figure 2.5(b)	Geometry of the multilayer transition design between SIW structure and microstrip line with with a T-slot coupling (Zakaria et al., 2013)	23
Figure 2.6(a)	Geometry of the multilayer transition design between SIW structure and RWG with height-tapered metal waveguide (Lei Xia et al., 2006)	25
Figure 2.6(b)	Geometry of the multilayer transition design between SIW structure and RWG with antipodal fin-line (Zhong et al., 2009	25
Figure 2.6(c)	Geometry of the multilayer transition design between SIW structure and RWG with width-tapered SIW (Dousset et al., 2010)	25
Figure 2.7(a)	Geometry of the multilayer transition design between SIW structure and RWG with a longitudinal slot coupling (Li et al., 2009)	26
Figure 2.7(b)	Geometry of the multilayer transition design between SIW structure and RWG with two longitudinal slots coupling (Glogowski et al., 2013)	27
Figure 2.7(c)	Geometry of the multilayer transition design between SIW structure and RWG with a patch type structure (Li & Luk, 2014)	27

Figure 2.8(a)	Cross section of two layers infinite waveguide with transverse slot coupling (I. A. Eshrah et al., 2004)	31
Figure 2.8(b)	Lumped-element equivalent circuit model of LCT combination (I. A. Eshrah et al., 2004)	31
Figure 2.9	Electrical model for the field analysis of EM propagation in the aperture-coupled stripline-to-waveguide transition (Hicks et al., 2003)	34
Figure 2.10(a)	Multilayer transition design with transverse/longitudinal slot coupling (Abdel-Wahab & Safavi-Naeini, 2011)	35
Figure 2.10(b)	Multilayer transition design with cross slot coupling (Albooyeh et al., 2008)	36
Figure 2.10(c)	Multilayer transition design with U-shape slot coupling (Huang & Wu, 2012)	36
Figure 2.11(a)	Microstrip feeder as a direct transition into SIW structure (Nam et al., 2005) (c) with two added vias located symmetrically at both sides of taper transition into SIW (Kordiboroujeni & Bornemann, 2014)	38
Figure 2.11(b)	Microstrip feeder with taper transition into SIW structure (Deslandes, 2010)	37
Figure 2.11(c)	Microstrip feeder with two added vias located symmetrically at both sides of taper transition into SIW (Kordiboroujeni & Bornemann, 2014)	38
Figure 2.12(a)	Slot antenna (Collin & Zucker, 1969)	40
Figure 2.12(b)	Dipole antenna (Collin & Zucker, 1969)	40
Figure 2.13(a)	Design layout of SIW slot array antenna with center-fed (Farahani et al., 2012)	42
Figure 2.13(b)	Design layout of SIW slot array antenna with comb- shaped choke at the ground plane (Wei et al., 2013)	42
Figure 2.13(c)	Design layout of SIW slot array antenna with different slot numbers (S. Moitra et al., 2013)	42
Figure 2.14	Configuration of SIW slot array antenna with two slotted array (S. Moitra et al., 2013)	43
Figure 3.1	The block diagram of proposed dual-layer SIW structure	50

