CHANGES OF DREAM AND BDNF PROTEINS EXPRESSIONS, PRO-INFLAMMATORY AND OXIDATIVE STRESS LEVELS IN SPINAL CORD OF STREPTOZOTOCIN-INDUCED PAINFUL DIABETIC NEUROPATHY RATS UPON MINOCYCLINE AND IFENPRODIL TREATMENTS

CHE AISHAH NAZARIAH BINTI ISMAIL

UNIVERSITI SAINS MALAYSIA

2018

CHANGES OF DREAM AND BDNF PROTEINS EXPRESSIONS, PRO-INFLAMMATORY AND OXIDATIVE STRESS LEVELS IN SPINAL CORD OF STREPTOZOTOCIN-INDUCED PAINFUL DIABETIC NEUROPATHY RATS UPON MINOCYCLINE AND IFENPRODIL TREATMENTS

by

CHE AISHAH NAZARIAH BINTI ISMAIL

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

June 2018

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

I would like to express my sincere gratitude to my main supervisor, Dr. Idris bin Long and co-supervisors, Assoc. Prof. Dr. Che Badariah Abd Aziz and Assoc. Prof. Dr. Rapeah Suppian for their continuous dedication, patience, guidance and support. Their encouragement motivated me throughout completing my PhD study.

My sincere thanks also dedicate to Head, Department of Physiology (School of Medical Sciences), staffs from Animal Research and Service Centre (ARASC), Craniofacial Sciences Laboratory (School of Dental Sciences), Biomedical and Molecular Biology Laboratories (School of Health Sciences), Central Research Laboratory and Physiology Laboratory (School of Medical Sciences) (USM Health Campus) for giving me the opportunities to work in their laboratories and assist me in many aspects of my studies. I thank my fellow labmates, Hidani, Qusyasyiah, Entesar, Victor, Hilmi, Hamidar, Zaida and Zaidatul for their assistance and support in the last three years.

I would like to thank Universiti Sains Malaysia for the sponsorship of my PhD study under USM Fellowship Scheme and Ministry of Higher Education under SLAB scheme. This research project was also financially supported by a USM Research University Grant [1001/PPSP/812139].

Last but not the least, very special gratitude to both of my parents, Ismail bin Daud and Che Rugayah Che Awang, my husband, Ahmad Faiz Mohamad and my daughters, Annur Iman Insyeerah and Annur Iman Nazneen for their unconditional love and motivational support. Not to forget, special thanks also go to my siblings, Che Ain Munirah and Che Muhammad Khairul Hisyam for their willingness and patience, accompanied me until late nights to finish the lab works. Without them, I would not survive this challenging battle.

TABLE OF CONTENTS

Acknowledgement	ii
Table of contents	iii
List of Tables	xiii
List of Figures	xiv
List of Plates	xix
List of Abbreviations	xxi
Abstrak	xxviii
Abstract	XXX
CHAPTER ONE - INTRODUCTION	1
1.1 Diabetic neuropathy	1
1.2 Problem statements	4
1.3 Objectives of the study	5
1.3.1 Main objective	5
1.3.2 Specific objectives	6
CHAPTER TWO – LITERATURE REVIEW	7
2.1 Pain	7
2.1.1 Pain pathways	7
2.1.1(a) Pain signal transduction at the peripheral receptor	site 7
2.1.1(b) Signal conduction of pain	9
2.1.1(c) Modulation at the spinal cord level	12
2.1.1(d) Descending pain inhibition	15
2.1.1(e) Perception at the supraspinal sites	18
2.1.2 Types of pain	20

2.2	Neuroj	pathic pair	n	21
	2.2.1	Mechani	sm of neuropathic pain	22
		2.2.1(a)	Spinal mechanism	22
		2.2.1(b)	Supraspinal mechanism of neuropathic pain: tactile allodyni	a
			and thermal hyperalgesia	26
	2.2.2	Diabetes	mellitus and development of diabetic peripheral neuropathy	32
		2.2.2(a)	Hyperglycaemia leads to diabetic peripheral neuropathy	33
	2.2.3	Painful d	liabetic neuropathy	35
		2.2.3(a)	Peripheral mechanism in painful diabetic neuropathy	36
		2.2.3(b)	Central sensitization	37
	2.2.4	Involven	nent of NR2B subunit of N-methyl-D-aspartate receptor in	
		neuropat	hic pain	38
		2.2.4(a)	NR2B subunit of N-methyl-D-aspartate receptor	39
		2.2.4(b)	Phosphorylation of NR2B subunit of N-methyl-D-aspartate	
			receptor	40
		2.2.4(c)	Ifenprodil	42
	2.2.5	Immune	systems during neuropathic pain	44
		2.2.5(a)	Peripheral immune mechanisms: Actions of interleukin- 1β	
			and tumour necrosis factor- α	44
		2.2.5(b)	Central immune mechanisms: Microglial activation	50
		2.2.5(c)	Minocycline	56
	2.2.6	Involven	nent of brain-derived neurotrophin factor in neuropathic pain	57
		2.2.6(a)	Signalling of brain-derived neurotrophin factor with	
			activated microglia during neuropathic pain	59

	2.2.7	Involven	nent of downstream regulatory element antagonist modulator	
		protein i	n neuropathic pain	60
		2.2.7(a)	Structure of downstream regulatory element antagonist	
			modulator protein	60
		2.2.7(b)	Role of downstream regulatory element antagonist	
			modulator protein in pain modulation	63
	2.2.8	Formatio	on of oxidative stress in neuropathic pain	64
		2.2.8(a)	Malondialdehyde	66
		2.2.8(b)	Superoxide dismutase	66
		2.2.8(c)	Catalase	68
2.3	Strepto	ozotocin		69
	2.3.1	Streptozo	otocin injection may leads to type I diabetes mellitus	70
2.4	Behav	ioural test	s for assessment of pain	71
	2.4.1	Von Freg	y test	72
	2.4.2	Hot-plate	e test	73
	2.4.3	Formalin	n test	73
CH	APTER	THREE	– MATERIALS AND METHODS	75
3.1	Materi	als		75
3.3	Anima	ls		75
3.4	Experi	mental gr	oups	75
3.5	Direct	intratheca	al drug administration	82
3.6	Induct	ion of dia	betes	83
3.7	Behav	ioural test	S	85
	3.7.1	Tactile a	llodynia assessment by Von Frey test	85
		3.7.1(a)	Procedure of the test	85

		3.7.1(b) Determination of non-painful diabetic neuropathy rats from	
		painful diabetic neuropathy rats by tactile allodynia test	86
	3.7.2	Thermal hyperalgesia by hot-plate test	88
	3.7.3	Chemical hyperalgesia by formalin test	88
3.8	Immu	nohistochemistry analysis	91
	3.8.1	Sacrifice of animals	91
	3.8.2	Perfusion-fixation of spinal cord	91
	3.8.3	Removal of spinal cord	92
	3.8.4	Spinal cord sectioning by cryostat	92
	3.8.5	Immunohistochemical staining	93
	3.8.6	Counting of labelled neurons	95
3.9	Wester	rn blot analysis	97
	3.9.1	Animals	97
	3.9.2	Protein extraction	97
	3.9.3	Protein concentration measurement	98
	3.9.4	Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis	98
		3.9.4(a) Preparation of fifteen percent of resolving gel	98
		3.9.4(b) Preparation of five percent stacking gel	99
		3.9.4(c) Electrophoresis of Sodium Dodecyl Sulphate	
		Polyacrylamide gel	99
	3.9.5	Protein transfer and blocking (immunoblotting)	100
	3.9.6	Measurement of mean relative intensity (fold changes)	101
3.1	0 Oxidat	tive stress and pro-inflammatory markers level measurement by ELISA	ł
	assay		103
	3.10.1	Animals	103

	3.10.2	Oxidative stress measurements	104
		3.10.2(a) Malondialdehyde	104
		3.10.2(b) Superoxide dismutase	106
		3.10.2(c) Catalase	109
		3.10.2(d) Measurement of protein concentration	112
	3.10.3	Pro-inflammatory markers level measurement	114
		3.10.3(a) Interleukin-1β	114
		3.10.3(b) Tumour necrosis factor- α	116
3.11	Sample	e size calculation	118
	3.11.1	Sample size calculation for SOD enzyme activity	118
3.12	2 Statisti	ical analysis	119
CH	APTER	FOUR - RESULTS	121
4.1	Genera	al	121
4.2	Percen	tage of body weight gain	121
4.3	Behavi	ioural tests	125
	4.3.1	Noxious withdrawal threshold by Von Frey test at right hind paw	125
	4.3.2	Noxious withdrawal threshold by Von Frey test at left hind paw	127
	4.3.3	Thermal hyperalgesia by hot-plate test	129
	4.3.4	Chemical hyperalgesia by formalin test	131
		4.3.4(a) Phase 1 of nociceptive behaviour score	132
		4.3.4(b) Phase 2 of nociceptive behaviour score	135
4.4	Immur	nohistochemistry analysis	137
	4.4.1	NR2B subunit positive neurons on ipsilateral side	137
	4.4.2	NR2B subunit positive neurons on contralateral side	142
	4.4.3	Phosphorylated NR2B subunit positive neurons on ipsilateral side	145

