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IMPAK PENGUBAHSUAIAN DINDING LUARAN BANGUNAN KE ATAS 

TINDAKBALAS TERMA BANGUNAN KEDIAMAN TINGGI BERKACA 

DI IKLIM TROPIKA 

 

ABSTRAK 

Terdapat bukti bahawa bangunan perumahan berkaca tinggi yang dibina di iklim panas 

lembap seperti Malaysia telah mengakibatkan keadaan keselesaan yang tidak dapat 

diterima dan penggunaan pendingin hawa yang banyak untuk penyejukan. Tenaga 

digunakan untuk membuang haba yang masuk disebabkan dinding bangunan yang 

mempunyai keupayaan terma yang rendah. Daripada tinjauan literatur, kaedah pasif 

merupakan salah satu strategi yang amat berpotensi untuk diaplikasikan pada dinding 

bangunan di kawasan yang mempunyai radiasi solar yang tinggi dan beriklim panas 

lembap tropika. Tesis ini mempersembahkan keputusan secara empirikal dan kajian 

simulasi terhadap tahap pembaikan yang boleh dicapai melalui pengenaan modifikasi 

terpilih pada dinding luavan bangunan tinggi perumahan berkaca. Melalui kajian rintis dan 

kajian lapangan secara bersiri dalam keadaan iklim sebenar, telah didapati bahawa 

pembaikan yang signifikan dapat dicapai pada iklim dalaman sesebuah bangunan dengan 

mengurangkan WWR, mengaplikasikan pengudaraan semulajadi dan memilih orientasi 

yang berpatutan. Simulasi menggunakan IES<VE> yang dijalankan pada bangunan “The 

View Apartments” untuk mengkaji impak kepelbagaian modifikasi terhadap bangunan 

dari segi orientasi, pelbagai saiz tingkap WWR, pelbagai alat peneduhan dan jenis-jenis 

kaca telah dijalankan secara berasingan. Keputusan melaporkan bahawa melalui aplikasi 

strategi kombinasi seperti merendahkan WWR, tambahan peneduhan “egg-crate” dan 

penggunaan kaca pembalik dapat meningkatkan jumlah jam selesa tahunan dalam keadaan 

tanpa pengudaraan sebanyak 92%, 142.3% dan 64% dalam keadaan sehari penuh, waktu 

siang dan waktu malam masing-masing membanding nya dengan keadaan B.C. 

Walaubagaimanapun, peratusan ini adalah 12.5%, 27.6% dan 5% dalam keadaan adanya 

pengudaraan. Perlakuan terma tiap modifikasi terhadap iklim dalaman pada hari terpanas 

juga telah disusun. Peneduhan “egg-crate” didapati pengubahsuaian paling berkesan untuk 

merendahkan suhu dalaman. 
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IMPACT OF BUILDING ENVELOPE MODIFICATIONS ON THE 

THERMAL PERFORMANCE OF GLAZED HIGH-RISE RESIDENTIAL 

BUILDINGS IN THE TROPICS 

 

ABSTRACT 

There are evidences that the new highly glazed high-rise residential buildings being built 

in the hot-humid climate of Malaysia have inherently produced unacceptable comfort 

conditions resulting in a greater use of air conditioning systems for cooling. Energy is 

used to remove substantial amount of gained heat due to poor thermal envelope 

performance. From the literature, the passive design method is one of the most potential 

strategies to be applied to the building envelope in the high solar radiation and hot-humid 

tropical regions. This thesis presents the results of the empirical and simulation studies on 

the extent of improvement in indoor climate condition by applying selected modifications 

to the high-rise glazed residential building envelope. Through the pilot study and a series 

of full scale field measurement studies conducted under real weather conditions, it is 

found that a significant improvement in indoor climate condition could be achieved by 

reducing WWR, applying NV and selecting proper orientation. Simulations using 

IES<VE> were carried out at “The View Apartments” to investigate the effects of 

different modifications to the building configuration in terms of orientations, different 

window sizes WWR, varied external shading devices and varied glazing types as separate 

entities. The results reported that, by applying a combination of strategies such as 

lowering WWR, adding egg-crate shading devices and using reflective glazed windows, 

the number of comfortable hours in un-ventilated condition was improved annually by 

92.0%, 142.3% and 64.9% in full day, day-time, night-time conditions respectively 

comparing them to Base Case condition. However, these percentages were 12.5%, 27.6%, 

and 5.0% in ventilated conditions. The thermal behaviour of each investigated 

modification to indoor condition during the hottest day has also been ranked. The egg-

crate shading device was found to be the best modification to lower the indoor air 

temperatures. 
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CHAPTER 1: INTRODUCTION 

1.1.  BACKGROUND  

Architecturally, tropical region is one of the hardest climates to compromise through design 

(Szokolay, 2008). This is due to the high humidity and day-time temperatures that result in 

high indoor temperatures exceeding the upper limit of thermal comfort zone for most of the 

year (Sabarinah, 2008). Since Malaysia is in the tropical region, it is undeniable that 

buildings are facing numerous problems. Buildings are overheated during the day due to 

solar heat gain through the building envelope and radiant solar penetration through windows 

(Rajapaksha et al., 2003). Traditionally, this heat can be removed partly by applying passive 

design concepts. However, in recent years, the use of electricity for indoor thermal 

environment control, particularly air-conditioning has become the dominant energy end-use 

in buildings. 

