REMOVAL OF PARACETAMOL AND TETRACYCLINE FROM SYNTHETIC WASTEWATER USING HETEROGENEOUS TiO$_2$/SOLAR PHOTOCATALYST

LEE CHEE MEI

UNIVERSITI SAINS MALAYSIA
2017
REMOVAL OF PARACETAMOL AND TETRACYCLINE FROM SYNTHETIC WASTEWATER USING HETEROGENEOUS TiO₂/SOLAR PHOTOCATALYST

by

LEE CHEE MEI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

June 2017
ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Puganeshwary Palaniandy, for her encouragement and continual support throughout this study. Her guidance and patience in conducting this thesis are much appreciated. I am also very grateful to my co-supervisor, Dr. Irvan Dahlan for his guidance and advice.

Secondly, I would like to acknowledge Ministry of Higher Education (MOHE) for funding this project under grant Fundamental Research Grant Scheme (FRGS, Grant number: 203/PAWAM/6071256) as well as the support of MyBrain15 and USM Fellowship for funding my study.

Besides, I would like to express my appreciation to all the technicians and friends (Mr. Razak, Mr. Mohad, Mrs. Samsiah, Mr. Zaini, Mr. Nizam, Mr. Dziauddin, Mr. Zabidi, Aiin, Kia and Aini) for their assistance and support throughout this study.

My warmest feeling is addressed to my beloved parents and siblings. Last but not least, I would like to dedicate my deepest appreciation to my best friend, Moon Wei Chek who always being supportive and helpful whenever I needed his help.

Thank you very much to all of you.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background 1
1.2 Problem statement 3
1.3 Objectives 5
1.4 Scope of work 6
1.5 Organization of thesis 7
1.6 Limitation of study 8

CHAPTER TWO: LITERATURE REVIEW

2.1 Characteristics of hospital wastewater 9
 2.1.1 Wastewater from the sewage treatment plant (STP) of Universiti Sains Malaysia Kubang Kerian (USMKK) 9

2.2 Pharmaceutical as New Emerging Pollutant (NEP) 11
 2.2.1 Verified and potential adverse effects of retained pharmaceutical compounds 12
 2.2.2 Major sources of retained pharmaceutical compounds 18
 2.2.3 Pharmaceuticals mitigation strategies 21

2.3 Common pharmaceutical compounds 25
2.3.1 Paracetamol
 2.3.1(a) Application of paracetamol
 2.3.1(b) Retained paracetamol in water sources
 2.3.1(c) Elimination of paracetamol

2.3.2 Tetracycline
 2.3.2(a) Application of tetracycline
 2.3.2(b) Retained tetracycline in water sources
 2.3.2(c) Elimination of tetracycline

2.4 Heterogeneous photocatalysis treatment method
 2.4.1 Mechanism of photocatalysis
 2.4.2 Titanium dioxide (TiO$_2$) as photocatalyst
 2.4.3 Solar UV radiation
 2.4.4 Photoreactor
 2.4.4(a) Parabolic through reactor (PTR)
 2.4.4(b) Thin film fixed bed reactor (TFFBR)
 2.4.4(c) Compound parabolic collecting reactor (CPCR)
 2.4.5 Operating factors influencing photocatalysis degradation process
 2.4.5(a) Effect of solar irradiance
 2.4.5(b) Effect of pH
 2.4.5(c) Effect of photocatalyst concentration (TiO$_2$)
 2.4.5(d) Effect of initial pollutant concentration
 2.4.6 Advantages and limitations of heterogeneous photocatalysis

2.5 Kinetic study

CHAPTER THREE: MATERIALS AND EXPERIMENTAL METHODS

3.1 Introduction
3.2 Sampling and characterization of sewage
3.2.1 Parameters and chemical analysis 69

3.3 Heterogeneous photocatalytic experimental works 70
 3.3.1 Chemicals and materials 70
 3.3.2 Equipment and instruments 71
 3.3.3 Photocatalytic procedure 76
 3.3.4 Sample analysis and photocatalytic performance evaluation 76
 3.3.5 Preliminary study 77
 3.3.6 Batch study 79
 3.3.7 Optimization study 82
 3.3.8 Control study 83
 3.3.9 Identification of end-products 84