Figure 3.2	Flowchart showing research methodology for designing and simulating of dual-layer SIW structure with rectangular and cross slot coupling	52
Figure 3.3	Flowchart showing research methodology for fabricating and measuring of dual-layer SIW structure with rectangular and cross slot coupling	53
Figure 3.4	Flowchart showing research methodology for implementation of the proposed dual-layer SIW structure as a multilayer SIW system	54
Figure 3.5(a)	Design layout of the proposed dual-layer SIW structure with slot coupling before all layers combined together	55
Figure 3.5(b)	Design layout of the proposed dual-layer SIW structure with slot coupling after all layers combined together	56
Figure 3.5(c)	Design layout of the proposed dual-layer SIW structure with slot coupling with TE_{10} mode field intensity at 10 GHz operating frequency.	56
Figure 3.6	Physical design parameters representation of the basic SIW structure in the proposed dual-layer SIW structure	57
Figure 3.7	Physical design parameters representation of the microstrip taper-via transition with two added metallic via holes in the proposed dual-layer SIW structure	58
Figure 3.8(a)	Equivalent-circuit model of the proposed dual-layer SIW structure with rectangular slot coupling	61
Figure 3.8(b)	Physical model of the proposed dual-layer SIW structure with rectangular slot coupling	61
Figure 3.9	Geometry of the rectangular slot coupling design in the proposed dual-layer SIW structure	62
Figure 3.10	Initial physical dimension representation of the rectangular slot coupling design in the dual-layer SIW structure	63
Figure 3.11(a)	Equivalent-circuit model of the proposed dual-layer SIW structure with cross slot coupling design	68
Figure 3.11(b)	Physical model of the proposed dual-layer SIW structure with cross slot coupling design	68
Figure 3.12	Geometry of the physical parameters of the cross slot coupling design in the proposed dual-layer SIW structure	69

Figure 3.13	Initial physical dimension representation of the cross slot coupling design in the proposed dual-layer SIW structure	70
Figure 3.14	Process flow of the simulation set-up for designing the proposed dual-layer SIW structure	73
Figure 3.15	Standard steps of fabricating the proposed dual-layer SIW structure using conventional PCB process	76
Figure 3.16(a)	Fabricated dual-layer SIW structure with rectangular slot coupling before assembled	77
Figure 3.16(b)	Fabricated dual-layer SIW structure with rectangular slot coupling after assembled	77
Figure 3.17(a)	Fabricated dual-layer SIW structure with cross slot coupling before assembled	78
Figure 3.17(b)	Fabricated dual-layer SIW structure with cross slot coupling after assembled	78
Figure 3.18	S-Parameter measurement set-up of the assembled dual- layer SIW structure with rectangular/cross slot coupling using Network Analyzer	79
Figure 3.19	Design parameters representation of the slotted array antenna in the multilayer SIW system	80
Figure 3.20(a)	Design layout of the multilayer SIW system before assemble with rectangular slot coupling	82
Figure 3.20(b)	Design layout of the multilayer SIW system before assemble with cross slot coupling	82
Figure 3.20(c)	Design layout of the multilayer SIW system after assembled with rectangular and cross slot coupling	82
Figure 3.21(a)	Fabricated multilayer SIW system with rectangular slot coupling before assembled	83
Figure 3.21(b)	Fabricated multilayer SIW system with rectangular slot coupling after assembled	83
Figure 3.22(a)	Fabricated multilayer SIW system with cross slot coupling before assembled	84
Figure 3.22(b)	Fabricated multilayer SIW system with cross slot coupling after assembled	84

Figure 3.23	S-Parameter measurement set-up of the assembled multilayer SIW system with rectangular/cross slot	85
Figure 3.24	Far-field radiation pattern measurement set-up of the assembled multilayer SIW system with rectangular/cross slot coupling	86
Figure 4.1	Simulated S-parameters of parametric study of Case 1 on the physical slot length	91
Figure 4.2	Simulated S-parameters of parametric study of Case 2 on the physical slot width	93
Figure 4.3	Simulated bandwidth for the parametric study analysis of Case 1 on the longitudinal slot length of the cross slot coupling	95
Figure 4.4	Simulated S-parameters for the parametric study analysis of Case 2 on the longitudinal slot width of cross slot coupling	97
Figure 4.5(a)	Equivalent-circuit model of dual-layer SIW structure with rectangular slot coupling	98
Figure 4.5(b)	Physical model of dual-layer SIW structure with rectangular slot coupling	98
Figure 4.5(c)	Assembled structure of dual-layer SIW structure with rectangular slot coupling design	98
Figure 4.6	Modeled, simulated and measured S-parameters results of the proposed dual-layer SIW structure with rectangular slot coupling	100
Figure 4.7(a)	Equivalent-circuit model of dual-layer SIW structure with cross slot coupling design	101
Figure 4.7(b)	Physical model of dual-layer SIW structure with cross slot coupling design	101
Figure 4.7(c)	Assembled structure of dual-layer SIW structure with cross slot coupling design	101
Figure 4.8	S-Parameter of the modeled, simulated and measured results of dual-layer SIW structure with cross slot coupling design	103
Figure 4.9(a)	Physical model of configuration design of multilayer SIW system with rectangular slot coupling	106