 

In recent years, Malaysia maintains a high economic growth and therefore, its energy 

consumption increased dramatically. Commercial and residential buildings alone account for 

about 13.6% of total energy consumption and 48% of electricity consumption (Al-Mofleh et 

al., 2009, Lucas, 2003). This means that Malaysia has a strong need and great potential to 

apply efficient strategies in lowering energy consumption in buildings. Thus, buildings, 

energy and the environment have become some of the key issues facing the building 

professions (Azni Zain, 2008). With the increasing population and living standards, energy 

issue is becoming more and more important today because of a possible energy shortage in 

the future (Yilmaz, 2007). 

 

According to the Ninth Malaysia Plan 2006–2010, energy conservation culture must be 

inculcated amongst Malaysians and emphasized in government policies and the buildings 
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should be designed to optimise energy usage. Such resources need to be prudently and 

carefully utilised. The government is adopting measures to reduce wastage by promoting 

energy efficient buildings and increasing energy sufficiency throughout the country 

(Malaysia_Plan, 2006). Therefore, it is necessary to correct and modify the indoor climatic 

condition especially for those buildings with high glazing area in the façade, which is more 

sensitive to climatic conditions, by getting the all benefits of passive design concepts. The 

major feature that can be altered for better energy performance is the envelope design. 

 

The building envelope may be defined as the totality of building elements made up of 

components, which separate the indoor environment of the building from the outdoor 

environment (Oral et al., 2004). The construction of the building envelope and selection of 

its material have a significant effect on a building's thermal performance and accordingly on 

both energy efficiency and occupant comfort, especially when taking into account the 

envelope's orientation, windows area, glazing types and shading system. An analysis of the 

building energy consumption in Hong Kong, Singapore and Saudi Arabia for example gives 

a result that the building envelope design accounts for 37%, 25% and 43% of the peak 

cooling load respectively (AL-Najem, 2002, Cheok-Chan, 2008, Lam and Li, 1999). 

 

To limit the amount of heat gain through the building envelope is obviously an important 

step for reducing the cooling energy consumption. Architects and designers need to 

understand that the energy demands of a building stems from functions of its design, the 

quality of the environment in which it is located, and the way in which it is being operated 

(Salvan, 1999). In other words, building design and climate conditions play a significant role 

in energy consumption and thermal performance of the building envelope components. To 

utilize the potential of the thermal performance of building envelope, these characteristics 

should be identified and properly considered at an early design stage to reduce the energy 

consumption required to achieve thermal comfort.  
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The energy consumption in buildings is normally given in terms of the Building Energy 

Index BEI. The South East Asian Average BEI is 233 kWh/m
2
/yr whereby the Malaysian 

average is 269kWh/m
2
/yr, whereby 64% is for air conditioning, 12% lighting and 24% 

general equipment (Azni Zain, 2008). However, the level for low energy buildings 

recommended by Green Building Index GBI is between 90-150 kWh/m
2
/yr (MS_1525, 

2007). To comply with that Malaysian government in 2006 has already built the low-energy 

office (LEO) building in Putrajaya whose energy intensity is 104 kWh/m
2
. The Malaysian 

Energy Centre (PTM) has also built a zero energy office building (ZEO) in line with global 

initiatives to reduce environmental pollution (Al-Mofleh et al., 2009). ZEO building is now 

called green energy office building (GEO) which is officially Malaysia’s first Green 

Building Index Certified Building since 2009 (GBI, 2011). The government has also 

included 5% renewable energy usage in its 9
th
 Malaysian plan to encourage the usage of 

renewable energy to reduce the environmental burden on the atmosphere.  

 

This research is focused on reducing the indoor air temperature in high-rise residential 

buildings where the major feature of its façade is the glass material which can be altered for 

better thermal performance. It is commonly known that external environment and the 

outdoor climate cannot be changed, neither can it be controlled and once the building has 

already been constructed, little can be done to improve the thermal performance of the 

building envelope. However, a lot can be done on the early stage of building design. 

Therefore, this research study concentrated on how thermal performance of the high-rise 

residential building envelope in tropics could be improved. 

 

This research investigated the effect of the building envelope modifications such as, area 

ratio of window to wall (WWR), different categories of glazing and several kinds of shading 

system. The effect of natural ventilation and building orientation is also investigated. 

Considering these design concepts at the early design stages, it is strongly believed that an 

acceptable indoor thermal environment could be achieved with low energy consumption. 
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This is more important in developing countries where energy efficient codes are still being 

developed. In Malaysia, efforts are currently under way to improvise the Malaysian Green 

Building Index (GBI) launched in August 2008. Therefore, the expected output of this 

research is hoped to be of significant contributions and become design guidelines for 

improving thermal performance of naturally ventilated and un-ventilated high-rise residential 

buildings in tropical climate. 