3.4 Kinetic study 84

3.5 UV lamp and natural sunlight performance evaluation 86

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Introduction 87

4.2 Characterization of sewage from the STP of USMKK 87

4.3 Preliminary study of TiO₂/solar photocatalytic degradation of paracetamol and tetracycline 89
 4.3.1 Photocatalytic degradation of paracetamol 90
 4.3.1(a) First experimental study 91
 4.3.1(b) Second experimental study 92
 4.3.1(c) Third experimental study 94
 4.3.2 Photocatalytic degradation of tetracycline 96
 4.3.2(a) First experimental study 97
 4.3.2(b) Second experimental study 99
 4.3.2(c) Third experimental study 100
 4.3.3 Summary of preliminary study 101
4.4 Batch study of TiO$_2$/solar photocatalytic degradation of paracetamol and tetracycline

4.4.1 Effect of sunlight exposure period

4.4.2 Effect of pH

4.4.2(a) Effect of pH on the photocatalytic degradation of paracetamol

4.4.2(b) Effect of pH on the photocatalytic degradation of tetracycline

4.4.3 Effect of TiO$_2$ concentration

4.4.3(a) Phase One study (Before the installation of stone aerators)

4.4.3(b) Phase Two study (After the installation of stone aerators)

4.4.4 Effect of initial concentration of pharmaceutical

4.5 Optimization study of TiO$_2$/solar photocatalytic degradation of paracetamol and tetracycline

4.5.1 Optimization of the operating factors

4.5.2 Control study and identification of end-product (Ammonium, NH$_4$$^+$)

4.6 Kinetic study of TiO$_2$/solar photocatalytic degradation of paracetamol and tetracycline

4.6.1 Determination of kinetic order and apparent rate constant (k$_{app}$)

4.6.2 Determination of reaction rate constant (k) and adsorption constant (K)

4.7 Comparison between the performance of UV lamp and natural sunlight in the photocatalytic degradation of paracetamol and tetracycline

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.2 Limitation of present research

5.3 Recommendations for future research
REFERENCES

APPENDICES

Appendix A [Characteristics of hospital wastewater]

Appendix B [Plan of USMKK]

Appendix C [Plan of STP in USMKK]

Appendix D [Acceptable conditions of sewage discharge of Standard A and B]

Appendix E [Comparison between the original and modified CPCR]

Appendix F [Calculation of the concentration of pharmaceutical in a sample]

Appendix G [Characteristics of influent and effluent from the sewage treatment plant of USMKK]

Appendix H [Characteristics of influent and effluent from the sewage treatment plant of USMKK (Box plot)]

Appendix I [Hourly and average UV intensity readings (9am – 5pm) of 10 randomly selected experimental days]

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Sewage discharge quality assessment</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Review of studies examining the effects of different pharmaceutical compounds on the aquatic organisms</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Review of studies examining the strategies for the mitigation of pharmaceuticals in the aquatic environment</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Intermediates of paracetamol and their respective chemical structures</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Functions of tetracycline in different targets/sectors</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Advantages and disadvantages of the suspended and immobilized TiO₂</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Main difference between UV-A, UV-B and UV-C</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Factors affecting the UV radiation reaching the Earth’s surface</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Effect of pH on the photocatalytic degradation of different types of pollutants</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Optimal photocatalyst concentrations in different studies</td>
<td>56</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Examples of pharmaceuticals photocatalytically degraded by TiO₂</td>
<td>59</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Reaction order and rate law for a reaction involving a single reactant</td>
<td>63</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Heterogeneous photocatalytic oxidation kinetic of paracetamol and tetracycline</td>
<td>66</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Treatment conditions of the preliminary study</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Experimental design of the batch study of photocatalytic degradation of paracetamol</td>
<td>80</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Experimental design of the batch study of photocatalytic degradation of tetracycline</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>pH selection from the different surface charges of paracetamol and tetracycline</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Treatment conditions of the optimization study</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Treatment conditions of kinetic study of paracetamol and tetracycline</td>
<td>84</td>
</tr>
</tbody>
</table>
Table 4.1 Characteristics of influent and effluent from the STP of USMKK

Table 4.2 Experimental design and results of the first experimental study in the preliminary study of photocatalytic degradation of paracetamol (Sunlight exposure period = 6 hours and initial concentration of paracetamol = 0.01 g/L)

Table 4.3 ANOVA results of the model for paracetamol removal efficiency (First experimental study)

Table 4.4 Experimental design and results of the second experimental study in the preliminary study of photocatalytic degradation of paracetamol (Sunlight exposure period = 6 hours and pH=5.0 ± 0.2)