	4.4.4	Phosphorylated NR2B subunit positive neurons on contralateral side	148
	4.4.5	Microglia positive neurons on ipsilateral side	151
	4.4.6	Microglia positive neurons on contralateral side	155
	4.4.7	Brain-derived neutrophin factor positive neurons on ipsilateral side	158
	4.4.8	Brain-derived neurotrophin factor positive neurons on contralateral	
		side	159
	4.4.9	Downstream regulatory element antagonist modulator positive	
		neurons on ipsilateral side	164
	4.4.10	Downstream regulatory element antagonist modulator positive	
		neurons on contralateral side	164
4.5	Wester	n blot analysis	171
	4.5.1	Mean relative NR2B subunit protein level on ipsilateral side	171
	4.5.2	Mean relative NR2B subunit protein level on contralateral side	171
	4.5.3	Mean relative phosphorylated NR2B subunit protein level on	
		ipsilateral side	175
	4.5.4	Mean relative phosphorylated NR2B subunit protein level on	
		contralateral side	177
	4.5.5	Mean relative brain-derived neurotrophin factor protein level on	
		ipsilateral side	179
	4.5.6	Mean relative brain-derived neurotrophin factor protein level on	
		contralateral side	179
	4.5.7	Mean relative downstream regulatory element antagonist modulatory	
		protein level on ipsilateral side	183
	4.5.8	Mean relative downstream regulatory element antagonist modulator	
		protein level on contralateral side	183

4.6	Oxidat	tive stress analysis	187
	4.6.1	Malondialdehyde level	187
	4.6.2	Catalase enzyme activity	187
	4.6.3	Superoxide dismutase enzyme activity	188
4.7	Pro-in	flammatory markers analysis	192
	4.7.1	Interleukin-1β level	192
	4.7.2	Tumour necrosis factor-α level	192
4.8	Relation	onships between the parameters in the present study	193
	4.8.1	Relationship between all measured parameters with tactile allodynia	193
	4.8.2	Relationships between NR2B subunit and phosphorylated NR2B	
		subunit of NMDA receptor positive neurons at ipsilateral and	
		contralateral sides with phase 2 of formalin test	196
	4.8.3	Relationships between superoxide dismutase and mean of phase 2 of	
		formalin test	197
CH	APTER	FIVE - DISCUSSION	201
5.1	Neuro	nal-non-neuronal mechanisms in the normal rats induced with chronic	
	injury		201
5.2	Body	weight	202
	5.2.1	Effect of diabetic neuropathy on body weight	202
	5.2.2	Effect of minocycline and ifenprodil treatments on body weight of	
		painful diabetic neuropathy rats	204
5.3	Hyper	glycaemia	205
5.4	Tactile	e allodynia	206
	5.4.1	Classification of painful diabetic neuropathy and non-painful diabetic	с
		neuropathy rats	206

	5.4.2	Effect of diabetic neuropathy on tactile allodynia	208
	5.4.3	Minocycline and ifenprodil treatments reverse tactile allodynia in	
		painful diabetic neuropathy rats	210
5.5	Therm	al hyperalgesia by hot-plate test	211
5.6	Forma	lin-induced inflammatory nociceptive behaviour	213
	5.6.1	Effect of diabetic neuropathy on formalin-induced chronic	
		inflammatory nociceptive behaviour	215
	5.6.2	Minocycline and ifenprodil treatments suppress formalin-induced	
		chronic inflammatory nociceptive behaviour	217
5.7	Phosph	norylation and activation of NR2B subunit of N-methyl-D-aspartate	
	recepto	Dr	219
	5.7.1	Effect of diabetic neuropathy on phosphorylation and activation of	
		NR2B subunit of N-methyl-D-aspartate receptor	219
	5.7.2	Minocycline and ifenprodil suppress phoshphorylation and activation	n
		of NR2B subunit of N-methyl-D-aspartate in spinal cord of painful	
		diabetic neuropathy rats	220
5.8	Microg	glial activation	222
	5.8.1	Microglial activation in diabetic neuropathy	222
	5.8.2	Minocycline and ifenprodil treatments attenuate microglial activation	n
		in painful diabetic neuropathy rats	223
5.9	Brain-o	derived neurotrophin factor protein expression	224
	5.9.1	Effect of diabetic neuropathy on brain-derived neurotrophin factor	
		protein expression	224

	5.9.2	Minocycline and ifenprodil treatments suppress brain-derived	
		neurotrophin factor protein expression in painful diabetic neuropathy	7
		rats	226
5.10	Downs	tream regulatory element antagonist modulator protein expression	228
	5.10.1	Effect of diabetic neuropathy on downstream regulatory element	
		antagonist modulator protein expression	228
	5.10.2	Minocycline and ifenprodil treatments inhibit downstream regulatory	/
		element antagonist protein expression	230
5.11	Oxidat	ive stress	231
	5.11.1	Effect of diabetic neuropathy on oxidative stress	232
	5.11.2	Effect of minocycline and ifenprodil treatments on oxidative stress	
		in painful diabetic neuropathy rats	235
5.12	Pro-inf	lammatory markers: Interleukin-1 β and tumour necrosis factor- α	237
	5.12.1	Interleukin-1 β and tumour necrosis factor- α levels in diabetic	
		neuropathy	237
	5.12.2	Effect of minocycline and ifenprodil treatments on interleukin-1 β	
		and tumour necrosis factor- α levels	238
5.13	8 Mirror	pain effects at contralateral side of spinal cord after intraplantar	
	formal	in injection	242
5.14	Relatio	onship between the study parameters	243
	5.14.1	Relationship between NR2B subunit and phosphorylated NR2B	
		subunit positive neurons at ipsilateral and contralateral sides with	
		phase 2 of formalin test	244
	5.14.2	Relationship between superoxide dismutase and phase 2 of formalin	
		test	244

5.15 Anti-nociceptive, anti-oxidant and anti-inflammatory effects of minocycli		
and ifenprodil	245	
CHAPTER SIX – CONCLUSION AND FUTURE DIRECTION	250	
6.1 Summary	250	
6.2 Conclusion	252	
6.3 Limitations and future direction	253	
REFERENCES 2		
APPENDICES		
APPENDIX A: Animal Ethics Approval		
APPENDIX B: Gel Sandwich for Western Blot Transfer		
APPENDIX C: Preparation of Chemicals		

LIST OF PUBLICATIONS AND PRESENTATIONS

LIST OF TABLES

Table 3.1	List of chemicals and reagents	77
Table 3.2	List of commercial kits	78
Table 3.3	List of antibodies	78
Table 3.4	List of consumables and disposable items	79
Table 3.5	List of laboratory apparatus	79
Table 3.6	Antibody dilution and incubation period for the selected	
	proteins in the present study	102
Table 3.7	Preparation and concentration of standards for superoxide	
	dismutase	107
Table 3.8	Preparation of standards for catalase assay	110
Table 3.9	Standards preparation from bovine serum albumin	
	for total protein concentration assay	113
Table 4.1	Blood glucose level for Day 0, 3, 14 and 22 in the groups	124

LIST OF FIGURES

		Page
Figure 2.1	First-, second- and third-order neurons in pain pathways	10
Figure 2.2	Schematic diagram of the gate control theory of pain mechanisms	13
Figure 2.3	Descending pain pathway	16
Figure 2.4	Mechanisms of peripheral and central sensitization in neuropathic	
	pain	24
Figure 2.5	Occurrence of (A) allodynia and (B) hyperalgesia	29
Figure 2.6	Effects of hyperglycaemia	34
Figure 2.7	Convergence of signalling pathways by Src family kinases	43
Figure 2.8	Production of interleukin-1 β from NLRP3 inflammasome	47
Figure 2.9	Classical transport pathways of tumour necrosis factor- α	48
Figure 2.10	Shifts of resting microglia to activated microglia	52
Figure 2.11	Neuron-microglia interactions in the spinal dorsal horn during	
	diabetic neuropathic pain	55
Figure 2.12	Repression and derepression of downstream regulatory element	
	modulator protein regulate prodynorphin and c-fos genes	
	transcriptions	62
Figure 2.13	Reactions leading to the production of free radicals and the	
	roles of antioxidants in removing the free radicals in cells	65
Figure 3.1	Experimental design of the study	80
Figure 3.2	Experimental flow for the entire experiment	81
Figure 3.3	Intrathecal drug delivery procedure on a deeply anaesthetized rat	84
Figure 3.4	The immunoperoxidase three-step avidin-biotin-peroxidase	
	protocol (ABC) for free-floating sections	94

Figure 3.5	Schematic illustrations of the cytoarchitectonic subdivisions	
	for L4 and L5 lumbar enlargement regions of the spinal cord	96
Figure 3.6	The reaction between malondialdehyde and thiobarbituric acid	104
Figure 3.7	Absorbance at 532 nm wavelength versus concentration of	
	malondialdehyde (μM) for malondialdehyde reaction assay	105
Figure 3.8	The reaction of superoxide dismutase	106
Figure 3.9	The standard curve $\Delta\Delta OD$ versus concentration of superoxide	
	dismutase (U/mL) obtained during SOD assay	108
Figure 3.10	Hydrogen peroxide standard curve vs absorbance at 570 nm	
	wavelength for catalase assay	110
Figure 3.11	Protein concentration standards vs optical density at 562 nm	
	(OD _{562nm}) for total protein concentration assay	114
Figure 3.12	Interleukin-1 β standard concentration vs change of optical density	
	at 450 nm wavelength for interleukin-1 β assay	116
Figure 3.13	Absorbance at 450 nm vs tumour necrosis factor- α standards	
	concentration (pg/mL) for tumour necrosis factor- α assay	118
Figure 4.1	The percentage of body weight gain in the groups	122
Figure 4.2	Noxious withdrawal threshold of the rat's right hind paw in the	
	groups tested using Von Frey test on Day 0, 14 and 22	126
Figure 4.3	Noxious withdrawal threshold of the rat's left hind paw in the	
	groups tested using Von Frey test on Day 0, 14 and 22	128
Figure 4.4	Latency time in the groups tested using hot-plate test on Day 0,	
	Day 14 and Day 22	130
Figure 4.5	Nociceptive behaviour score by formalin test in all groups for	
	sixty minutes	133