1.2. STATEMENT OF THE PROBLEM   

The rapid development, process of urbanization, and growth of construction industry in 

tropical developing countries such as Malaysia, have contributed in introducing new high-

rise, highly glazed, thermally lightweight  residential buildings that are unsuitable to the 

local hot and humid climate (Byrd, 2008). Many of these buildings have not been designed 

and operated efficiently, contributing to an overall poor thermal performance of the buildings 

envelope. Thus, new high-rise residential building became more dependent on artificial 

means to provide comfortable thermal environment at high energy consumption (Rickwood 

et al., 2008, Liping et al., 2007, Seung et al., 2004, Bojic et al., 2002, Cheung et al., 2005).  

 

In Malaysia, according to A. Rahman and R. Ismail, Malaysian buildings are consuming 

about 70% of energy for cooling the indoor environment (Abdul Rahman and Ismail, 2008). 

However, Azni reported that more than 40% of the energy consumed by Malaysian buildings 

can be reduced if energy efficiency is practiced and sustainable technologies are applied to 

building envelope (Azni Zain, 2008). Compared with commercial buildings, research studies 

on residential buildings are limited and detailed thermal performance data are largely 

lacking. Another study reported that there are very few studies on facade designs to improve 

indoor thermal comfort for naturally ventilated residential buildings especially for hot-humid 

climate (Liping and Hien, 2007). The majority of the previous studies in high-rise residential 

building envelope performance were carried out in Hong Kong, Singapore, Japan, China and 
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Taiwan. Few of these studies dealt with large glazed area as the main material for the high-

rise residential building façade. However, extremely few studies in this field have been 

obtained in Malaysia.  

 

The specific problems that signify the importance of thermal performance research in 

residential building envelope in Malaysia are as follows: 

1. Malaysia has one of the fastest growing building industry in the world (ABCSE, 2005). 

Minister of Housing and Local Government said that since the 1990s, developers had 

been building an average of 100,000 homes every year (TheStar, 2009). 

2. The population increased from 18.1 million in 1990 to 28.3 million in 2009 (DSM, 

2009) which demands an accompanying growth in residential sector to fill up the gap of 

housing needs. 

3. The country generated an average GDP growth of 6.2% per annum from 1991 to 2005. 

This growth more than doubled average household income from RM1.169 per month in 

1990 to RM3, 249 a month in 2004 (Malaysia_Plan, 2006). 

4. An improvement of living standards in the past two decades has changed dramatically.  

People tend to be more accustomed to air-conditioned environments. Thus, people are 

getting more affluent, air-conditioning system is becoming popular to help in achieving 

a comfortable internal thermal environment (Byrd, 2008). 

5. Internationally, energy consumption of the residential sector accounts for 16–50% of 

that consumed by all sectors, and it averages approximately 30% worldwide. However, 

as shown in Figure 1.1 this percentage was 19% in Malaysian residential buildings 

(Saidur et al., 2007), a significant amount which justifies the need to be studied.  

6. The trend of Malaysian residential buildings are now constructed in the new style high-

rise buildings which are totally different from the traditional ones. Their external 

envelopes are covered with large area of glass and concrete (Figures 1.2 and 1.3). This 

is particularly apparent in urban areas where land is scarce while population is high. As 

Malaysia is located in the tropics, these modern buildings are exposed to the full impact 
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of the external temperatures and global solar radiation, which affects the occupants 

comfort in a negative way.  

 

 

Figure ‎1.1 Worldwide residential energy consumption 

Source: (Saidur, Masjuki et al. 2007) 

 

 

     

 

 

 

 

 

Figure ‎1.2 Traditional Malay house 

 

 

 

 

 

 

Figure ‎1.3 New style of high-rise residential building in Kuala Lumpur and Penang 
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7. Many studies reported that poor indoor comfort of glazed buildings leads to high energy 

consumption and affects the users’ health adversely. In Malaysia, 45% of the average 

household electricity is consumed by air conditioners to create acceptable indoor 

environment (CETDEM, 2006). However, applying passive concepts for the building 

envelope design could lower and save this energy. 

8. The Malaysian Standard MS 1525 (Code of Practice on Energy Efficiency and Use of 

Renewable Energy for Non-Residential Buildings) does not elaborate on neither suitable 

environmental design for high-rise residential buildings nor on its envelope 

requirements in particular. Subsequently, there is a need for continuous improvement 

through more extensive studies (Zain et al., 2007). 

 

According to the previously mentioned points, the researcher believes that this study would 

be of much value in solving the problem of energy consumption in Malaysian residential 

sector. 

1.3. SIGNIFICANCE OF THE STUDY 

In Malaysia, nearly half of the electrical energy in residential buildings is used by air-

conditioning system to achieve thermal comfort (CETDEM, 2006). The high energy 

consumption is mostly related to poor thermal performance of building envelope (Manioglu 

and Yilmaz, 2008). Therefore, a study investigating the thermal performance of building 

envelope in hot-humid climates of Malaysia will identify the most important thermal design 

parameters that could be implemented to reduce the dependence on mechanical means and 

achieve thermal comfort with reduced energy consumption. Moreover, Green Building Index 

(GBI) introduced design reference guide for residential new construction, which encourages 

building designers and developers to enhance the buildings to provide a thermally 

comfortable environment to reduce the use of air-conditioning in residential building, 

thereby reducing CO
2
 emission (GBI, 2010). Thus, this study will be beneficial to architects 
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and housing developers who are energy and environmentally concerns and who would like 

their designs and housing developments rated “green”.  