Table 4.5 ANOVA results of the model for paracetamol removal efficiency (Second experimental study)

Table 4.6 Experimental design and results of the third experimental study in the preliminary study of photocatalytic degradation of paracetamol (Sunlight exposure period = 6 hours and pH=5.0 ± 0.2)

Table 4.7 ANOVA results of the model for paracetamol removal efficiency (Third experimental study)

Table 4.8 Experimental design and results of the first experimental study in the preliminary study of photocatalytic degradation of tetracycline

Table 4.9 Experimental design and results of the second experimental study in the preliminary study of photocatalytic degradation of tetracycline

Table 4.10 Experimental design and results of the third experimental study in the preliminary study of photocatalytic degradation of tetracycline

Table 4.11 Summary of the ranges of factors applied in the batch study

Table 4.12 Experimental design and results of the experimental study of pH

Table 4.13 Extracted experimental data from the second and third experimental studies in the preliminary study of photocatalytic degradation of paracetamol

Table 4.14 Experimental data in CCD for the photocatalytic degradation of paracetamol (Sunlight exposure period = 6 hours and pH=5.0 ± 0.2)
Table 4.15 Experimental data in CCD for the photocatalytic degradation of tetracycline (Sunlight exposure period = 30 minutes and pH = 9 ± 0.2) 116
Table 4.16 ANOVA results of the models for paracetamol and tetracycline removal efficiencies 117
Table 4.17 Factors and their desired goals for optimizing the removal efficiencies of paracetamol and tetracycline 123
Table 4.18 Suggested optimum treatment conditions and the experimental results 124
Table 4.19 Ranges of solar UV intensity of the optimization experiments 125
Table 4.20 Removal efficiencies of paracetamol and tetracycline in the optimization and different control processes 125
Table 4.21 Concentration of NH₄⁺ in the treated and untreated samples of the different treatment processes 126
Table 4.22 R² and k_{app} values under different initial pharmaceuticals concentrations 132
Table 4.23 Summary of heterogeneous photocatalytic studies on paracetamol 138
Table 4.24 Summary of heterogeneous photocatalytic studies on tetracycline 139
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Possible sources and fates of pharmaceuticals in the environment</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Molecular structure of paracetamol</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Proposed reaction pathway during photocatalytic degradation of paracetamol</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Molecular structure of tetracycline</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Proposed photocatalytic degradation pathway of tetracycline</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Simplified mechanisms for the photo-activation of a semiconductor catalyst</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Graph of solar intensity against wavelength</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Structure of PTR (left) and behaviour of incident solar radiation on a PTR (right)</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Structure of TFFBR (left) and behaviour of incident solar radiation on a TFFBR (right)</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Structure of CPCR (left) and behaviour of incident solar radiation on a CPCR (right)</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Heterogeneous photocatalytic reaction rate against solar irradiation</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of research methodology</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Exact location of sewage sampling</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic diagram of CPCR</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Front view of modified CPCR</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Back view of modified CPCR</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Side view of modified CPCR</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Isometric view of modified CPCR’s platform</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Stone aerator and aerator pump</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Functioning stone aerator in the solution</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Uninterrupted part in water tank</td>
<td>74</td>
</tr>
</tbody>
</table>
Figure 3.11 Installation of stone aerators in the uninterrupted part in water tank
Figure 4.1 Average readings of solar UV intensity for 10 randomly selected experimental days
Figure 4.2 3D surface response and contour plots for the removal of paracetamol
Figure 4.3 Plot of predicted versus actual values for the removal of paracetamol
Figure 4.4 Effect of sunlight exposure period on the photocatalytic degradation of paracetamol (Initial concentration of paracetamol = 0.10 g/L, concentration of TiO$_2$ = 1.50 g/L and pH = 5.0 ± 0.2)
Figure 4.5 Effect of sunlight exposure period on the photocatalytic degradation of tetracycline (Initial concentration of tetracycline = 0.10 g/L, concentration of TiO$_2$ = 0.10 g/L and pH = 9 ± 0.2)
Figure 4.6 Surface charges of paracetamol, tetracycline and TiO$_2$ at different pH levels
Figure 4.7 Effect of pH on the photocatalytic degradation of pharmaceuticals [For the case of paracetamol (Initial concentration of paracetamol = 0.10 g/L, concentration of TiO$_2$ = 1.50 g/L and Sunlight exposure period = 6 hours); For the case of tetracycline (Initial concentration of tetracycline = 0.10 g/L, concentration of TiO$_2$ = 0.10 g/L and Sunlight exposure period = 30 minutes)]
Figure 4.8 Effect of TiO$_2$ concentration on the photocatalytic degradation of paracetamol before the installation of stone aerators (Sunlight exposure period = 6 hours, initial concentration of paracetamol = 0.10 g/L and pH = 5.0 ± 0.2)
Figure 4.9 Effect of TiO$_2$ concentration on the photocatalytic degradation of paracetamol after the installation of stone aerators (Sunlight exposure period = 6 hours, initial concentration of paracetamol = 0.10 g/L and pH = 5.0 ± 0.2)
Figure 4.10 Effect of TiO$_2$ concentration on the photocatalytic degradation of tetracycline (Sunlight exposure period = 30 minutes, initial concentration of tetracycline = 0.10 g/L and pH = 9 ± 0.2)
Figure 4.11 Effect of initial concentration of paracetamol on the photocatalytic degradation process (Sunlight exposure period = 6 hours, concentration of TiO$_2$ = 1.50 g/L and pH = 5.0 ± 0.2)
Figure 4.12 Effect of initial concentration of tetracycline on the photocatalytic degradation process (Sunlight exposure period = 30 minutes, concentration of TiO₂ = 3.0 g/L and pH = 9 ± 0.2)