Figure 4.9(b)	Assembled structure of configuration design of multilayer SIW system with rectangular slot coupling	106
Figure 4.10	Simulated and measured return loss of multilayer SIW system with rectangular slot coupling design	107
Figure 4.11	Simulated and measured VSWR of multilayer SIW system with rectangular slot coupling design	108
Figure 4.12(a)	E-plane of simulated and measured radiation pattern of the multilayer SIW system with rectangular slot coupling at 10.0 GHz	110
Figure 4.12(b)	H-plane of simulated and measured radiation pattern of the multilayer SIW system with rectangular slot coupling at 10.0 GHz	110
Figure 4.13	Simulated and measured gain of the multilayer SIW system with rectangular slot coupling design	112
Figure 4.14(a)	Physical model of configuration design of the multilayer SIW system with cross slot coupling	113
Figure 4.14(b)	Assembled structure of configuration design of the multilayer SIW system with cross slot coupling	113
Figure 4.15	Simulated and measured return loss value of the multilayer SIW system with cross slot coupling	114
Figure 4.16	Simulated and measured VSWR of multilayer SIW system with cross slot coupling	115
Figure 4.17(a)	E-field of measured and simulated radiation pattern of multilayer SIW system with cross slot coupling at 10 GHz	116
Figure 4.17(b)	H-field of measured and simulated radiation pattern of multilayer SIW system with cross slot coupling at 10 GHz	116
Figure 4.18	Simulated and measured gain of the multilayer SIW system with cross slot coupling	118

LIST OF ABBREVIATIONS

- 3D Three Dimension
- ADS Advance Design System
- AUT Antenna Under Test
- CPW Coplanar Waveguide
- CST Computer Simulation Technology
- EM Electromagnetic
- HPBW Half Power Beamwidth
- LCT Inductance-Capacitor-Transformer
- TE Transverse Electric
- TM Transverse Magnetic
- LTTC Low-Temperature Co-Fired Ceramic
- PCB Printed Circuit Board
- RF Radio Frequency
- RWG Rectangular Waveguide
- SIW Substrate Integrated Waveguide
- SMA Sub-Miniature version A
- VSWR Voltage Standing Wave Ratio