 

Consequently, this study will provide general requirements on the proper thermal 

characteristics of the exterior building envelope that are necessary to achieve thermal 

comfort at low energy consumption. Therefore, it will contribute to the current efforts of 

improving Malaysian GBI Code by providing general design guidelines that can be 

implemented to reduce energy consumption. The study will also be important to home 

owners who will use the results of this study to improve comfort conditions inside their own 

houses. 

1.4. OBJECTIVES OF THE STUDY  

There is a lack of knowledge regarding the overall performance of the high-rise residential 

building envelope in hot-humid climate of Malaysia. Therefore, the main objectives of the 

study are: 

 

1. To investigate the thermal performance and the impact of several design 

modification of the building envelope to the indoor air temperature of naturally 

ventilated and un-ventilated high-rise residential building in Malaysia. 

2. To evaluate each modification in terms of their capability to lower the indoor air 

temperature. 

3. To explore building design potential and ways to enhance indoor thermal 

condition by introducing new combination strategies for high-rise building 

envelope that enhance the satisfactory living conditions for residents. 

4. To develop design recommendations for thermal performance envelope that 

improves the indoor air temperature in both ventilated and un-ventilated 

conditions of high-rise residential building in Malaysia. 
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1.5. SCOPE OF THE STUDY 

The aim of the study is to analyze the most important factors that have a significant effect on 

building thermal performance and energy consumption of residential building envelope 

under tropical climate condition. Figure 1.4 presents the scope of this research and the 

overall framework for a complete building evaluation model. There are many components to 

overall building evaluation. Therefore, the highlighted boxes are the focus of this research.  

This research concentrates on building environment as it is shown on (Line 1). Here, glazed 

residential building is chosen as the studied building imposes the worst problems in terms of 

thermal environment in the tropics. Within the building environment aspect, the research 

evaluates the building thermal performance, and addresses the building envelope and system 

operation (Line 2 and 3). For the building envelope, the research studied the fenestration 

system as well as its orientation. The evaluation of the operation parameters including the 

natural ventilated as opposed to un-ventilation conditions are also investigated. 

 

On the other hand, ASHRAE Standard 55 and Standard ISO 7730 are currently assuming 

that thermal sensation is exclusively influenced by four environmental factors i.e. 

temperature, thermal radiation, humidity and air speed (ASHRAE, 2004, ISO, 2005). 

However, air temperature is considered as the main and sometimes exclusively considered 

factor in evaluating building thermal performance (Szokolay, 2008, Ibrahim and M. Hazrin, 

2009, Humphreys, 1976a). For example, study by Rohles and Nevins showed that 

temperature is seven to nine times more important than relative humidity in influencing how 

men and women felt respectively (Rohles and Nevins, 1971). Therefore, the scope of the 

thermal performance evaluation of the previous highlighted components on this research was 

based on the variation between in/outdoor air temperature and ventilation for each building 

envelope modification. 

 

  



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎1.4 Location of research in the body of knowledge 

Source: (Author 2009) 
 

1.6. HYPOTHESIS OF RESEARCH 

The hypothesis of this research assumes that indoor climate condition can only be improved 

by the designer through proper selection and integration of the building physical 

components. Therefore, if the building envelope is efficiently designed, it will result in less 

dependency on mechanical systems to achieve the desired thermal comfort conditions. The 

theory of research hypothesis as shown in Figure 1.5 was based on three assumptions as 

follows: 

a)  Indoor air temperature (Ti) in glazed building in tropical climate is very high and 

always above outdoor air temperature (To). According to this scenario Ti exceed the 

upper limit of thermal comfort temperature Tc range especially during day-time 

hours (Refer to Figure 1.5 a).  
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b) Implementing different modifications for building envelope configurations have 

substantial effects on the magnitude of the external heat gains and to the reduction in 

Ti (Refer to Figure 1.5 b).  

c) Further integrating (b) with natural ventilation strategy and optimum orientation will 

lower Ti to the lowest possible (Refer to Figure 1.5 c). 

 

Therefore, it might not be possible to completely avoid using mechanical systems in tropical 

climates of Malaysia but the dependence on artificial means to provide a constant thermal 

comfort can be minimized. 

1.7. LIMITATIONS OF THE STUDY 

Since the experimental research involves multiple variables and simulation studies, there are 

limitations and restrictions raised through the research. This research is limited to the 

following conditions: 

 

1.7.1. BUILDING SAMPLE LIMITATIONS 

Initially 6 sample buildings were selected, that exemplify glazed and high-rise residential 

units in Penang. However, only one building was agreeable to the research. “The View 

Apartments” was selected and used as the primary case for field data collection and analysis. 

The reasons of selecting this building were illustrated in section 4.3.1. As a high-rise 

building, wind direction and pressure will affect indoor ventilation behavior. However, in 

this study, due to irregularities of wind speed and directions; and limitation of probes, the 

impact of external wind was not considered. 

