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STRUKTUR PADAT DWI-LAPISAN SIW UNTUK

PENYELESAIAN SISTEM TANPA WAYAR

ABSTRAK

Cabaran untuk memperoleh cara baru dan realistik bagi menunjukkan jalan
penyelesaian inovatif sistem RF telah membawa pereka-pereka untuk meneruskan dan
mengoptimumkan reka bentuk peralihan pelbagai lapisan yang sedia ada. Dalam
kajian ini, ciri-ciri reka bentuk dan serba boleh yang terdapat dalam teknologi SIW
telah diterokai, direalisasi, dan seterusnya dicirikan dalam dwi-lapisan SIW struktur
yang dicadangkan untuk kemungkinan penyelesaian sistem RF di 10 GHz. Dwi-
lapisan struktur SIW yang dicadangkan terdiri daripada dua SMA-mikrostrip kerugian
yang rendah dengan tirus-via peralihan sebagai input dan output di antara muka, dan
dua struktur SIW yang disusun secara manual disambungkan secara elektrik melalui
slot gandingan kecil. Slot gandingan direka dan dimodelkan berdasarkan kepada dua
bentuk yang berbeza; slot gandingan segi empat tepat dan slot gandingan bersilang
untuk peningkatan jalur lebar. Setiap satu daripada reka bentuk slot gandingan
dioptimumkan dengan menggunakan kajian parametrik. Semua struktur yang
dicadangkan masing-masing direka dan dimodelkan menggunakan perisian CST dan
ADS. Kemudian, mereka direalisasikan menggunakan teknologi konvensional Papan
Litar Bercetak (PCB) pada Rogers 4003C dengan &, = 3.38 dan ketebalan 0.813 mm.
Struktur yang dicadangkan dipasang secara manual menggunakan bahan pelekat, dan
diukur untuk pengesahan rekabentuk. Keputusan diukur bagi dwi-lapisan SIW
struktur yang dipasang secara manual dengan slot gandingan segi empat tepat dan slot
gandingan silang menunjukkan keputusan hampir menjanjikan berbanding dengan

hasil keputusan simulasi dan dimodelkan. Kedua-dua struktur yang dipasang secara

Xix



manual memperoleh kehilangan pulangan kurang daripada 10 dB, kehilangan sisipan
lebih daripada 3 dB, dan lebar jalur yang lebih baik daripada 10 %. Selepas itu, dwi-
lapisan struktur SIW yang dicadangkan dilaksanakan sebagai sistem pelbagai lapisan
SIW dengan menggabungkan SIW slot antenna di atasnya. Untuk pengesahan reka
bentuk, sistem pelbagai lapisan SIW yang dicadangkan difabrikasi dan dipasang
secara manual. Perjanjian yang baik antara keputusan simulasi dan diukur untuk
sistem pelbagai lapisan SIW ditunjukkan pada frekuensi salunan yang sama iaitu pada
10 GHz. Sistem pelbagai lapisan SIW yang dipasang dengan slot gandingan segi
empat tepat diukur untuk mempunyai kehilangan pulangan sebanyak 21.5 dB, lebar
jalur sebanyak 200 MHz, dan keuntungan sebanyak 6.05 dBi. Kemudian, sistem
pelbagai lapisan SIW yang dipasang dengan slot gandingan silang diukur untuk
mempunyai kehilangan pulangan sebnyak 24.0 dB, lebar jalur sebanyak 280 MHz,
dan keuntungan sebanyak 5.93 dBi. Jalur lebar bagi sistem pelbagai lapisan SIW yang
dipasang dengan slot gandingan silang menunjukkan peningkatan sebanyak 0.8
% berbanding dengan sistem pelbagai lapisan SIW yang dipasang dengan slot
gandingan segi empat tepat. Prestasi elektrik di atas menunjukkan bahawa reka bentuk
peralihan pelbagai lapisan yang dipasang mempunyai potensi untuk penyelesaian

sistem RF pada 10 GHz, yang biasanya digunakan untuk aplikasi radar dan satelit.