Figure 4.13 Plot of predicted versus actual values for the removal of paracetamol

Figure 4.14 Plot of predicted versus actual values for the removal of tetracycline

Figure 4.15 3D surface response and contour plots of model Y₁

Figure 4.16 3D surface response and contour plots of model Y₂

Figure 4.17 Close-up view of contour plot of model Y₁

Figure 4.18 Close-up view of contour plot of model Y₂

Figure 4.19 Residual concentrations of paracetamol during the 360 minutes of photocatalytic degradation process (Concentration of TiO₂ = 1.5 g/L, pH = 5.0 ± 0.2 and sunlight exposure period = 360 minutes)

Figure 4.20 Residual concentrations of tetracycline during the 48 minutes of photocatalytic degradation process (Concentration of TiO₂ = 3.0 g/L, pH = 9 ± 0.2 and sunlight exposure period = 48 minutes)

Figure 4.21 Plot of ln C₀/Cₜ versus sunlight exposure period for paracetamol degradation under different initial paracetamol concentrations (Concentration of TiO₂ = 1.5 g/L, pH = 5.0 ± 0.2 and sunlight exposure period = 360 minutes)

Figure 4.22 Plot of ln C₀/Cₜ versus sunlight exposure period for tetracycline degradation under different initial tetracycline concentrations (Concentration of TiO₂ = 3.0 g/L, pH = 9 ± 0.2 and sunlight exposure period = 48 minutes)

Figure 4.23 Linearization of the Langmuir Hinshelwood model for the photocatalytic degradation of paracetamol