Figure 4.6	Nociceptive behaviour score during phase one of formalin test	
	in the groups	134
Figure 4.7	Nociceptive behaviour score during phase two of formalin test	
	in the groups	136
Figure 4.8	NR2B subunit positive neurons in the groups on the ipsilateral	
	side of spinal cord	141
Figure 4.9	NR2B subunit positive neurons in the groups on the contralateral	
	side of spinal cord	144
Figure 4.10	Phosphorylated NR2B subunit positive neurons in the groups on the	he
	ipsilateral side of the spinal cord	147
Figure 4.11	Phosphorylated NR2B subunit positive neurons in the groups on the	he
	contralateral side of the spinal cord	150
Figure 4.12	Microglia positive neurons in the groups on the ipsilateral side of	
	spinal cord	154
Figure 4.13	Microglia positive neurons in the groups on the contralateral side	of
	spinal cord	157
Figure 4.14	Brain-derived neurotrophin factor positive neurons in the groups	
	on the ipsilateral side of spinal cord	161
Figure 4.15	Brain-derived neurotrophin factor positive neurons in the groups	on
	the contralateral side of spinal cord	163
Figure 4.16	Downstream regulatory element antagonist modulator positive	
	neurons in the groups on the ipsilateral side of spinal cord	168
Figure 4.17	Downstream regulatory element antagonist modulator positive	
	neurons in the groups at ipsilateral side of spinal cord	170
Figure 4.18	Mean relative NR2B subunit protein level on the ipsilateral	

xvi

	side of the spinal cord in the groups	173
Figure 4.19	Mean relative NR2B subunit protein level on the contralateral	
	side of the spinal cord in the groups	174
Figure 4.20	Mean relative phosphorylated NR2B subunit protein level on the	
	ipsilateral side of the spinal cord in the groups	176
Figure 4.21	Mean relative phosphorylated NR2B subunit protein level on the	
	contralateral side of the spinal cord in the groups	178
Figure 4.22	Mean relative brain-derived neurotrophin factor protein level on	
	the ipsilateral side of the spinal cord in the groups	181
Figure 4.23	Mean relative brain-derived neurotrophin factor protein level on	
	the contralateral side of the spinal cord in the groups	182
Figure 4.24	Mean relative downstream regulatory element antagonist modulator	
	protein level on the ipsilateral side of the spinal cord in the groups	185
Figure 4.25	Mean relative downstream regulatory element antagonist modulato	r
	protein level on the contralateral side of the spinal cord in the	
	groups	186
Figure 4.26	Malondialdehyde level (mmol/mg protein) in the groups	189
Figure 4.27	Catalase enzyme activity level (mU/mg protein) in the groups	190
Figure 4.28	Superoxide dismutase enzyme activity level (U/mg protein) in	
	the groups	191
Figure 4.29	Interleukin-1 β level (pg/mL) in the groups	194
Figure 4.30	Tumour necrosis factor- α level (pg/mL) in the groups	195
Figure 4.31	Relationships between the total numbers of (A) NR2B	
	subunit and (B) phosphorylated NR2B subunit positive neurons	

	and phase two of formalin test (mean of minutes-15 to 60) on the	
	ipsilateral side of the spinal cord	198
Figure 4.32	Relationships between the total numbers of (A) NR2B	
	subunit and (B) phosphorylated NR2B subunit positive neurons	
	and phase two of formalin test (mean of minutes-15 to 60) on the	
	contralateral side of the spinal cord	199
Figure 4.33	Relationships between superoxide dismutase and phase 2 of	
	formalin test (mean of minute-15 to 60) in the spinal cord	200
Figure 5.1	Summary of proposed mechanisms in pathogenesis of painful	
	diabetic neuropathy	247
Figure 5.2	Summary of proposed mechanisms for minocycline in the present	
	study	248
Figure 5.3	Summary of proposed mechanisms for ifenprodil in the present	
	study	249

LIST OF PLATES

Plate 3.1	Von Frey test for tactile allodynia behaviour procedure	87
Plate 3.2	Hot-plate test for thermal hyperalgesia measurement	89
Plate 3.3	Formalin test for chemical hyperalgesia procedure	90
Plate 4.1A	Positive controls for immunohistochemistry analysis	138
Plate 4.1B	Negative controls for immunohistochemistry analysis	139
Plate 4.2	NR2B positive neurons in all groups on the ipsilateral side of	
	spinal cord	140
Plate 4.3	NR2B positive neurons in all groups on the contralateral side of	
	spinal cord	143
Plate 4.4	Phosphorylated NR2B subunit positive neurons in all groups	
	on the ipsilateral side of the spinal cord	146
Plate 4.5	Phosphorylated NR2B positive neurons in all groups on the	
	contralateral side of the spinal cord	149
Plate 4.6	The expression of activated microglia in the dorsal horn of	
	rat's spinal cord between (A) diabetic PDN rats (S+STZ	
	group), (B) non-PDN and (C) non-diabetic rats (S+CB)	152
Plate 4.7	Microglia positive neurons in all groups on the ipsilateral side of	
	spinal cord	153
Plate 4.8	Microglia positive neurons in all groups on the contralateral side	
	of spinal cord	156
Plate 4.9	Brain-derived neurotrophin factor positive neurons in all groups	
	on the ipsilateral side of spinal cord	161
Plate 4.10	Brain-derived neurotrophin factor positive neurons in all groups	

	on the contralateral side of spinal cord	162
Plate 4.11	Immunohistochemistry staining on the spinal cord of (A)	
	(S+CB), (B) (S+STZ) and (C) non-PDN rats for downstream	
	regulatory element antagonist modulator positive neurons	166
Plate 4.12	Downstream regulatory element antagonist modulator positive	
	neurons in all groups at ipsilateral side of spinal cord	167
Plate 4.13	Downstream regulatory element antagonist modulator positive	
	neurons in all groups on the ipsilateral side of spinal cord	169

LIST OF ABBREVIATIONS

αCREM	α-cyclic AMP-responsive promoter elements
ADP	adenosine diphosphate
AGE	advanced glycosylation end product
ANOVA	analysis of variance
AP-1	activator protein-1
APS	ammonium persulphate
ASC	protein-containing apoptosis-associated speck-like protein
	containing caspase recruitment domain
ATP	adenosine triphosphate
BDNF	brain-derived neurotrophic factor
BHT	butylated hydroxytoluene
BSA	bovine serum albumin
Ca ²⁺	calcium ion
CAK β	cell-adhesion kinase-β
CaMKII	calcium-calmodulin-dependent protein kinase II
CARD	caspase recruitment domain
CCI	chronic constriction injury
CCR2	cysteine-cysteine chemokine receptor-2
CFA	complete Freund's adjuvant
cGMP	cyclic guanosine monophosphate
CGRP	calcitonin-gene related peptide
Cl ⁻	chloride ion
СМ	centromedial nucleus
CNS	central nervous system

CR	cytokine receptor
CRE	cyclic adenosine monophosphate response element
CREB	cyclic adenosine monophosphate response element binding
	protein
CREM	cyclic adenosine monophosphate response element-responsive
	promoter elements
Cu/Zn	copper/zinc
CX ₃ CR1	CX ₃ chemokine receptor 1
DAB	diaminobenzidine
DAMPs	damage-associated molecular pattern molecules
DM	diabetes mellitus
DN	diabetic neuropathy
DNA	deoxyribonucleic acid
DPN	diabetic peripheral neuropathy
DREAM	Downstream Regulatory Element Antagonist Modulator
DRE	Downstream Regulatory Element
DRG	dorsal root ganglion
EAA	excitatory amino acid
EDTA	ethylenediamine-tetraacetic acid
e.g.	for example
ELISA	enzyme-linked immunoabsorbent assay
EphB	Ephrin B
ERK	extracellular-signal-regulated kinase
Fe/Mg	ferrous/magnesium
FIND	find domain

GABA	γ-aminobutyric acid
GABAA	γ-aminobutyric acid type A
GABA _B	γ-aminobutyric acid type B
GFAP	glial fibrillary acidic protein
GPCR	G-protein coupled receptors
GSH	glutathione
HIV	human-immunodeficiency virus
HRP	horseradish peroxidase
H_2O_2	hydrogen peroxide
IDDM	insulin-dependent diabetes mellitus
IDV	integrated density value
i.e.	that is
IL-1β	interleukin-1β
IL-6	interleukin-6
iNOS	inducible nitric oxide synthase
JNK	Jun-nuclear kinase
KCC2	potassium-chloride contransporter-2
KCHiP3	Kv channel-interacting protein 3
KCl	potassium chloride
LC	lateral nucleus
LDL	low-density lipoprotein
LIF	leukaemia inhibitory factor
LRR	leucine-rich repeat
МАРК	mitogen-activated protein kinase
MCP-1	monocyte chemoattractant protein-1

