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KESAN PENAMBAHAN Li2CO3 KE ATAS SIFAT-SIFAT PIEZOELEKTRIK 

DAN DIELEKTRIK SERAMIK Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3 

 

ABSTRAK 

Plambum zirkonat titanat (PZT) adalah yang paling banyak diselidiki di kalangan 

seramik perovskite berasaskan plambum. Sifat-sifat piezoelektrik dan dielektriknya 

kerap diubahsuai dengan berlainan dopan. Apabila PZT di dop dengan La
3+

dan Sr
2+

, 

pemalar dielektrik (ɛr) dan pemalar piezoelektrik (d33) meningkat dengan sedikit 

peningkatan dalam factor pengganding planar (kp). Walau bagaimanapun, ɛr dan kp 

yang tinggi adalah dikehendaki untuk peranti-peranti elektromekanikal seperti kipas 

piezoelektrik. Dalam penyelidikan ini, seramik Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3 

(PLSZT) di dop dengan Li2CO3 untuk dikaji kesannya ke atas sifat-sifat piezoelektrik 

dan dielektrik. Seramik ini telah disintesis dengan pengisar bebola planet bertenaga 

tinggi di dalam udara biasa selama 40 jam dan masing-masing disinter pada suhu 

yang agak rendah dari 1150 °C ke 850 °C selama 3 jam. Penambahan Li2CO3 ke 

dalam PLSZT meningkatkan penumpatan seramik ini dan purata saizbutir. Maka 

mengukuhkan sifat-sifat piezoelektrik dan dielektrik seramik PLSZT. Nilai terbaik 

sifat-sifat piezoelektrik dan dielektrik PLSZT diperolehi bila di dop dengan 0.7 

mol% Li
+
. Ketumpatannya ialah 7.420 g/cm

3
, kp ialah 0.461, d33 ialah 259 pC/N, 

ialah 1270 dan tan δ ialah 0.084. 
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EFFECT OF Li2CO3 ADDITION ON THE PIEZOELECTRIC AND 

DIELECTRIC PROPERTIES OF Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3 CERAMICS 

 

ABSTRACT 

Lead zirconate titanate (PZT) is the most widely investigated amongst lead-based 

perovskite ceramics. Its piezoelectric and dielectric properties are always modified 

with different dopants. When PZT doped with La
3+ 

and Sr
2+

, the piezoelectric 

constant (d33) and dielectric constant (εr) are increase with slightly increase in 

electromechanical coupling factor (kp). However, high kp and εr is desirable for 

electromechanical devices such as piezoelectric fan. In this research 

Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3 (PLSZT) ceramic is doped with Li2CO3 to investigate 

its effect on piezoelectric and dielectric properties. The ceramic was synthesized by 

high energy planetary ball milling in air for 40 hours and sintered at relatively low 

temperatures from 1150 °C to 850 °C for 3 hour, respectively. The addition of 

Li2CO3 in PLSZT improved the densification of the ceramics and increases the 

average grain size. Thus, piezoelectric and dielectric properties are enhanced with the 

increase of Li
+
 content.  The best piezoelectric and dielectric properties were 

obtained for 0.7 mol% Li
+
 doped PLSZT ceramics. The density is 7.420 g/cm

3
, kp is 

0.461, d33 is 259 pC/N, εr is 1270, and tan δ is 0.084 is observed. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Ceramics are defined as non-metallic inorganic solids which are bonded 

together by multiple bonds such as ionic and covalent bond. The word ceramic is 

derived from Greek word “keramos” which means “potters clay”. Precisely, the word 

keramos is originated from the Sanskrit language which means “to burn” (Carter & 

Norton, 2007). On the basis of raw materials, the ceramics are classified into two 

classes’ i.e. traditional ceramics and advanced ceramics. Traditional ceramics are 

produced by naturally occurring raw materials. While advanced ceramics are 

synthesized by chemical processing routes or from synthetic raw materials.  