XX



COMPACT DUAL-LAYER SIW STRUCTURE FOR WIRELESS

SYSTEM SOLUTION

ABSTRACT

The challenge to acquire new and realistic means to demonstrate innovative
RF system solution has lead designers to pursue and optimize available multilayer
transition design. In this research, design properties and versatility exhibited in SIW
technology has been explored, realized, and then characterized in a proposed dual-
layer SIW structure for possible RF system solution at 10 GHz. The proposed dual-
layer SIW structure consists of two low loss SMA-microstrip taper-via transition, and
two manually stacked SIW structures electrically connected via a small slot coupling.
The slot coupling is designed and modeled based on two different shapes; rectangular
slot coupling and cross slot coupling for bandwidth enhancement. Each of the slot
coupling design are optimized using parametric studies. All the proposed structures
are designed and modeled using CST and ADS software, respectively. Then, they are
realized using conventional Printed Circuit Board (PCB) technology on Rogers 4003C
with &, = 3.38 and thickness of 0.813 mm. These proposed structure are manually
assembled using adhesive material, and measured for design verifications. Measured
results of the manually assembled dual-layer SIW structure with rectangular slot
coupling and cross slot coupling shows almost promising results compared within the
simulated and modeled results. Both manually assembled structures were obtained
return loss less than 10 dB, insertion loss more than 3 dB, and bandwidth better than
10 %. After that, the proposed dual-layer SIW structure is implemented as a multilayer
SIW system by incorporating a SIW slot array antenna on it. For design verifications,

the proposed multilayer SIW system is fabricated and manually assembled. Good
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agreement between simulated and measured results for the multilayer SIW systems is
demonstrated at the same resonance frequency of 10 GHz. The assembled multilayer
SIW system with rectangular slot coupling was measured to have return loss of 21.5
dB, bandwidth of 200 MHz, and gain of 6.05 dBi. Then, the assembled multilayer
SIW system with cross slot coupling was measured to have return loss of 24.0 dB,
bandwidth of 280 MHz, and gain of 5.93 dBi. Bandwidth of the assembled multilayer
SIW system with cross slot coupling shows enhancement by 0.8 % compared to the
assembled multilayer SIW system with rectangular slot coupling. The above electrical
performance indicated that the assembled multilayer transition design have potential
for 10 GHz RF system solution, which commonly used for radar and satellite

applications.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

Growing demand in the field of micrometer-wave and millimeter-wave frequency
design requires a development of novel structures, with the aim to reduce cost, design
complexity, and weight. These requirements can be archived by combining two or
more types of transmission line in one single substrate as a multilayer transition design
and fabricated using low-cost fabrication methods. In this recent years, Substrate
Integrated Waveguide (SIW) technology has been introduced in several papers and
journals as a laminated waveguide, which are easily demonstrated using conventional
Printed Circuit Board (PCB) fabrication method. Since the introduction of SIW,
various SIW-based component, interconnection, and circuits have been developed

which offer advantages over other transmission lines.

Basically, SIW technology is a 3-Dimensional (3D) structure essentially
dielectric filled rectangular waveguide but in planar form. The SIW technology is
formed by arranging two rows of metallic via holes to replace metallic walls in the
conventional dielectric filled rectangular waveguide. Therefore, SIW technology still
maintains the advantages of the rectangular waveguide such as low loss, good power
handling, and good shielding although in planar form. Thus, SIW technology becomes
one of the best choices for signal transmission and integration with planar circuits.

Subsequently, SIW technology has been rapidly used in many circuit components



such as power dividers (Kordiboroujeni & Bornemann, 2013), resonator cavities

(Sirci et al., 2011), filter (Zhang et al., 2007), and antenna (Wang et al., 2010).

As interconnection, SIW technology usually provides bandpass characteristics
with a good isolation from electromagnetic interference. Meanwhile, planar
conventional transmission lines are known as crowding in ultra-wideband systems due
to their limited bandwidth and high-frequency losses. In SIW technology, the electric
field distribution fills the volume inside the waveguide, while surface currents are
maximum propagate at the waveguide walls, which contribute to the lower conductor
loss. As the design frequency and circuit density are increased, the use of conventional
transmission lines interconnects such as microstrip line and strip line are become
diminished. Their open structure have increases the radiation loss. Therefore, the
demands for wideband interconnects and compact structure brings SIW technology as

a solution to implement in several RF applications at high-frequency design.

Recently, the development of multilayer transition design involving SIW
technology has become a subject undergoing intense study in order to fulfill current
RF demands (Bozzi et al., 2009). Hence, various multilayer transition design between
rectangular waveguide to SIW structure have been explored for microwave and
millimeter wave frequency band (Li et al., 2009; Glogowski et al., 2013; Li & Luk,
2014). The multilayer transition design between SIW structure and rectangular
waveguide offers improved performance in term of low transmission loss, high power
capacity, and solve interconnection problems. However, the use of the rectangular
waveguide especially dielectric-filled rectangular waveguide in the multilayer

transition design still does not promise a compact structure and reduce design
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