MDA	malondialdehyde
MDvc	ventral region of dorsal medial nucleus
Mg^{2+}	magnesium ion
mRNA	messenger ribonucleotide acid
Na ⁺	sodium ion
NO	nitric oxide
Na ₂ HPO ₄	di-sodium hydrogen phosphate
Na ₂ HPO ₄ .7H ₂ O	di-sodium hydrogen phosphate heptahydrate
NaCl	sodium chloride
NACHT	nucleotide binding domain
NAD	nucleotide binding domain-associated domain
NAD^+	oxidized form of nicotinamide adenine dinucleotide
NADH	nicotinamide adenine dinucleotide hydrogen
NADPH	nicotinamide adenine dinucleotide phosphate
NaH ₂ PO ₄ .H ₂ O	sodium dihydrogen phosphate anhydrous
NaOH	sodium hydroxide
NF-ĸB	nuclear factor-KB
NGF	nerve growth factor
Ni	nickel
NIDDM	non-insulin dependent diabetes mellitus
NLRP3	Pyrin domain at N-terminus, followed by NACHT domain,
	NAD and LRR rich repeats domain at C-terminus
NMDA	N-methyl-D-aspartate
NRM	nucelus raphe magnus
O ₂ -	superoxide anion

OD	optical density
OH	hydroxyl radical
·O-O [.]	highly active singlet oxygen
O ₂	oxygen
OX-42	microglial cell marker
PAG	periaqueductal gray
PAI-1	plasminogen activator inhibitor-1
PAMPs	pathogen-associated molecular pattern molecules
РВ	phosphate buffer
PBS	phosphate buffered saline
PDN	painful diabetic neuropathy
PDZ	Post-synaptic density protein, Drosophila disc large tumour
	suppressor (Dlg1) and Zonula occludents-1 (zo-1) proteins
PFA	paraformaldehyde
Phospho-ERK	phosphorylation of extracellular-regulated kinase
РКА	protein kinase A
РКС	protein kinase C
РО	posterior nucleus
PSD-95	postsynaptic density protein-95
PTP	dephosphorylation of tyrosine phosphatase
PYD	pyrin domain
P-ser896-NR1	NR1 phosphorylated at Ser896
RACK1	receptor for activated C kinase 1
RAGE	receptor of advanced glycosylation end product
RNA	ribonucleic acid

ROS	reactive oxygen species
RVM	rostro ventromedial medulla
SI	primary somatosensory cortex of postcentral gyrus
SII	secondary somatosensory cortex
SAP90	synapse-associated protein 90
SCN	sciatic nerve cryoneurolisis
SDS	sodium duodecyl sulfate
S.E.M.	standard error of mean
SFKs	Src family of kinases
SG	substantia gelatinosa
SHI	Src homology I
SH2	Src homology 2
SH3	Src homology 3
SOD	superoxide dismutase
SOD 1	copper-zinc superoxide dismutase
SOD 2	manganese-superoxide dismutase
SPSS	Statistical Package for Social Sciences
STZ	streptozotocin
T cells	transmission cells
TBARS	thiobarbituric acid reactions
TBS	tris buffer saline
TBST	tris buffer saline-tween 20
TBS/Tx	tris buffer saline-triton X-100
TCA	trichloroacetic acid
TEMED	N, N, N'N'-tetramethylenediamine

TGF-β	transforming growth factor-β
TMB	3,3',5,5'-tetramethylbenzidine
TNF-α	tumour necrosis factor-α
TrkB	tropomysin-related kinase B
Tyr	tyrosine kinase
VEGF	vascular endothelial growth factor
VmPO	posterior division of the ventromedial nucleus
VPI	ventroposterior
VPL	ventroposterolateral
VPM	ventroposteromedial
WB	western blot
WDR	wide-dynamic-range

PERUBAHAN EKSPRESI PROTEIN DREAM DAN BDNF, SITOKIN PRO-KERADANGAN DAN TEKANAN OKSIDATIF DALAM KORDA SPINA TIKUS NEUROPATI DIABETES YANG MENYAKITKAN YANG DIARUHKAN OLEH STREPTOZOTOCIN DENGAN RAWATAN MINOCYCLINE DAN IFENPRODIL

ABSTRAK

Neuropati diabetes (DN) merupakan komplikasi jangka panjang penyakit diabetes melitus (DM) yang menyebabkan kesakitan (PDN) atau sebaliknya (non-PDN). Kajian ini bertujuan untuk meneroka peranan (i) penanda bio protein (keseluruhan subunit NR2B (NR2B) dan subunit NR2B yang telah difosforilasi (phospho-NR2B) daripada reseptor NMDA, pengaktifan mikroglia, protein BDNF dan DREAM), (ii) sitokin pro-keradangan (IL-1 β dan TNF- α) dan (iii) status stres oksidatif (MDA, SOD dan 'catalase') dalam patogenesis DN pada korda spina tikus diabetes yang diaruhkan oleh 'streptozotocin'. Seratus enam puluh lapan ekor tikus jantan Sprague-Dawley dibahagikan kepada tujuh kumpulan (n=24), terdiri daripada kumpulan bebas diabetes (S+CB), kumpulan kawalan PDN (S+STZ), kumpulan kawalan tidak mengalami PDN (non-PDN), kumpulan PDN dirawat dengan minocycline (M80 dan M160) atau ifenprodil (I0.5 dan I1.0). DM diaruhkan dengan satu suntikan 'streptozotocin' (60mg/kg). Ujian tingkah laku kesakitan seperti Von Frey, plat-panas dan formalin dilakukan untuk menilai 'allodynia' sentuhan, hiperalgesia terhadap haba dan bahan kimia. Rawatan 'saline', minocycline (80 atau 160µg sehari) atau ifenprodil (0.5 atau 1.0µg sehari) diberikan secara suntikan intratekal selama tujuh hari. Selepas itu, kesakitan keradangan kronik telah diaruhkan dengan suntikan formalin dan tikus-tikus tersebut telah dikorbankan tiga hari kemudian. Bahagian pembesaran lumbar pada korda spina tikus dibedah keluar untuk tujuan penganalisaan. Keputusan kajian menunjukkan tikus PDN mengalami 'allodynia' sentuhan dan hiperalgesia terhadap bahan kimia tetapi tidak terhadap haba, yang mana simptom tersebut telah direncat oleh minocycline dan ifenprodil. Sementara itu, tikus non-PDN tidak mengalami 'allodynia' sentuhan dan hiperalgesia terhadap haba mahupun bahan kimia. Ekspresi protein NR2B, phospho-NR2B, pengaktifan mikroglia, BDNF dan DREAM menunjukkan peningkatan drastik pada bahagian ipsilateral dan kontralateral korda spina dalam kumpulan (S+STZ) dan keputusan ini bertentangan dengan keputusan daripada kumpulan non-PDN. Minocycline dan ifenprodil berjaya mengurangkan ekspresi NR2B, phospho-NR2B, BDNF, DREAM dan pengaktifan mikroglia pada bahagian ipsilateral dan kontralateral korda spina tikus PDN bergantung pada dos yang diberikan. Tambahan pula, kumpulan-kumpulan (S+STZ) dan non-PDN menunjukkan peningkatan yang signifikan terhadap kadar TNF-α namun menunjukkan tiada perubahan pada kadar IL-1β. Minocycline telah berjaya merencatkan peningkatan rembesan kedua-dua sitokin tersebut manakala ifenprodil telah merencatkan peningkatan kadar TNF- α namun meningkatkan pula kadar IL-1^β. Selain itu, kadar MDA meningkat secara signifikan dalam kumpulan-kumpulan (S+STZ) dan non-PDN. Pengurangan aktiviti enzim 'catalase' dengan tiada perubahan pada aktiviti enzim SOD dikesan dalam kumpulan (S+STZ) manakala peningkatan aktiviti enzim 'catalase' dengan pengurangan aktiviti enzim SOD dilihat dalam kumpulan non-PDN. Minocycline dan ifenprodil mengurangkan kadar MDA dan meningkatkan aktiviti enzim-enzim 'catalase' dan SOD pada korda spina. Secara tuntasnya, minocycline dan ifenprodil berkesan merawat PDN melalui aktiviti-aktiviti anti-kesakitan, anti-oksida dan anti-keradangan yang telah ditunjukkan dalam penyelidikan ini.