 

Electroceramics are the advanced ceramic materials whose electrical and 

magnetic properties are prime focus for the applications. The history of 

electroceramics begins in 1940, when the Al2O3 were used in the spark plugs as an 

insulator. Nowadays, numerous materials are used in different electronic and 

magnetic applications. For example, zinc oxide in varistors, barium titanate in 

capacitors, tin oxide in gas sensors, lithium niobate in electro-optic devices and lead 

zirconium titanate in piezoelectric devices are commonly used (Segal, 1991). 

 

To date, lead zirconium titanate (PZT) is one of the most widely studied 

electroceramics. PZT is a solid solution of the antiferroelectric lead zirconate 



 

 2 

(PbZrO3), and ferroelectric lead titanate (PbTiO3). It has a nearly cubic perovskite 

crystal structure with general formula ABO3, where A
2+ 

site contains Pb
2+

 and B
4+

 

site contains Ti
4+

 and Zr
4+

 ions. The body centered B
4+ 

cation is surrounded by a 

corner linked octahedral oxygen network. Where, A
2+

 cation is located at the corner 

of cubic unit (Galasso, 2013). Due to lack of center of symmetry in crystal structure, 

it exhibits the piezoelectric effect. By definition, piezoelectricity is an ability of the 

crystal to develop an electric displacement upon the mechanical stress which is also 

known as a direct piezoelectric effect. Piezoelectric material also undergoes 

mechanical deformation on the application of electric field which is known as 

converse effect. Ferroelectricity is a sub class of piezoelectricity in which the 

polarization occurs spontaneously and the dipoles can be reoriented under an applied 

electric field. The reorientation of polarization in a material is called poling process. 

Due to this poling process, the piezoelectric effect can be utilized in a ferroelectric 

ceramics.  

 

Number of ferroelectric ceramics such as BaTiO3, Pb(Zr,Ti)O3, 

PbLa(ZrTi)O3, PbN2O6 and PbTiO3 are known for piezoelectric applications. In early 

1940, the BaTiO3 was extensively used but nowadays it is largely replaced by PZT. 

This is because PZT is easily poled, having high electromechanical coupling 

coefficient, has high Tc (Curie temperature), and has wide range of dielectric 

constant. These exceptional piezoelectric properties are optimum at near to the 

morphotropic phase boundary (MPB). MPB is the region that shows an abrupt 

structural change within a solid solution. The variation in composition around the 

MPB region greatly affects the materials property.  
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PZT is always modified with dopants to further improve and optimize its 

basic properties required for a specific application. Usually dopant is incorporated in 

the parent material within the concentration of ≤ 3 at.% (Haertling, 1999). Doped 

PZT are divided into two groups, i.e. hard PZT and soft PZT, on the basis of the 

effect that dopant induces on PZT. These effects are mainly depends on the charge of 

dopants. According to the charge they carry, the dopants are further classified into 

three classes i.e. acceptor, donor and isovalent. Since the discovery of the PZT, 

numerous dopants were added for the enhancement of piezoelectric properties e.g. 

Nb
5+

(Chu et al., 2004), Gd
3+

(Parashar et al., 2004), Sr
2+

, La
3+

, Li
+
(Tiwari & 

Srivastava, 2015), W
3+

(Bochenek & Zachariasz, 2015), Sm
3+

, Nd
3+

 and rare earth 

elements (Eu
3+

, Dy
3+

, Er
3+

, and Yb
3+

) (Shannigrahi et al., 2004). 

 

PZT is generally synthesized by conventional solid state reaction and sintered 

at high temperature around 1200 °C or above. But too high temperature is not 

suitable for Pb
2+

 containing materials, which is due to the high volatility of Pb
2+

. The 

loss of Pb
2+

 from the PZT ceramic eventually affects the useful properties of the 

material such as electrical, mechanical and optical. Several attempts have been made 

to successfully densify the PZT material at relatively low temperature. The main 

approaches that have been employed for that purpose are the use of ultra fine 

powders and the addition of sintering aids. For ultra fine powders, the submicron or 

nanosized powders have been synthesized by mechanochemical alloying technique 

which is also known as high energy ball milling. As compared it to other processing 

routes, it gives several advantages. Firstly, the widely available oxides are used as 
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the starting materials. Secondly, it is a simpler process due to single firing step. 