Figure 4.24 Linearization of the Langmuir Hinshelwood model for the photocatalytic degradation of tetracycline
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>C_0</td>
<td>Initial concentration</td>
</tr>
<tr>
<td>C_t</td>
<td>Final concentration</td>
</tr>
<tr>
<td>CdS</td>
<td>Cadmium sulfide</td>
</tr>
<tr>
<td>e_{cb}</td>
<td>Negative conduction band electron</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H_2O</td>
<td>Water</td>
</tr>
<tr>
<td>H_2SO_4</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HO_2^*</td>
<td>Hydrogen peroxide radical</td>
</tr>
<tr>
<td>H^+</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>hv</td>
<td>Photon energy</td>
</tr>
<tr>
<td>h_{vb}^+</td>
<td>Positive valence band hole</td>
</tr>
<tr>
<td>IrO$_2$</td>
<td>Iridium(IV) oxide</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>k_{app}</td>
<td>Apparent rate constant</td>
</tr>
<tr>
<td>k</td>
<td>Reaction rate constant</td>
</tr>
<tr>
<td>K</td>
<td>Adsorption constant</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NH_4^+</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>*OH</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>O₂⁻⁺</td>
<td>Superoxide radical anion</td>
</tr>
<tr>
<td>OH⁻</td>
<td>Hydroxide ion</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>rₒ</td>
<td>Initial degradation rate</td>
</tr>
<tr>
<td>SnO₂</td>
<td>Tin (IV) oxide</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>WO₃</td>
<td>Tungsten trioxide</td>
</tr>
<tr>
<td>Yₑₓ𝑝</td>
<td>Actual value</td>
</tr>
<tr>
<td>Yₑ𝑐𝑎𝑙</td>
<td>Predicted value</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ANOVA Analysis of variance
AOPs Advanced oxidation processes
AOX Adsorbable organic halides
APHA American Public Health Association
BOD₅ Biochemical oxygen demand
BDD Boron-doped diamond
CCD Central composite design
CPCR Compound parabolic collecting reactor
COD Chemical oxygen demand
DO Dissolved oxygen
eV Electron-volt
EE2 Steroid estrogen ethinyl estradiol
EC₅₀ Half maximal effective concentration
GC-MS Gas chromatography - mass spectrometry
HPLC High performance liquid chromatography
HUSM Hospital Universiti Sains Malaysia
IC₅₀ Half maximal inhibitory concentration
ITDD Infectious and Tropical Diseases Department
LC₅₀ Half maximal lethal concentration
L-H Langmuir Hinshelwood
mol Mole
m/z Mass-to-charge ratio
NEP New emerging pollutant
NTU Nephelometric turbidity units
ppm Parts per million
PVDF Polyvinylidene fluoride
PSA Plataforma Solar de Almeria
PTR Parabolic trough reactor
ROSs Reactive oxygen species
RSM Response surface methodology
SVAT Single-variable-at-a-time
SPH Sewerage pump house
STP Sewage treatment plant
TFFBR Thin film fixed bed reactor
TSS Total suspended solid
UV Ultraviolet
USMKK Universiti Sains Malaysia, Kubang Kerian
WHO World Health Organization
WWTP Wastewater treatment plant
Parasetamol dan tetrasiklin terkenal dari segi penggunaan serta pengeluaran tahunan yang amat tinggi di seluruh dunia. Kehadiran kedua-dua bahan farmaseutikal ini di dalam pelbagai jenis sumber air telah dilaporkan di negara yang berlainan. Dalam kajian ini, pencirian air kumbahan telah membuktikan bahawa loji rawatan kumbahan konvensional berkesan dalam degradasi parameter konvensional ke tahap yang selamat, namun ia tidak berupaya untuk menyingkirkan sisa farmaseutikal (seperti parasetamol dan tetrasiklin) yang muncul di dalam air sisa kumbahan. Selain itu, kajian ini menyelidik keberkesanan proses rawatan fotopemangkin heterogen titanium dioksida [TiO₂]/suria dalam penyingkirkan parasetamol dan tetrasiklin dari air sisa sintetik secara berasingan. Kesan dari setiap pembolehubah yang dipilih (tempoh pendedahan terhadap cahaya matahari, pH, kepekatan TiO₂ dan kepekatan farmaseutikal) dalam proses rawatan fotopemangkin telah dikenalpasti dengan menggunakan kaedah pemboleh ubah tunggal pada satu masa (SVAT). Hasil kajian menunjukkan bahawa semua pembolehubah yang dipilih mempengaruhi kecekapan penyingkirkan parasetamol dan tetrasiklin. Seterusnya, rekaan pusat rencam (CCD) berdasarkan kaedah permukaan sambutan (RSM) telah digunakan untuk mengoptimumkan pembolehubah bagi kepekatan TiO₂ dan farmaseutikal. Penyingkiran parasetamol sebanyak 82% diperolehi dalam keadaan optimum 1.0 g/L kepekatan TiO₂ dan 0.06 g/L kepekatan parasetamol, manakala sebanyak 75% tetrasiklin telah disingkirkan dalam keadaan optimum 2.64 g/L kepekatan TiO₂ dan
0.07 g/L kepekatan tetrasi klin. Akhir sekali, kinetik degradasi fotopemangkin parasetamol dan tetrasi klin didapati mematuhi kinetik model Langmuir-Hinshelwood. Pemalar kadar (k) dan pemalar jerapan (K) dalam proses degradasi fotopemangkin parasetamol dan tetrasi klin masing-masing adalah 0.00052 g/L.min, 131.58 L/g dan 0.0028 g/L.min, 71.43 L/g. Hasil kajian ini telah membuktikan kebolehpercayaan cahaya suria sebagai sumber UV semulajadi dalam proses degradasi fotopemangkin.
REMOVAL OF PARACETAMOL AND TETRACYCLINE FROM SYNTHETIC WASTEWATER USING HETEROGENEOUS TiO$_2$/SOLAR PHOTOCATALYST