 

1.7.2. TECHNICAL LIMITATIONS 

a) The instruments field study was conducted for “The View Apartments”, Penang 

Island. The collected data was used to give a comprehensive picture of the thermal 
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performance of the residential buildings under hot humid climate. However the 

available data acquisition instrument used had only 4 input channels, which limit the 

number of thermocouples installed in the investigated units.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure ‎1.5 a), b) and c) Concepts flow of study hypothesis.  

Source: (Author 2009) 
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b) Although there are many thermal modelling programs in market, simulations were 

confined to just Ecotect and Integrated Environmental Solutions <Virtual 

Environment> IES<VE> which were being purchased by the university for academic 

research purposes. IES<VE>and Ecotect programs were thoroughly tested and 

calibrated for use in the research. However, some technical limitations arose while 

using these softwares, which required co-operation between the researcher and the 

software’s support staff to overcome.  

 

1.7.3. TIME AND ACCESS LIMITATIONS 

The field study was carried out in the view units for a limited time of three consecutive 

months during mid April to mid July 2009 agreed and allowed by the owner of the 

residential complex. This period is considered as a part of the hottest climate period. Not all 

orientations can be analyzed in fieldwork, because of the limited access to the three units 

have been taken as case studies and depending also on their designs. Nevertheless, enough 

data were collected for understanding the thermal performance of real buildings and for 

successful calibration with the simulation software.  

 

Despite the obstacles and the limitations mentioned previously, but the search should still be 

carried out to provide design guidelines and design strategy recommendations that maintain 

comfort conditions while reducing building energy use. 

1.8. ORGANIZATION OF THE STUDY 

The dissertation is presented in six chapters. Chapter 1, provides the introduction to the 

study by providing a relevant background, presents the problem statement, study objectives, 

hypothesis, as well as the scope and limitations of the research.  
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Chapter 2, reviews the previous research conducted in this area, which provides a basis for 

the development of this study. The discussion includes the basic principles of building 

thermal behaviour and an assessment of the building envelope components in thermal 

performance and energy cooling requirements. Effects of orientation and natural ventilation 

as passive techniques are also discussed. 

 

Chapter 3, discusses the methodology applied to this study. It describes the experimental 

work as well as the basis for the selection of the simulation model, and outlines the detailed 

simulation scheme adopted by the study for analysis. 

 

Chapter 4, discusses the concept, components and procedures involved in the pilot study to 

evaluate the experiment in small scale model. Field work and simulation analysis for the 

pilot study is presented in this chapter. Second part of this chapter provides the experimental 

work in full scale case study of “The View Apartments”. The effect of building envelope 

components in indoor air temperature in both naturally ventilated and un-ventilated 

conditions are also investigated. 

 

Chapter 5, discusses the case study modeling and calibration using IES<VE> tool. This 

chapter explains the influence of improved and modified building envelope on indoor 

thermal performance in a different ventilated condition. Moreover, the evaluation of the 

results are analyzed annually as well as during the hottest day to achieve maximum thermal 

comfort requirements.  

 

Chapter 6, summarizes the research results, and presents general design recommendations 

for integrating passive concepts according to weather condition, upper limit of thermal 

comfort requirement and user’s time schedule to save energy in residential buildings in hot 

and humid climates. It also suggests future research that may be build on the outcome of this 

study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. INTRODUCTION  

The development of building evaluation systems must begin with an understanding of the 

factors which influence thermal performance and energy consumption. This literature review 

includes an overview of the role played by residential building loads, an assessment of the 

previous research that tested the various properties of envelope components as well as the 

previous research that has tested the different options to improve indoor environment in 

various residential buildings in hot humid climate of South Asian countries.  

 

There are many experimental and numerical research studies conducted in some tropical hot 

and humid climates such as in Taiwan, Singapore, Hong Kong, Saudi Arabia, Indonesia, 

Thailand and Malaysia to investigate the impact of building envelope on internal thermal 

performance and its impact on energy consumption. However, there is only a limited amount 

of research literature on residential building envelope through the climate responsive design 

requirements to achieve better thermal performance of the high-rise residential building 

envelope in hot and humid climate. 

2.2. THERMAL PERFORMANCE FOR CLIMATE RESPONSIVE 

DESIGN 

Climate responsive design is part of an environmental approach to building development 

called ecological sustainable design. Therefore, it combines the study of climate, biology and 

building  design to enhance living conditions and reduce energy consumption (Hyde and 

Woods, 2000). With the advent of the energy crisis there was a renewed interest in those 

aspects of architecture which contributed to thermal comfort in a building without (or with 
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minimum) expenditure of energy (Sodha et al., 1986). This research addresses the most 

important factors that determine thermal performance in buildings, which cover the weather 

data of Georgetown, building envelope components and its orientation as well as natural 

ventilation. The following is a brief theoretical description of the effect of these elements on 

indoor thermal environment. 