CHANGES OF DREAM AND BDNF PROTEINS EXPRESSIONS, PRO-INFLAMMATORY AND OXIDATIVE STRESS LEVELS IN SPINAL CORD OF STREPTOZOTOCIN-INDUCED PAINFUL DIABETIC NEUROPATHY RATS UPON MINOCYCLINE AND IFENPRODIL TREATMENTS

ABSTRACT

Diabetic neuropathy (DN) is a long-term complication of diabetes mellitus (DM) which could be painful (PDN) or non-painful (non-PDN). This study aimed to explore the effect of minocycline and ifenprodil on the (i) proteins expressions of NR2B subunit (NR2B) and phosphorylated NR2B subunit (phospho-NR2B) of Nmethyl-D-aspartate (NMDA) receptors, microglial activation, brain-derived neurotrophin factor (BDNF) and Downstream Regulatory Element Antagonist Modulator (DREAM) proteins), (ii) pro-inflammatory cytokines (interleukin-1 β (IL-1 β) and tumour necrosis factor- α (TNF- α) and (iii) oxidative stress markers (malondialdehyde (MDA), superoxide dismutase (SOD) and catalase) in the pathogenesis of DN in the spinal cord of streptozotocin-induced diabetic rats. One hundred and sixty-eight Sprague-Dawley male rats were assigned into seven groups (n=24) consisting of non-diabetic control (S+CB), diabetic PDN control (S+STZ), diabetic non-PDN control (non-PDN), minocycline-treated PDN groups (M 80 and M 160) and ifenprodil-treated PDN groups (I 0.5 and I 1.0). DM was induced with a single streptozotocin injection at 60 mg/kg. Nociceptive behavioural tests such as Von Frey, hot-plate and formalin tests were conducted to assess tactile allodynia, thermal hyperalgesia and chemical hyperalgesia respectively. Treatment of either saline, minocycline (80 µg/day or 160 µg/day) or ifenprodil (0.5 µg/day or 1.0 µg/day) was administered intrathecally for seven days. Chronic inflammatory pain was induced

with formalin injection before being sacrificed three days later. The spinal cord lumbar enlargement region was collected for immunohistochemistry, Western Blot (WB) and enzyme-linked immunoabsorbent assay (ELISA) analyses. The results showed that PDN rats developed tactile allodynia and chemical hyperalgesia but not thermal hyperalgesia, in which were prevented by minocycline and ifenprodil at both lower and higher doses used. Meanwhile, non-PDN group showed lower tactile allodynia, thermal and chemical hyperalgesia. There was significant higher NR2B, activated microglia, BDNF and DREAM proteins ipsilaterally and contralaterally by immunohistochemistry and WB analyses in (S+STZ) group, in which the results were reduced in non-PDN group. Minocycline and ifenprodil at both lower and higher doses significantly attenuated the expressions and mean relative NR2B, phospho-NR2B, BDNF, DREAM proteins levels and activated microglial positive neurons in a dosedependent manner. Furthermore, (S+STZ) and non-PDN groups showed a significant higher TNF- α level. Minocycline inhibited both cytokines. Moreover, MDA level was significantly higher in (S+STZ) and non-PDN groups. Significant lower catalase enzyme activity with insignificant SOD enzyme activity was detected in (S+STZ) group whilst marked higher catalase activity with lower SOD enzyme activity were detected in non-PDN group. Minocycline and ifenprodil attenuated MDA level and lead to higher catalase and SOD activities in the spinal cord. In conclusion, minocycline and ifenprodil is effective to combat PDN through their strong antinociceptive, anti-oxidant and anti-inflammatory activities as has been shown in this study.

CHAPTER ONE

INTRODUCTION

1.1 Diabetic neuropathy

Neuropathic pain is one of the critical problems in clinical medicine as it is not easy to cure. It is pathological and defined as a chronic pain state resulting from injury or disease of neurons in peripheral or central nervous system (CNS). Neuropathic pain may result either from acute events (e.g amputation and spinal cord injury) or systemic disease (e.g diabetes, viral infection and cancer) (Zhuo et al., 2011, Ji et al., 2017). Patients with neuropathic pain experience devastated suffering as this pathological pain is hugely resistant to currently available analgesics. Neuropathic pain is characterized by unusual response to somatic sensory stimulation. The patients experiencing peripheral neuropathies may feel pain from stimuli which are nonnoxious in normal condition such as a soft touch on the skin or by changes in temperature. They also suffer from enhanced responses to pain stimuli. In fact, neuropathic pain treatment costs billions dolars annually and most drugs focus on reducing the neuronal hyperexcitability either peripherally or centrally. However, currently-used medication such as tricyclic antidepressants and the "gold standard" gabapentin that are the mainstay of neuropathic pain treatment, has been shown to be limited in efficacy and produces several side-effects in a number of patients (Childers and Baudy, 2007; Kukkar et al., 2013).

One of the devastating diseases classified under neuropathic pain is diabetic peripheral neuropathy (DPN). Diabetic neuropathy is a late complication of diabetes mellitus (DM) of either Type I or II. A study from the Mayo Clinic revealed that diabetic neuropathies are common in diabetic patients affecting approximately 66% with insulin-dependent DM (Type I DM) and 59% in patients with non-insulindependent DM (Type II DM) (Sadosky et al., 2008). Moreover, PDN is reported to affect approximately 18% of adult diabetic patients compared with a minimum of 30% of patients with overall diabetic peripheral neuropathy (Spallone and Greco, 2013). In fact, numerous types of diabetic neuropathy have been reported including cranial, truncal, focal limb and amyotrophic neuropathy (Jensen et al., 2006). However, in specific, the sensory neuropathy, which is also referred to as distal symmetric sensory polyneuropathies, may be further classified as being acute or chronic. But, chronic form is actually the most common occurrence of diabetic neuropathy including painful diabetic neuropathy (PDN), which occupies most of the available epidemiologic data (Sadosky et al., 2008).

Neuropathic pain has raised the question of whether a completely different strategy is needed and could offer an alternative approach to obtain a better treatment outcome. Pain expert panel has identified a number of deficiencies in the available clinical data that need serious attention, including the lack of understanding of the underlying mechanisms of PDN and the need for studies to investigate the treatment effects on different symptoms of PDN such as allodynia, hyperalgesia and spontaneous pain (Jensen et al., 2006). Thus, it is crucial to deeply explore and understand the pathogenesis underlying PDN together with the discovery of new molecular targets that potentially give some hope to the patients and also strengthen the demand for alternative way for curing neuropathic pain.

In year 1991, the glial cell has become the centre of researchers' attention since an animal model of neuropathic pain was reported to stimulate spinal astrocytes activation (Garrison et al., 1991). During that period, the drugs experimented also demonstrated attenuation towards numbers of astrocytic activation in the rat model of sciatic nerve constriction injury (Garrison et al., 1994). Beginning from that, glial cell activation was believed to be strongly connected with the development of neuropathic pain. To be specific, microglial activation in neuropathic pain has been widely investigated and research discovered evidence that glial cell are the key players in the creation and maintenance of several types of neurodegenerative diseases. The discovery of spinal cord glial cells which strongly implicates pain processing enhances the understanding of pain, including understanding the glia-neuron interactions. In fact, as microglia could possibly modulate pain, it is vital to understand the mechanisms of microglial activation on the pathogenesis of neuropathic pain, especially on PDN. Inhibiting the microglial activation could potentially one of the possible ways to combat the development of PDN. Therefore, understanding this mechanism leading to the pathogenesis of PDN should be well-studied.

Apart from that, N-methyl-D-aspartate (NMDA) receptors activation has been implicated in the initiation and maintenance of central sensitization during the pain states. Understanding the molecular and cellular mechanisms of NMDA receptors may give some hope to the pain analgesic development targeting these receptors to combat PDN. In brief, NMDA receptors are composed of three subunits: NR1, NR2 (A, B, C and D) and NR3 (A and B) subunits which play different roles whether in pain transmission or in learning and memory. NR2B subunit of NMDA receptor is reported to be abundantly expressed in the spinal dorsal horn and have more implications for neuropathic pain (Ma and Hangreaves, 2000). Since NR2B subunit receptor are located at the extra synaptic sites, it is possible that its effect differs from the other types of NMDA receptor subunits (Parsons and Raymond, 2014). The development of drugs specifically targeting this site may aid in alleviating pain in patients with PDN. Last but not least, the previous studies on the mechanisms of neuropathic pain revealed the involvement of signalling neuromodulators such as brain-derived neurotrophic factor (BDNF) and downstream regulatory element antagonist modulator (DREAM) in the neuron-glia crosstalk (Zhang et al., 2007, Ren and Dubner, 2008, Tsuda, 2016). It is possible that the pathogenesis of PDN is also similar to the other models of neuropathic pain in which the signalling neuromodulators may play the similar roles for the neuron-glia interactions. If so, inhibiting these signalling molecules leading to the activation of NR2B subunit of NMDA receptor as well as microglia may perhaps bring some hope to combat the development of PDN.

1.2 Problem statements

It is already known worldwide that neuropathic pain, specifically PDN, is not easy to be treated. The mechanisms underlying PDN are still unclear. However, the previous studies of neuropathic pain revealed strong neuronal and non-neuronal interactions leading to the development and maintenance of neuropathic pain (Hossain et al., 2017, Ji et al., 2017). The neuronal mechanisms involving the spinal NMDA receptor activation especially NR2B subunit activation has been revealed to play a vital role in initiating and maintaining the neuropathic pain (Qu et al., 2009) as the persistent NR2B subunit of NMDA receptor activation causes the stimulation of nonneuronal cells (i.e microglial activation) through the cascades of immune system activation (Hossain et al., 2017, Ji et al., 2017). These interactions are also succeeded by the aid of signalling neuromodulators such as BDNF and DREAM proteins, free radicals and pro-inflammatory cytokines released by these neuronal and non-neuronal cells to interact with each other in the pathogenesis of neuropathic pain (Geng et al., 2010, Old and Malcangio, 2012). By targeting neuronal and non-neuronal interactions, it is believed that the pathogenesis of PDN can be combated. Therefore, the drugs targeting these neuronal and non-neuronal pathways is needed to inhibit the development of painful diabetic neuropathy. Ifenprodil has been demonstrated in the previous study of neuropathic pain model to possess a greater selectivity for NR2B subunit of NMDA receptor activation compared to other similar antagonists (Boyce et al., 1999) to non-competitively inhibit this NMDA receptor activation. Meanwhile, minocycline has been shown to strongly inhibit the microglial activation in the animal models of neuropathic pain (Pabreja et al., 2011, Taves and Ji, 2016). However, the effects of these drugs in inhibiting the development of PDN is not clear. It is also unknown whether these drugs may have some effect on the signalling neuromodulators such as DREAM and BDNF proteins expressions, pro-inflammatory cytokines and oxidative stress markers to interrupt the interactions between neuronal and non-neuronal mechanisms, therefore, may possibly combat the development of PDN.