Furthermore, it takes place in a sealed container at room temperature, thus avoid the 

loss of volatile Pb
2+ 

(Kong et al., 2008). As the Pb
2+

 loss occurred at elevated 

temperature, excess PbO powder intentionally added during batch preparation for 

two reasons. Firstly, to enhance densification by forming a PbO rich liquid during 

sintering process. Secondly, it is added to compensate the evaporation of PbO during 

calcinations and sintering (Song et al., 1989).  

 

Piezoelectric materials especially PZT is widely used as actuators and sensors 

in modern technologies such as accelerometers, microphones, micromotors, and 

micropumps. The type of piezoelectric actuators which is used for cooling 

applications is known as piezoelectric fan (Liu et al., 2013). It is mainly employed in 

compact and portable microelectronic devices for thermal management. In electronic 

devices, the thermal management is an important task to prevent electronic circuit 

from the adverse effect of heat. Previously, the conventional cooling system, such as 

rotary fan and heat sink were used for thermal management in electronic devices 

(e.g. personal computers). In recent years, the electronic industry is moving towards 

the compact and portable microelectronic devices which results in generating the 

smaller electronic components. These compact microelectronic devices experience a 

heat generation. Due to constrained and small space within the electronic package, 

the heat removal becomes a challenge.   
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1.2 Problem Statement 

Lead zirconate titanate (PZT) is a well known piezoelectric material in the 

field of electroceramics. Its exceptional piezoelectric properties made it dominant 

among other ferroelectric materials. It is extensively used in the wide range of 

electronic applications, such as in sensors, transducers, and actuators (Setter & 

Waser, 2000). PZT always modified with dopants for further improvising the 

electrical properties d33 (piezoelectric constant), ɛr (relative permittivity) and kp 

(electromechanical coupling factor) that is required for specific application. 

Numerous donor dopants (Nb, Nd, La, and rear earth metals) have been added to 

PZT ceramics to tailoring its piezoelectric and dielectric properties. Amongst these 

dopants La
3+

 was extensively studied. Incorporation of La
3+ 

ion produce a profound 

effect on dielectric properties (ɛr), due to the growth inhibition caused the 

degradation of kp (Pdungsap et al., 2005; Sharma et al., 2006; Sahoo& Panda, 2013). 

The literature on the improvising the kp of PZT was not clearly visible. 

 

The kp of piezoelectric ceramics have been studied by some researchers. 

Kulcsar (1959) studied the individual effect of Sr
2+

 and Ca
2+

 on electromechanical 

properties of the PZT. The profound effect was observed on ɛr but the kp is only 

slightly increased from 0.48 to 0.51, which is attributed to the reduction in the 

distortion from cubic symmetry to rhombohedral. Nasar et al. (2002) had 

investigated theoretically and experimentally the effect of Sr
2+

 on the remanent 

polarization (Pr) and kp of the PZT ceramics. The addition of Sr
2+ 

minimizes the 

energy of rhombohedral phase, which ease the transformation of phases and hence 

increase the kp value. For most of the electroceramic applications the high ɛr and kp 
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are desired in combination such as for piezoelectric fan application. For this purpose 

PZT ceramic was co-doped with Sr
2+

 and La
3+ 

by few researches. Kalem et al. (2011) 

studied the co-doped PZT system with Sr
2+

, La
3+

 and varied the concentration of both 

dopants and Zr/Ti ratio. The author found that at a lower concentration of La
3+

, the 

piezoelectric properties (kp and d33) were increased, while at a higher La
3+

 content, 

the kp was decreased due to growth inhibition. In case of varying the Sr
2+

 content the 

kp value was increased up to 0.56. Similar material (PZT with La
3+

and Sr
2+

) was 

investigated by Bahanurddin et al. (2015b) via high energy planetary ball mill to 

enhance the piezoelectric properties by avoiding evaporation of PO from the ceramic 

at elevated sintering temperature. The material exhibits high dielectric constant (ɛr = 