 

2.2.1. CLIMATIC CONDITIONS IN HOT-HUMID CLIMATE (MALAYSIA) 

From the knowledge of sun earth relationship, one would therefore expect the equatorial 

region to be the hottest and as one moves away from equator towards the poles, it gets 

steadily cooler (Sodha et al., 1986). Malaysia, lying in the equatorial region, consists of 

Peninsular Malaysia and a part of Borneo Island, and together they make a total of 328,600 

km
2
 of land area. Since the peninsular has the major population (76%), the present study is 

aimed in this area (Ali et al., 2010). Peninsular Malaysia as shown in Figure 2.1 is situated 

between 1
o
N and 7

o
N latitude. Most towns in the peninsular experience high temperature and 

humidity throughout the year without remarkable variations. The diurnal temperature range 

is of minimum 23–27
o
C and maximum 30– 34

o
C. The average difference is 6.7

o
C – 8.3

o
C 

with annual RH value ranges from 74 - 90% (MMD, 2009, Heerwagen, 2004). However, 

there is a seasonal climatic change, which is dominated by the monsoons. The monsoons 

represent significant changes in the wind conditions and rainfalls.  

 

Figure ‎2.1 Map of Malaysia  

Source: (U.S. Central Intelligence Agency, 2000). 



17 

 

2.2.2. AMBIENT CLIMATIC CONDITIONS OF PENANG  

Climate data has been presented for the selected city of Georgetown, which is located in 

Latitude +5.3
o
N and Longitude +100.3

o
E and Time zone +8. The data is constructed in 

graphs and charts which map the climatic situation of the city covering the complete yearly 

cycle. The data presented are those which influence the building design, which includes 

average temperature, humidity, solar radiation and sunshine hours, wind and air movement.  

 

2.2.2.1. Temperature 

Georgetown has an equatorial climate.  It is uniformly warm and humid throughout the year. 

There are no particular hot or cold seasons as such. The diurnal temperature range of 

minimum 23–24
o
C and maximum 30– 33

o
C (MMD, 2009). The latest climatic updates in 

Georgetown temperature is shown in Figure 2.2. 

 

 

Figure ‎2.2 Maximum, minimum, average dry bulb temperature and average relative humidity 

in Georgetown  

(Source: Weather Tool Software, average of 30 years data) 
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2.2.2.2. Humidity 

The annual rainfall is evenly distributed throughout the year. The relative humidity ranges 

from 74 – 86%. September to November may be considered the wettest months (MMD, 

2009).  

 

2.2.2.3. Solar Radiation 

As a maritime country close to the equator, Malaysia has abundant sunshine and thus solar 

radiation. On the average, Malaysia receives about 6 hours of sunshine per day. The cloud 

cover limits sunshine substantially and thus solar radiation. Hu and Lim investigated solar 

radiation and sunshine duration for a total of 14 stations in Peninsular Malaysia. The study 

found that the pattern of global solar radiation follows somewhat in accordance with that of  

the rainfall pattern (Hu and Lim, 1983). Figure 2.3 shows most parts of Malaysia recorded 

16.4 to 21.7 MJm
2
 of daily solar radiation. The lowest solar radiation below 16 MJm

2
 per 

day was recorded over southern part of Johore. On the other hand, some places in Penang 

together with and eastern division of Sabah had higher daily solar radiation of more than 

22.0MJm
2
 (Malaysia MMD, 2009).  

 

Figure ‎2.3 Mean Daily Solar Radiation (MJm-2), Malaysia 

Source: (Malaysia MMD, 2009) 
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Figure ‎2.4 Direct Solar Radiation, Penang 

(Source: Weather Tool Software, average of 30 years data). 

 

 

2.2.2.4. Air Velocity and Wind Direction  

The mean surface winds over peninsular Malaysia are generally mild, with the mean speed 

of about 1.5 m/s, and a maximum speed of less than 8 m/s. The main direction is varied 

(Refer to Figure 2.5). The hourly speeds are high during the day, and the calm periods which 

vary from 16% to 50%, mostly occur at night. The wind conditions are favourable for the 

adoption of natural ventilation (Ismail, 1997). 

 

 

 

Figure ‎2.5 Wind rose and climate summary in Penang 

Source: (Kubota and Supian, 2006) 
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2.2.3. THE INDOOR THERMAL ENVIRONMENT 

A building is usually required to provide an indoor environment that can be maintained 

within certain limits as required by the occupants. A thermal comfort environment is a 

condition that is neither too warm nor too cold, or thermal neutral in which the strain on the 

body's thermal regulatory system is minimal (Gwilliam and Jones, 2002). Many people 

believe that the quality of the thermal environment can be evaluated simply by measuring the 

air temperature (the dry-bulb temperature). However, this is far from accurate (Al-Rubaih, 

2008). There are many factors that can influence occupants thermal comfort in built 

environment including indoor air temperature, air humidity, air movement, mean radiant 

temperature (MRT), as well as occupants' activity level (measured in METs), clothing level 

(measured in CLO), age and sex (Meredith, 2004). 

 

2.2.3.1. A Definition of Thermal Comfort 

One of the simplest definitions of thermal comfort is given by Givoni, who explained that 

thermal comfort could be defined as the range of climatic conditions considered comfortable 

and acceptable to humans (Givoni, 1998). Thermal comfort is also defined in both ASHRAE 

Standard 55 and ISO Standard 7730 as: that condition of mind which expresses satisfaction 

with the thermal environment (ASHRAE, 2004, ISO, 2005). Therefore, the term 'thermal 

comfort' describes a person's psychological state of mind and is usually referred to in terms 

of whether someone is feeling too hot or too cold. 