1.3 Objectives of the study

1.3.1 Main objective

Thus, the main objective of this study was to explore the roles of protein biomarkers (NR2B subunit of NMDA receptor phosphorylation and activation, microglial activation, BDNF and DREAM proteins), oxidative stress (malondialdehyde, superoxide dismutase and catalase enzymes activities) and proinflammatory markers (interleukin-1 β and tumour necrosis factor- α). This study also aimed to explore the anti-nociceptive, anti-inflammatory and anti-oxidant effects of ifenprodil and minocycline and to determine whether the signalling pathways of BDNF and DREAM protein expressions, pro-inflammatory cytokines and oxidative stress were involved in the spinal cord of STZ-induced PDN rat.

1.3.2 Specific objectives

- 1. To compare the effects of ifenprodil and minocycline administered intrathecally on tactile allodynia, thermal hyperalgesia and formalin-induced inflammatory nociceptive behaviour in the STZ-induced PDN rats.
- 2. To compare the effects of ifenprodil and minocycline administered intrathecally on the microglial cell marker expression (OX-42), total expression of NR2B subunit of NMDA receptors, phosphorylation of NR2B subunit of NMDA receptors, BDNF and DREAM proteins expression by immunohistochemistry and western blot analyses in the spinal cord of STZinduced PDN rat.
- 3. To compare the effects of ifenprodil and minocycline administered intrathecally on the pro-inflammatory markers level of interleukin-1 β (IL-1 β) and tumour necrosis factor- α (TNF- α), oxidative stress markers (malondialdehyde (MDA) level and catalase and superoxide dismutase (SOD) enzymes activities).
- 4. To correlate the microglial cell marker (OX-42), total NR2B subunit of NMDA receptors, phosphorylation of NR2B subunit of NMDA receptors, BDNF and DREAM proteins expression, IL-1β and TNF-α levels, MDA level, catalase and SOD enzymes activities in the spinal cord with tactile allodynia, thermal hyperalgesia and formalin-induced inflammatory nociceptive behaviour in the STZ-induced PDN rat.

CHAPTER TWO

LITERATURE REVIEW

2.1 Pain

Pain, whether originates physiologically or pathologically is an unpleasant sensory experience stimulated with the presence of noxious stimuli. The increasing prevalence of pain, particularly chronic pain, is seriously alarming and appears to increase with age in both men and women (Schim and Stang, 2004). It could be the most probable reason of why patients seek medical consultation. According to the International Association for the Study of Pain (IASP), pain is defined as 'an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage' (Williams and Craig, 2016).

2.1.1 Pain pathways

In general, pain pathways consist of pain signal transduction at the peripheral receptor site, pain signal conduction along the peripheral nerve, pain modulation at spinal cord level, pain perception at the supraspinal site and lastly, the related emotional feelings, sensation and affective state (Kitahata, 1993).

2.1.1(a) Pain signal transduction at the peripheral receptor site

The propagation of pain is actually elicited with the activation of nociceptors found abundantly in the skin (epidermis, dermis), dental pulp, mucosal membranes of the oral and nasal cavities of the respiratory, gastrointestinal, and urinary tracts, muscles, tendons, ligaments, joint capsules and bones. These nociceptors are naked and free nerve endings and respond only when a stimulus is sufficiently strong to cause injury. Three main categories of primary afferent fibres are A β -fibre, A δ -fibre and C- fibre. These fibres which are also the first-order neurons are classified depending on the diameter, structure and conductivity speed.

Myelinated A β -fibres are the greatest fibre diameter and the highest speed of conductivity compared to the other types of primary afferent fibres. The Aβ-fibres are responsible for the touch sensation. Meanwhile, myelinated Aδ-fibres carry mechanical and thermal stimuli (pain) from the peripheral nerve. This type of fibres promotes an immediate sensation of the first phase or acute pain and initiate withdrawal actions. Two distinctive types of A δ fibres were discovered; Type I of A δ fibres respond to fibres with high-threshold mechanoreceptors that mainly respond to the mechanical input of high intensity and weakly respond to thermal or chemical inputs. Meanwhile, another type of A δ fibres, Type II is the fibres with mechanothermal receptors for strong heat (45-53 °C) and some receptors for the extreme cold (-15 °C) and sensitized to vigorous mechanical stimuli at non-noxious thresholds (Millan, 1999). Að fibres propagate the 'fast pain' in which they transmit the pain inputs fairly quickly. Meanwhile, C-fibres possesses several distinctive characteristics and response to thermal and mechanical stimuli. Majority of C-fibres with high-threshold receptors respond equivalently to thermal and mechanical stimuli or are sensitive to mechanical, thermal and chemical inputs (polymodal C-fibres). There is also another special type of polymodal C-fibres that react to high-intensity thermal stimuli and seems accountable for sudden brief burst of response after the tissue injury. Apart from that, there is also another type of C-fibres that are slowly conducted, insensitive to mechanical stimuli, mediated by histamine and possibly involved in the burning sensation. Last but not least is another type of C-fibres which do not respond to noxious input in general, but become merely activated in the presence of inflammation (silent C-fibres) (Willis and Westlund, 1997, Almeida et al.,

2004, Millan, 1999). The unmyelinated C-fibres mediate nociceptive inputs in a slower manner or 'slow pain', at times secondary to the action of A δ fibres (Almeida et al., 2004).

2.1.1(b) Signal conduction of pain

In brief, the sensory pathway as shown in Figure 2.1 is classified into three sections which are:

- First-order neurons that carry sensory inputs from the nociceptive receptor to the CNS.
- Second-order neurons which transmit the nociceptive signal from CNS to the thalamus.
- Third-order neurons that propagate the nociceptive input from the thalamus to the cerebral cortex.

First-order neurons propagate the nociceptive inputs from the peripheral nerve to the spinal cord and the brainstem via the cranial nerve pairs V, VII, IX and X. The first-order neurons will detach from the thicker fibres, organizing themselves in the ventrolateral bundle of roots and then form synapses with second-order neurons distributed along the dorsal horn of the spinal cord (Merskey, 1986).

The axons of second-order neurons form afferent bundles with anterolateral or posterior fascicle that project the pain impulse to brainstem and diencephalon structures including thalamus, periaqueductal substance, parabrachial region, reticular formation of the medulla, amygdaloid complex, septal nucleus and hypothalamus. The previous findings indicated that the axons of second-order neurons project either in the direct (spinothalamic) or indirect (spinoreticular) pathway of the anterolateral system, or as three sets of fibres which are the spinomesenphalicspinotectal or spinohypothala-

Figure 2.1 First-, second- and third-order neurons in pain pathways. First-order neurons carry the sensory inputs from nociceptor to the CNS whilst second-order neurons transmit the nociceptive inputs from the CNS to thalamus. Meanwhile, third-order neurons propagate the nociceptive signals from the thalamus to cerebral cortex. Adapted from Chan (2010).

mic fibres (the remaining components of the anterolateral system). These tracts are believed to propagate noxious, thermal and crude tactile signals to the higher brain centres. Almost 15% of the afferent fibres propagate directly to the thalamus whilst 85% of the afferent fibres project to the thalamus through a relay in the reticular formation (Millan, 1999).

Direct pathway of the anterolateral system

A δ -fibres of the first-order neurons synapse mainly with second-order neurons in lamina I (posteromarginal nucleus) and lamina V (reticular nucleus) of the spinal cord. But most of these first-order neurons synapse with the spinal cord interneurons that are related to a reflex motor activity. The axons of the second-order neurons are then projected across the midline to the contralateral side of the spinal cord in the anterior white commissure to form the spinothalamic tract.

In brief, spinothalamic tract (neospinothalamic pathway) is comprised of the lateral spinothalamic tract (found in the lateral funiculus) and anterior spinothalamic tract (found in the anterior funiculus). This tract disseminates noxious, thermal and crude touch signals to the contralateral ventral posterior lateral nucleus of the thalamus. Apart from that, spinothalamic tract also transmits the information to the ventral posterior inferior and the intralaminar nuclei of the thalamus. Although the spinothalamic tract terminates in the thalamus, this tract also transmits collaterals to the reticular formation as if ascends via brainstem (Tortora and Derrickson, 2008).

Indirect pathway of the anterolateral system

Unmyelinated C-fibres of the first-order neurons end on the interneurons in lamina I (substantia gelatinosa) and lamina II of the dorsal horn. The axons of these interneurons then synapse with second-order neurons in laminae V-VIII. Most of these axons ascend ipsilaterally but some project to the contralateral side of the spinal cord in the anterior white commissure. These axons form the more pronounced ipsilateral and smaller contralateral spinoreticular tracts (paleospinothalamic pathway). The spinoreticular tract propagates the noxious, thermal and crude touch inputs from the spinal cord to the thalamus in an indirect pathway by forming abundant synapses in the reticular formation before projecting to the thalamus (Abbracchio and Reggiani, 2013).