STRUKTUR PADAT DWI-LAPISAN SIW UNTUK PENYELESAIAN SISTEM TANPA WAYAR

ABSTRAK

Cabaran untuk memperoleh cara baru dan realistik bagi menunjukkan jalan penyelesaian inovatif sistem RF telah membawa pereka-pereka untuk meneruskan dan mengoptimumkan reka bentuk peralihan pelbagai lapisan yang sedia ada. Dalam kajian ini, ciri-ciri reka bentuk dan serba boleh yang terdapat dalam teknologi SIW telah diterokai, direalisasi, dan seterusnya dicirikan dalam dwi-lapisan SIW struktur yang dicadangkan untuk kemungkinan penyelesaian sistem RF di 10 GHz. Dwilapisan struktur SIW yang dicadangkan terdiri daripada dua SMA-mikrostrip kerugian yang rendah dengan tirus-via peralihan sebagai input dan output di antara muka, dan dua struktur SIW yang disusun secara manual disambungkan secara elektrik melalui slot gandingan kecil. Slot gandingan direka dan dimodelkan berdasarkan kepada dua bentuk yang berbeza; slot gandingan segi empat tepat dan slot gandingan bersilang untuk peningkatan jalur lebar. Setiap satu daripada reka bentuk slot gandingan dioptimumkan dengan menggunakan kajian parametrik. Semua struktur yang dicadangkan masing-masing direka dan dimodelkan menggunakan perisian CST dan ADS. Kemudian, mereka direalisasikan menggunakan teknologi konvensional Papan Litar Bercetak (PCB) pada Rogers 4003C dengan $\varepsilon_r = 3.38$ dan ketebalan 0.813 mm. Struktur yang dicadangkan dipasang secara manual menggunakan bahan pelekat, dan diukur untuk pengesahan rekabentuk. Keputusan diukur bagi dwi-lapisan SIW struktur yang dipasang secara manual dengan slot gandingan segi empat tepat dan slot gandingan silang menunjukkan keputusan hampir menjanjikan berbanding dengan hasil keputusan simulasi dan dimodelkan. Kedua-dua struktur yang dipasang secara

manual memperoleh kehilangan pulangan kurang daripada 10 dB, kehilangan sisipan lebih daripada 3 dB, dan lebar jalur yang lebih baik daripada 10 %. Selepas itu, dwilapisan struktur SIW yang dicadangkan dilaksanakan sebagai sistem pelbagai lapisan SIW dengan menggabungkan SIW slot antenna di atasnya. Untuk pengesahan reka bentuk, sistem pelbagai lapisan SIW yang dicadangkan difabrikasi dan dipasang secara manual. Perjanjian yang baik antara keputusan simulasi dan diukur untuk sistem pelbagai lapisan SIW ditunjukkan pada frekuensi salunan yang sama iaitu pada 10 GHz. Sistem pelbagai lapisan SIW yang dipasang dengan slot gandingan segi empat tepat diukur untuk mempunyai kehilangan pulangan sebanyak 21.5 dB, lebar jalur sebanyak 200 MHz, dan keuntungan sebanyak 6.05 dBi. Kemudian, sistem pelbagai lapisan SIW yang dipasang dengan slot gandingan silang diukur untuk mempunyai kehilangan pulangan sebnyak 24.0 dB, lebar jalur sebanyak 280 MHz, dan keuntungan sebanyak 5.93 dBi. Jalur lebar bagi sistem pelbagai lapisan SIW yang dipasang dengan slot gandingan silang menunjukkan peningkatan sebanyak 0.8 % berbanding dengan sistem pelbagai lapisan SIW yang dipasang dengan slot gandingan segi empat tepat. Prestasi elektrik di atas menunjukkan bahawa reka bentuk peralihan pelbagai lapisan yang dipasang mempunyai potensi untuk penyelesaian sistem RF pada 10 GHz, yang biasanya digunakan untuk aplikasi radar dan satelit.