 

2.2.3.2. Previous Thermal Comfort Studies in Hot-Humid Climate 

It is important to understand the thermal comfort expectations in tropical climate in order to 

design a proper building envelope that contributes in environmental and energy efficiency. 

Several thermal comfort studies in hot humid climates have been conducted to develop a 

database of the thermal environment and subjective responses of the people living in these 

climates. ASHRAE standard 55 on “Thermal environmental conditions for human 
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occupancy” gives 26
o
C as an upper limit of comfortable temperature (ASHRAE, 2004). 

However, many old and new studies assert that it is reasonable to assume that people living 

in unconditioned buildings in hot developing countries are acclimatized to higher 

temperatures and/or humidities (Givoni, 1992, Busch, 1992,- Milne and Givoni, 1979, 

Humphreys, 1976b, Wong and Khoo, 2003, Ellis, 1952b). A summary of thermal comfort 

literature review in tropical countries are illustrated as follows. 

a) Malaysia: 

A study in a controlled climate chamber involving 130 university students aged between 18-

24 conducted in 1993 (Abdul Shukor and Young, 1993). All subjects were engaged in light 

activity of 1.0 met and clothes of 0.5 Clo value. The air velocity was 0.1 m/s and relative 

humidity 50%. The result showed that the neutrality temperature was 28.2°C. On the other 

hand, Sabarinah and Steven (2007) reported that, the comfort band for Malaysia for all 

building types is between 23.6 and 28.6
o
C. Another study suggested that, the occurrence of 

thermal comfort in Malaysia could be achieved below 28.69
o
C (Zain et al., 2007).  

 

Another survey conducted and measured the indoor environmental parameters to study and 

determine the comfort conditions of college students in their naturally ventilated classrooms 

in Shah Alam. A mean temperature of 29.8°C and mean air movement of 0.27 m/s were 

experienced by the subjects at average 65% humidity. The neutrality temperature calculated 

was 27.4°C (Abdul Rahman and Kannan, 1997). 

b) Singapore: 

A study conducted in Singapore involving 98 students showed that the acceptable comfort 

zone was 27.6°C at 70% relative humidity and 27.9°C at 35% relative humidity (De Dear et 

al., 1991a). However, a field study was conducted in classrooms in Singapore to assess their 

thermal conditions during the students’ lesson hours. The result shows that the acceptable 

temperatures ranged from 27.1 to 29.3 °C, implying that the ASHRAE standard 55 is not 

applicable in the free-running buildings in the local tropical climate. A neutral temperature of 
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28.8 °C was found to be in good agreement with the result of other recent studies in 

Singapore (Wong and Khoo, 2003). 

c) Thailand: 

A study in Bangkok conducted during the hot season in April and wet season in July 

involving more than 1100 office workers responded to a questionnaire.The study compared 

naturally ventilated offices with air conditioned ones. Results from these studies showed that 

people in tropical regions could tolerate warmer temperature than predicted by comfort 

models and ASHRAE 55-1995 standards. The study shows that, based on 80% of Thailand 

workers being satisfied, the upper limit of the comfortable temperature can be as high as 

28
o
C for people in air-conditioned buildings, and 31

o
C in naturally ventilated buildings 

(Busch, 1992).  

d) Indonesia: 

A field study conducted in Jakarta involving 596 office workers working in seven multi-

storey office buildings which consisted of a naturally ventilated, a hybrid and five air 

conditioned. The neutrality temperature was 26.4°C which was 2.5°C higher than those 

recommended by ISO and ASHRAE (Karyono, 2000). 

e) Hawaii: 

A study conducted a survey of 3544 students and teachers in 29 naturally ventilated and air 

conditioned class rooms in Hawaii. The study found that, naturally ventilated class room 

occupants accept a wide operative temperature range (22.0 – 29.5
o
C). Besides that, strong air 

velocity can increase the rate of convective and evaporative heat loss from the human skin to 

the environment (Kwok, 1998). 
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2.2.3.3. Previous thermal comfort studies in residential buildings 

a) Malaysia: 

Based on the literature review, there are limited studies on thermal comfort in Malaysia 

before the 1990s. However, since 1990’s with the increase of energy usage in commercial 

sector, more research has been conducted in the area of thermal comfort to find means to 

provide comfortable indoor environments to reduce energy consumption and costs. Studies 

have shown that an increase in temperature indoor setting of 1.5°C gave 15.8% energy 

saving (Abdul Rahman and Kannan, 1997, Zainal and Keong, 1996).  

 

A study of comfort (using software code TAS) was conducted on apartment units in medium 

rise housing block in the Klang Valley area. The results show that these units are 

uncomfortable especially during the day-time (Sabarinah, 2005). In addition, several studies 

have been undertaken by researchers in Malaysia in relation to thermal comfort in residential 

buildings (Abdul Shukor and Young, 1993, Zain et al., 2007, Sabarinah and Steven, 2007). 