Third-order neurones are situated in the ventral posterior lateral nucleus of the thalamus and ascend in the posterior limb of the internal capsule and corona radiata to end in the primary somatosensory cortex of postcentral gyrus (SI). The primary somatosensory cortex is then projected to the secondary somatosensory cortex (SII) situated on the superior border of the lateral fissure. Some of the third-order neuron fibres from the thalamus may also directly terminate in the SII (Almeida et al., 2004, Perl, 2011).

2.1.1(c) Modulation at the spinal cord level

It is believed that the dorsal horn of the spinal cord is the first site of modulation for the pain signal arriving from the periphery to CNS (Kitahata, 1993). To understand the process of pain modulation in the spinal cord, Melzack and Wall (1967) have proposed the 'gate control theory' to understand the pain modulation process in a better way (Figure 2.2).

The pain impulse reaching the spinal cord is transmitted to three dominant spinal cord systems which are:

1) cells of the substantia gelatinosa (SG) in the dorsal horn

Figure 2.2 Schematic diagram of the gate control theory of pain mechanisms. $L = large diameter A\beta$ -fibres, $S = small diameter A\delta$ - and C-fibres, T = transmission cells, SG = cells of substantia gelatinosa, (+) = excitation and (—) = inhibition. The inhibitory effect employed by SG cells on the afferent fibre terminals is elevated by the activity in 'L' fibres and reduced by the activity in 'S' fibres. The line running from the large fibre system to the central control mechanisms represents 'central control', and these mechanisms in turn, propagate back to the gate control system. T cells propagate to the entry cells of the action system. Adapted from Melzack and Wall (1967).

- 2) dorsal-column fibres that project toward the brain (central control)
- 3) first central transmission (T) cells in the dorsal horn

It is proposed that SG acts as a gate control system that modulates the afferent patterns before they affect the T cells. Meanwhile, the afferent patterns in the dorsal column system functions as a central control trigger that may stimulate selective brain processes that affect the modulation properties of the gate control system. Furthermore, T cells may stimulate neural pathways which consist of the action system accountable for response and perceptions.

In gate control theory, the afferent fibres (A β -, A δ - and C-fibres) that carry noxious signals project to SG and T cells. T cells propagate the noxious signals up to the brain whilst SG cells (inhibitory interneurons) prevent the pain signal transmission. Activities in C, A δ - and A β -fibres influence activities in the T cells in which thin diameter A δ - and C-fibres excite the SG cells (tend to allow T cells to fire) while largediameter myelinated A β -fibres excite the inhibitory SG cells (tend to attenuate T cells activity). Briefly, the activation of non-noxious large diameter A β -fibres may disturb the signals from pain fibres (A δ - and C-fibres), therefore inhibiting pain.

The laminae of the spinal cord which are involved in receiving pain inputs from A δ - and C-fibres, also receive the signals from A β -fibres. A β -fibres indirectly attenuate the effects of A δ - and C-fibres, 'closing a gate' to the propagation of their pain inputs. In addition, in other parts of the laminae, the A δ - and C-fibres also suppress the effects of A β -fibres, thus 'opening the gate'. This happens when the output of the T cells exceeds a critical level thus allowing the pain transmission to the brain.

2.1.1(d) Descending pain inhibition

Research has established that the stimulation of midbrain and medullary sites exerts dual control over nociception. Descending pain pathways (as indicated by redand green-coloured pathway in Figure 2.3) communicate from the brain to the body which attenuates pain. There are a minimum of two major pathways that descend to the spinal cord to suppress the projection of pain. The most significant descending pathway starts in the periaqueductal gray (PAG). The neurons beginning in the PAG terminate on cells in the medulla including the serotonergic cell bodies of the raphe nuclei (Figure 2.3). The serotonergic neurons then descend the spinal cord to attenuate cell firing. Other cells in the PAG end next to the locus coeruleus in the brainstem. PAG functions to receive inputs from higher brain centres and is able to activate a strong analgesic effect without affecting the body's ability to detect temperature, pressure or touch (Zhuo, 2008, Ossipov et al., 2014). This is proven by early research that microinjection of opioids into PAG attenuates the neuropathic pain perceived by rats (Yaksh et al., 1976, Lewis and Gebhart, 1977). The microinjection of morphine into PAG after the application of peripheral pain stimuli also demonstrated a marked attenuation of dorsal horn second-order neurons activity (Bennett and Mayer, 1979).

Other than that, rostro ventromedial medulla (RVM) comprises the serotonergic nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis-pars alpha and nucleus paragiganto-cellularis lateralis (Vanegas and Schaible, 2004). RVM is capable of either facilitating or attenuating the pain signals and functions as a final relay in the control of descending pain facilitation (Ossipov et al., 2014).

Figure 2.3 Descending pain pathway. Descending pain pathways (as indicated by red- and green-coloured pathway) communicate from the brain to the body which attenuates pain. There are at minimum of two major pathways that descend to the spinal cord to suppress the projection of pain. The most significant descending pathway starts in periaqueductal gray (PAG). The activation of PAG has been shown to result in analgesia, but exhibit no change in the ability to detect temperature, pressure or touch. The neurons begin in the PAG terminate on cells in the medulla including the serotonergic cell bodies of the raphe nuclei. The serotonergic neurons then descend into spinal cord to attenuate cell firing. Other cells in the PAG end next to the locus coeroleus in the brainstem. Adapted from Zhuo (2008).

In a neuropathic pain model of spinal nerve ligation, tactile allodynia that is developed after unilateral ligation of L₅ and L₆ spinal nerves was found to be attenuated by inactivation of the RVM by lidocaine injection (Pertovaara, 1998). PAG may affect the descending pain modulation mainly via its mutual connection with RVM. The trigger of PAG neurons may also trigger the activity of RVM neurons and is related to the attenuation of nocifensive reflexes in rats (Behbehani and Fields, 1979). Jensen and Yaksh (1986) through their research, demonstrated that morphine blocked the nocifensive input to thermal noxious stimuli when it is microinjected into RVM of the rat since RVM has neuronal communication with the PAG. Furthermore, similar to the 'gate control theory' proposed by Melzack and Wall (1967), the modulation of nociceptive responses by RVM is assisted by two distinguished populations of neurons: ON and OFF cells. ON cells are accountable for the facilitatory effect on the nociceptive processing via descending systems projecting to the spinal cord (Ossipov et al., 2000, Ossipov et al., 2014). Meanwhile, OFF cells are assumed to comprise a descending inhibitory system that block nociceptive input directly at the level of the spinal cord (Fields et al., 1991, Ossipov et al., 2000), for example, OFF cells attenuate firing immediately prior to the tail-flick in rats (Ossipov et al., 2014).

Although the descending pain facilitatory and inhibitory systems maintain a homeostatic state, the occurrence of illness, injury or inflammation can disturb this balance. Studies have revealed that persistent pain after tissue or nerve damage is related to the amplified activation of descending modulatory circuits (Vanegas and Schaible, 2004, Guo et al., 2006). Injury or inflammation may enhance RVM ON-cell activity. Moreover, the pharmacological, neurochemical and physical disturbance of descending facilitation from RVM diminishes the enhanced behavioural responses to the evoked stimuli without inhibiting the acute, protective nociceptive reflex (Ossipov

et al., 2014). This increased nett descending facilitatory drive contributes to the augmentation and spread of pain (Vanegas and Schaible, 2004, Guo et al., 2006).

Descending noradrenergic projections to the spinal dorsal horns communicate with RVM and PAG. Recent findings suggest that during the nerve injury, the activity of descending noradrenergic system is enhanced in an effort to compensate for the enhanced nociceptive signals. The injury causes the increased synthesis and production of noradrenaline along with an increased efficacy of spinal α_2 -adrenergic receptors (Muto et al., 2012).

2.1.1(e) Perception at the supraspinal sites

Previous studies indicate that supraspinal structure involved in pain comprises the midbrain, brainstem, thalamus, hypothalamus, lentiform nucleus, somatosensory cortex, insular cortex and pre-frontal, anterior and parietal cingulate cortex (Almeida et al., 2004, Zhuo et al., 2011).

Thalamus is believed to be the primary relay structure for sensory inputs transmitted to the cortex and involved in the reception, integration and the transfer of nociceptive potential. The lateral nuclear complex of the thalamus is comprised of three types of nuclei; ventroposterolateral (VPL), ventroposteromedial (VPM) and ventroposterior (VPI) nuclei. These nuclei respond to thermal and mechanical stimuli and some also respond to freezing (Almeida et al., 2004). It is well-known that VPL and VPM are involved in the inhibitory interactions which form a modulatory system in the propagation of pain to superior centres, similar to the proposed 'gate control theory'. The afferent fibres from the spinocervical tract, spinoparabrachial tract and spinoreticular tract are also projected to the lateral complex of the thalamus (Almeida et al., 2004).

Meanwhile, the posterior complex of the thalamus is comprised of the pulvinar oralis nucleus, posterior nucleus (PO) and the posterior division of the ventromedial nucleus (VmPO). PO and VmPO nuclei establish connections with the insular and cingulate cortex and contribute to affective cognitive aspects of pain (Treede et al., 1999, Almeida et al., 2004). In addition, these nuclei are believed to become the centres of integration for painful and thermal noxious inputs. The posterior complex of the thalamus receives the noxious signals from afferent fibres derived from the spinothalamic tract, spinohypothalamic tract, spinoparabarachial tract and postsynaptic pathway from the dorsal column (Almeida et al., 2004).