COMPACT DUAL-LAYER SIW STRUCTURE FOR WIRELESS SYSTEM SOLUTION

ABSTRACT

The challenge to acquire new and realistic means to demonstrate innovative RF system solution has lead designers to pursue and optimize available multilayer transition design. In this research, design properties and versatility exhibited in SIW technology has been explored, realized, and then characterized in a proposed duallayer SIW structure for possible RF system solution at 10 GHz. The proposed duallayer SIW structure consists of two low loss SMA-microstrip taper-via transition, and two manually stacked SIW structures electrically connected via a small slot coupling. The slot coupling is designed and modeled based on two different shapes; rectangular slot coupling and cross slot coupling for bandwidth enhancement. Each of the slot coupling design are optimized using parametric studies. All the proposed structures are designed and modeled using CST and ADS software, respectively. Then, they are realized using conventional Printed Circuit Board (PCB) technology on Rogers 4003C with $\varepsilon_r = 3.38$ and thickness of 0.813 mm. These proposed structure are manually assembled using adhesive material, and measured for design verifications. Measured results of the manually assembled dual-layer SIW structure with rectangular slot coupling and cross slot coupling shows almost promising results compared within the simulated and modeled results. Both manually assembled structures were obtained return loss less than 10 dB, insertion loss more than 3 dB, and bandwidth better than 10%. After that, the proposed dual-layer SIW structure is implemented as a multilayer SIW system by incorporating a SIW slot array antenna on it. For design verifications, the proposed multilayer SIW system is fabricated and manually assembled. Good agreement between simulated and measured results for the multilayer SIW systems is demonstrated at the same resonance frequency of 10 GHz. The assembled multilayer SIW system with rectangular slot coupling was measured to have return loss of 21.5 dB, bandwidth of 200 MHz, and gain of 6.05 dBi. Then, the assembled multilayer SIW system with cross slot coupling was measured to have return loss of 24.0 dB, bandwidth of 280 MHz, and gain of 5.93 dBi. Bandwidth of the assembled multilayer SIW system with cross slot coupling shows enhancement by 0.8 % compared to the assembled multilayer SIW system with rectangular slot coupling. The above electrical performance indicated that the assembled multilayer transition design have potential for 10 GHz RF system solution, which commonly used for radar and satellite applications.

CHAPTER ONE

INTRODUCTION

1.1 Overview

Growing demand in the field of micrometer-wave and millimeter-wave frequency design requires a development of novel structures, with the aim to reduce cost, design complexity, and weight. These requirements can be archived by combining two or more types of transmission line in one single substrate as a multilayer transition design and fabricated using low-cost fabrication methods. In this recent years, Substrate Integrated Waveguide (SIW) technology has been introduced in several papers and journals as a laminated waveguide, which are easily demonstrated using conventional Printed Circuit Board (PCB) fabrication method. Since the introduction of SIW, various SIW-based component, interconnection, and circuits have been developed which offer advantages over other transmission lines.

Basically, SIW technology is a 3-Dimensional (3D) structure essentially dielectric filled rectangular waveguide but in planar form. The SIW technology is formed by arranging two rows of metallic via holes to replace metallic walls in the conventional dielectric filled rectangular waveguide. Therefore, SIW technology still maintains the advantages of the rectangular waveguide such as low loss, good power handling, and good shielding although in planar form. Thus, SIW technology becomes one of the best choices for signal transmission and integration with planar circuits. Subsequently, SIW technology has been rapidly used in many circuit components such as power dividers (Kordiboroujeni & Bornemann, 2013), resonator cavities (Sirci et al., 2011), filter (Zhang et al., 2007), and antenna (Wang et al., 2010).

As interconnection, SIW technology usually provides bandpass characteristics with a good isolation from electromagnetic interference. Meanwhile, planar conventional transmission lines are known as crowding in ultra-wideband systems due to their limited bandwidth and high-frequency losses. In SIW technology, the electric field distribution fills the volume inside the waveguide, while surface currents are maximum propagate at the waveguide walls, which contribute to the lower conductor loss. As the design frequency and circuit density are increased, the use of conventional transmission lines interconnects such as microstrip line and strip line are become diminished. Their open structure have increases the radiation loss. Therefore, the demands for wideband interconnects and compact structure brings SIW technology as a solution to implement in several RF applications at high-frequency design.

Recently, the development of multilayer transition design involving SIW technology has become a subject undergoing intense study in order to fulfill current RF demands (Bozzi et al., 2009). Hence, various multilayer transition design between rectangular waveguide to SIW structure have been explored for microwave and millimeter wave frequency band (Li et al., 2009; Glogowski et al., 2013; Li & Luk, 2014). The multilayer transition design between SIW structure and rectangular waveguide offers improved performance in term of low transmission loss, high power capacity, and solve interconnection problems. However, the use of the rectangular waveguide especially dielectric-filled rectangular waveguide in the multilayer transition design still does not promise a compact structure and reduce design

2