The main scope of these studies was to find the neutral temperature according to the 

country’s tropical climate. Findings revealed a higher comfort temperature in comparison 

with those recommended by international standards where in naturally ventilated buildings 

the upper range of comfort could be stretched with the aid of higher natural air movement. 

Summary of the results are illustrated in Table 2.1. 

b) Singapore: 

A study conducted field experiments in both naturally ventilated high rise residential 

buildings and air conditioned buildings in Singapore. The neutral temperatures of subjects in 

the naturally ventilated building and air-conditioned buildings were 28.5 and 24.2 °C 

respectively (De Dear et al., 1991c). Other studies in Singapore showed that the acceptable 

temperatures range from 27.1 to 29.3 °C, implying that the ASHRAE standard 55–92 is not 

applicable in the free-running buildings in the local climate (Feriadi et al., 2003, Wong et al., 

2002). 
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c) Thailand: 

A study carried out a thermal comfort survey in Bangkok, Thailand which covered 1377 

residents while physically taking measurement simultaneously in air-conditioned and 

naturally ventilated residential buildings. The results showed that the comfort temperatures 

for Thai people in residential buildings are 25.0°C with the range of 22.5°C to 27.5°C (90% 

acceptability) for air-conditioned buildings and 28.0°C with the range of 25.5°C to 30.5°C 

(90% acceptability) for natural ventilation buildings (Rangsiraksa, 2006). 

d) Indonesia: 

Feriadi and Wong (2004) conducted an extensive field survey in residential buildings in 

Indonesia, 525 sets of data had been gathered. The results showed that under hot and humid 

tropical climate of Indonesia, people prefer environment condition at 26°C and 29.2°C in 

A/C and naturally ventilated spaces respectively.  

 

2.2.3.4. Summary on thermal comfort study 

A comparative analysis of all the previous thermal comfort studies done in South East Asia 

made and concluded that people living in the warm and humid tropical countries prefer 

similar neutral temperatures around 25-30°C. In comparison to ASHRAE standard 55 and 

ISO standard (ISO, 1994, ASHRAE, 2004) recommended temperature of 23-26°C, these 

figures are 2-4°C higher. Over all, a summary of the neutral temperatures and comfort ranges 

of subjects in the hot-humid regions is shown in Table 2.1.  

 

28.6
o
C has been taken as an upper limit of the comfort temperature for this research 

evaluation based on the following criteria:  

 The previous thermal comfort studies in general and in residential building in 

particular (Refer to Table 2.1) especially in Malaysian climate. 

 The calculation method of the thermal comfort zone for Georgetown climate based 

on mathematical equation showed in appendix B. 
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Table ‎2.1 Thermal comfort research for naturally ventilated buildings and air-conditioned 

buildings in Malaysia and the South East Asia Region 

 

Researcher & Year  

Published 
Location 

Type of 

Building 

Type of 

Study 

No. of 

Subjects 
RH% 

Temp. of 

Comfort (°C) 

(Webb, 1952) 

Singapore 

 

 Field Study 16  26.2 

(Ellis, 1952a)  Field Study 5211  26.1-30.0 NV 

(Ellis, 1953)  Field Study 118  22-25.5 A/C 

(De Dear et al., 1991a)  
Thermal 

Chamber 
32  25.4 A/C 

(De Dear et al., 1991b)  
Thermal 

Chamber 
98 35 27.6 NV 

(De Dear et al., 1991c) 
High-Rise 

Resdi 
Field Study 583  28.5 NV 

(Wong et al., 2002) 
High-Rise 

Resdi 
   28.9 

(Salleh, 1989) 

Malaysia 

terrace 

housing 
   26.1 

(Zainal and Keong, 

1996) 
Factory    33 

(Zain et al., 2007) Residential    23.69 - 28.69 

(Abdul Shukor and 

Young, 1993) 

Penang , 

Malaysia 
Residential   50 28.2 

(Zainal and Keong, 

1996) 

Johor Baru, 

Malaysia 
Factory   18-75 26 

(Abdul Rahman and 

Kannan, 1997) 

Shah Alam, 

Malaysia 
Classrooms   54 -76 27.4 

(Sabarinah and Steven, 

2007) 

Kuala 

Lumpur 

Medium-

Rise Resdi 
   23.6-28.6 

(Sh. Ahmad and 

Ibrahim, 2003) 

Shah Alam, 

Malaysia 
Classrooms    27.6 

(Sabarinah, 2005) 
klang valley 

Malaysia 
Residential    26.1 

(Busch, 1992) 
Bankok, 

Thailand 
Offices Field Study 1100  

28.5 ET(NV2) 

27.4 ET* 

(Khedari et al., 2000) Thailand Classrooms   70-80 

27.2 at 0.2 m/s 

28.3 at 0.5 m/s 

30.3 at 1.0 m/s 

31.2 at 1.5 m/s 

(Santosa, 1986) 
Indonesia 

Residential    27.4 

(Karyono, 2000)  Field Study 596  26.7 to (NV+AC) 

 

2.3. PASSIVE DESIGN STRATEGIES IN BUILDINGS 

Passive design is known as climate adapted design or climate responsive design.  It is an 

approach to building design that uses the building architecture to minimize energy 

consumption and improve thermal comfort. The building form and thermal performance of 