Furthermore, the medial complex of the thalamus is comprised of the ventral region of the dorsal medial nucleus (MDvc), lateral central nucleus (LC) and the centromedial nucleus (CM). These nuclei are projecting to the cingular cortex and it is proposed that they are involved in the motivational-affective aspects of pain. The nuclei of the medial complex of thalamus receive afferent fibres from laminae I and V of the spinothalamic tract and interconnect with striatum and cerebellum, possibly involved in the escape behaviour in the presence of a dangerous input (Millan, 1999).

Pain signals mediated by the lateral, posterior and medial systems are then projected to three important cortical regions which are SI, SII and anterior cingulate cortex (Millan, 1999, Almeida et al., 2004). The lateral system is involved directly in the sensory-discriminative attribution of pain and involves specific thalamic nuclei which propagate to spinal nerves and wide-dynamic-range neurons (WDR) of the SI and SII cortices. The SI and SII cortices are interconnected with the posteroparietal area and with the insula via a cortico-limbic somatosensory pathway which is related to learning and memory. On the other hand, the medial system has less defined projections from the medial complex of the thalamus to SI and SII, including the limbic structures (e.g insula and anterior cingulate cortex). Thus, it is the reason why the medial region of thalamus contributes to the motivational-affective component of nociception although it may also take part in the sensory-discriminative circuitry (Treede et al., 1999).

The insula functions in receiving the nociceptive inputs from the lateral system and propagates to the limbic system, mainly amygdala and some regions of prefrontal cortex. These regions are responsible for the emotional and affective component and memory associated with the painful experience (Price, 2000). Meanwhile, the anterior cingulate cortex functions in bringing the attentional and emotional mechanisms to pain experience (Treede et al., 1999).

2.1.2 Types of pain

Pain experience according to Kitahata (1993) could be categorized into four distinguished types and stages which are:

- 1) Processing of acute pain signals (acute physiological nociceptive pain)
- 2) Sympathetically maintained pain (pathophysiological nociceptive pain)
- Persistent pain stimulation secondary to peripheral tissue damage (chronic pain)
- 4) Neuropathic pain

Acute physiological nociceptive pain results from the brief or acute noxious mechanical, chemical and/or thermal elicitation of the peripheral receptors. This type of pain defends the tissue from further damage as the withdrawal reflexes are stimulated (Schaible and Richter, 2004). Furthermore, **pathophysiological nociceptive pain** results as the tissue is inflamed or damaged. The spontaneous pain (pain in the absence of any stimulation) and/or hyperalgesia and/or allodynia may

appear. Chronic pain may be followed by neuroendocrine dysregulation, fatigue, dysphoria and diminished physical and mental performance (Chapman and Gavrin, 1999). Chronic pain may also result from chronic diseases and possibly result from persistent pain processes. Last but not least, **neuropathic pain** is caused by the neuronal injury or disease in the peripheral or central nervous system. Neuropathic pain usually transmits abnormal signals felt as burning sensation which tends to be acute or prolonged. It may also be combined with allodynia and hyperalgesia. Several pathological processes may lead to neuropathic pain namely axotomy or nerve damage (e.g spinal cord injury, post-mastectomy pain, post-operative hernia repair pain and other types of post-surgical pain), carpal tunnel syndrome, central pain syndrome (e.g. stroke and multiple sclerosis), degenerative disc disease (e.g. arthritis), diabetic neuropathy, phantom limb pain, postherpetic neuralgia (shingles), pudendal neuralgia, sciatica, trigeminal neuralgia, Guillain-Barre syndrome, cancer, kidney disorders, alcohol and human-immunodeficiency virus (HIV) (Jacques, 2017). Thus, in the present study, we focus in detail on neuropathic pain as the major pathological process resulting from DM.

2.2 Neuropathic pain

Neuropathic pain, according to Merskey (1986), is defined as 'pain initiated or caused by a primary lesion or dysfunction in the nervous system'. The pain is produced without any stimulation to the nociceptors or inappropriate response to the stimulation of nociceptors (Brannagan III, 2013). The person experiencing neuropathic pain would complain the feeling of burning, lancinating, stabbing, cramping and aching sensation (Bridges et al., 2001) which could be paroxysmal or continuous (Schaible and Richter, 2004). Individuals with neuropathic pain often exhibit hyperalgesia, allodynia or hyperpathia (Ossipov et al., 2000, Brannagan III, 2013). Axotomy or nerve or plexus damage, metabolic diseases such as DM or herpes zoster are some of the pathological processes leading to neuropathic pain (Schaible and Richter, 2004). It is reported that neuropathic pain is amongst the most difficult types of chronic pain to be treated (Leung and Cahill, 2010) and impairs the quality of life.

There are several animal models developed to represent various types of neuropathic pain. Numerous studies have applied total nerve transaction and ligation to induce the clinical condition of amputation (Wall et al., 1979). Furthermore, partial nerve ligation (Seltzer et al., 1990) and spared nerve injury (Decosterd and Woolf, 2000) have been used to simulate the clinical form involving partial peripheral nerve injury. Meanwhile, spinal nerve ligation is developed to mimic the spinal root damage to a lumbar disc herniation (Kim and Chung, 1992). Immune or toxin-mediated demyelination induces demyelinating neuropathy (Wallace et al., 2003). Furthermore, polyneuropathy due to tumour chemotherapy is mimicked by applying vincristine, paclitaxel and cisplatin to the animal models (Polomano et al., 2001, Peltier and Russell, 2002, Quasthoff and Hartung, 2002). Last but not least, diabetic neuropathy is mimicked in animal models by damaging the rodent's pancreatic insulin-producing cells using STZ (Courteix et al., 1993, Rondon et al., 2010).

2.2.1 Mechanism of neuropathic pain

2.2.1(a) Spinal mechanism

Peripheral sensitization

In the normal physiological state, pain sensation is usually elicited by C- and A δ -primary afferent neurons. These two fibres are normally silent in the absence of pain stimulation. After the occurrence of a peripheral lesion, however, the dramatic

molecular and cellular changes at the level of primary afferent nociceptor results in abnormal oversensitivity of these neurons. Thus, these changes lead to the development of pathological spontaneous activity (Baron, 2006) and a large increase in the level of spontaneous firing in afferent neurons associated with the site of nerve injury (Bridges et al., 2001).

The nerve lesion also causes changes in voltage-gated sodium channels that are selectively expressed in the nociceptive primary afferent. The damaged, degenerated axons, as well as the intact axons in the peripheral nerves as a result of the lesion triggers the expression of sodium channels on the damaged C-fibres (Figure 2.4) (Baron, 2006). The accumulation of sodium channel clusters occurs at the site of nerve lesion as well as within the intact dorsal root ganglion. This Na⁺ accumulation leads to the occurrence of ectopic discharge (Matzner and Devor, 1994). This effect leads to the lowering of action potential threshold followed by the occurrence of hypersensitivity (Lai et al., 2003).

Apart from the changes in sodium channels, changes of calcium channels after peripheral nerve injury has also been demonstrated to affect the development of allodynia and hyperalgesia (Bridges et al., 2001). The diminution of high-voltage activated N-type calcium ion (Ca^{2+}) channels together with *de novo* synthesis of rapidly repriming III channels and down-regulation of tetradotoxin-resistant sodium ion (Na⁺) channels after peripheral nerve injury amplifies the excitability of the neurons. These effects, in turn, may subsequently lead to an increase in firing susceptibility and frequency (indicated by the yellow stars in orange-coloured neurons in Figure 2.4) that may result in spontaneous pain and central sensitization (Bridges et al., 2001).

Figure 2.4 Mechanisms of peripheral and central sensitization in neuropathic pain. C-fibres (red) terminate at spinothalamic projection neurons in upper laminae (orange neuron), while non-nociceptive myelinated A-fibers (blue) project to the deeper laminae. The second-order projection neuron is of the wide dynamic range (WDR) type that receives direct synaptic signals from nociceptive terminals and also multi-sinaptic signal from myelinated A-fibers. y-aminobutyric acid (GABA)releasing interneurons (green) usually exert inhibitory synaptic input on the WDR neuron. Moreover, descending modulatory systems synapse at the WDR neuron. Spinal cord glial cells (pink) also communicate with the WDR neuron. Peripheral changes at primary afferent neurons after peripheral nerve damage leads to peripheral sensitization (A). Some axons are damaged and degenerated while others are still intact and connected with the peripheral end organ (skin). The lesion triggers the expression of sodium channels on damaged C-fibres. The spontaneous activity of C-fibres induce secondary changes in central sensory processing, contributing to spinal cord hyperexcitability (central sensitization of second-order WDR neurons (indicated by yellow stars in orange-coloured neuron). This causes signals from mechanoreceptor A fibres to be perceived as pain (mechanical allodynia). Inhibitory interneurons and descending modulatory control systems (green neuron) are dysfunctional after the nerve damage, thus leading to disinhibition or facilitation of spinal cord dorsal horn neurons and further central sensitization. The peripheral nerve injury also induces spinal cord non-neuronal glial cells (pink) which further augment excitability in WDR neurons by releasing cytokines and increasing glutamate levels. Adapted from Baron (2006).