5360). However, its piezoelectric properties (kp and d33) were not mentioned and the 

sintering temperature was not much lower. The volatilization of PbO from the 

ceramic during thermal treatment is another major issue which associated with the 

PZT (Kong et al., 2002). The loss of PbO fluctuate the electrical, optical and 

mechanical properties of the PZT ceramics (Garg et al., 1999; Song et al., 1989). 

 

To overcome both the issues i.e. optimizing the kp value and avoid the PbO 

loss of PZT ceramic for piezoelectric fan application. The dopant should be added 

which enhance the piezoelectric properties especially (kp and ɛr) and reduces the 

sintering temperature without deteriorated the properties. Recently, kp was enhanced 

by incorporating Li2CO3 in PZT system at low sintering temperature by many 

researchers (Hou et al., 2007; Vuong and Gio, 2013; Zeng et al., 2013; Fan et al., 

2014). The increment in the kp with other piezoelectric properties was due to the 

incorporation of Li
+
 into crystal lattice. The Li

+
 ions tend to occupy the octahedral 

sites of the lattice, which leads to the formation of additional anionic vacancies. The 



 

 7 

formation of these vacancies results in lattice distortion by lengthened the c-axis. 

Hence, Li2CO3 is appropriate candidate to enhance the kp of the PZT material. 

Furthermore, it acts as a sintering aid (Wang et al., 1992). Due to its low melting 

point of Li2CO3 (723 °C) the liquid phase form which cover and wet the grains and 

therefore, improves the densification of the material at low sintering temperature. In 

later stage it reabsorbs into the lattice and modifies the properties. In the present 

work, PZT material which was previously doped with La
3+

 and Sr
2+

 is further doped 

with Li
+
. The material is synthesized via high energy planetary ball milling to avoid 

PbO lost. Therefore, it is believed that the incorporation of Li
+
 in PLSZT 

(Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3) system coupled with synthesized using high energy 

planetary ball milling could further enhance its piezoelectric properties especially kp. 

 

1.3 Objectives of the Research 

The objectives of this research are: 

 To synthesize PLSZT (PZT doped with La
3+

 and Sr
2+

) and determine 

its dielectric and piezoelectric properties. 

 To synthesize PLSZLiT (PLSZT doped with Li2CO3) at low 

temperature via high energy planetary ball milling. 

 To determine the effect of Li2CO3 on the piezoelectric and dielectric 

properties of the PLSZT. 
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1.4 Thesis Structure 

The work described in this thesis is organized into five chapters. Chapter 1 

gives an overview of the ceramics and especially on the piezoelectric properties of 

the PZT electroceramic. In addition the affect of dopants and processing route on the 

piezoelectric properties of the PZT material are outlined. Finally, the problem 

associated with the piezoelectric and dielectric properties of the material, which 

required for thermal management of portable electronic devices by piezoelectric fan 

and the objectives of this study are presented. 

 

Chapter 2 reviews the history of piezoelectricity and ferroelectricity. In 

addition the piezoelectric properties to measure the piezoelectric effect in the 

ferroelectric material are discussed. The previous work in La
3+

, Sr
2+

 and Li
+
 doped 

and undoped PZT is reviewed.  The effects of dopants on the piezoelectric properties 

of the PZT material are discussed in details. In addition, the approaches that adopted 

to densify the PZT material at low sintering temperature are also including in this 

chapter. 

 

Chapter 3 describes the processing route and other steps, which is adopted to 

synthesize the doped and undoped PZT. Furthermore, different characterization 

techniques which were used for the analysis of the synthesized material are also 

present in this chapter. Finally, the sample preparation, equipments and the methods 

that were used to measure the piezoelectric properties such as εr, tan δ, d33, KP, and 

mechanical quality factor are discussed in this chapter. 
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