ABSTRACT

Paracetamol and tetracycline are well known with tremendous annual worldwide production and high global consumption rate. Their occurrence in the various water compartments has been reported in different countries. In this study, sewage characterization showed that the conventional wastewater treatment plant was effective to degrade the conventional parameters to the acceptable conditions, but it was unable to remove the pharmaceutical compounds (paracetamol and tetracycline) appeared in the sewage treatment plant (STP). Next, this study investigated the performance of heterogeneous photocatalysis titanium dioxide [TiO$_2$]/solar treatment process in removing the paracetamol and tetracycline individually from the synthetic wastewater. In the batch study, the effects of the selected variables (sunlight exposure period, pH, TiO$_2$ concentration and initial concentration of pharmaceutical) on the photocatalytic degradation efficiencies of paracetamol and tetracycline were investigated by using the single-variable-at-a-time (SVAT) method. Results showed that all of these selected factors greatly affected the removal efficiencies of paracetamol and tetracycline. Next, central composite design (CCD) based on the response surface methodology (RSM) were used to optimize the TiO$_2$ and pharmaceutical concentrations. Under the optimum conditions of 1.0 g/L of TiO$_2$ concentration and 0.06 g/L of initial concentration of paracetamol, around 82% of paracetamol removal efficiency was attained, whereby, approximately 75% of tetracycline removal efficiency was achieved under the optimum conditions of 2.64
g/L of TiO₂ concentration and 0.07 g/L of initial concentration of tetracycline. Finally, the kinetic of the photocatalytic degradation of paracetamol and tetracycline fitted well with the Langmuir-Hinshelwood kinetic model. The reaction rate constant (k) and adsorption constant (K) for the photocatalytic degradation process of paracetamol and tetracycline were 0.00052 g/L.min, 131.58 L/g and 0.0028 g/L.min, 71.43 L/g, respectively. The results from these in situ experiments have proven the reliability of the solar in the photocatalysis treatment process.
CHAPTER ONE
INTRODUCTION

1.1 Background

Water is one of the important resources on earth where human beings and ecological systems rely on it for survival. If there is no water, there will be no life on earth. Nowadays, the demand of water increases with the rapid growth of population and vigorous industrial development. High-quality water sources are necessary particularly in maintaining healthy ecosystems and assurance for safe drinking water.

In recent years, water pollution from the emerging contaminants of pharmaceuticals has been recognized as one of the most important aspects of environmental research (Borges et al., 2015). Pharmaceutical is one of the most indispensable elements with undeniable benefits in modern life. They are extensively and increasingly used as an integral component to establish and maintain a healthy population of both humans and livestock. However, due to the widespread application of pharmaceuticals and their inadequate removal from wastewater, low levels of pharmaceuticals (ranging from the low ng/L to mg/L) have been ubiquitously detected (in both original and metabolized forms) in various aquatic compartments such as surface water, groundwater, effluents of sewage treatment plant (STP), sea water and even in the drinking water (Cardoso et al., 2014).

The occurrence of the pharmaceutical compounds in the natural water sources has been reported as early in the year 1980 (Richardson and Bowron, 1985). Pharmaceuticals are known as the “new emerging pollutants” (NEP) since they are recently detected in the environment in increasing amount and not covered by regulations until nowadays (Quadra et al., 2016; Sangion and Gramatica, 2016). The retained pharmaceuticals in different water sources may lead to some adverse effects.
on the biological balance and human health such as aquatic toxicity, resistance
development in pathogenic bacteria, acute and chronic damage, hormonal and
endocrine disruption (K’oreje et al., 2016). This situation is getting even worse when
these persistent pharmaceuticals are unable to be eliminated by using conventional
wastewater treatment techniques due to the typical characteristics of the
pharmaceuticals (Achilleos et al., 2010; Al-Odaini et al., 2013; Mozia and Morawski,
2012). For example, pharmaceuticals which are lipophilic (tending to combine with
or dissolve in lipids or fats) can easily pass through the membranes during the
filtration process and facilitate the absorption. They can also escape from the
biological treatment process since they are designed to be biologically active and
persistent to maintain their therapeutic activity until the specific physiological
function on the human and animals has been performed (Aguilar et al., 2011).
Thereby, they have the properties to bioaccumulate and cause negative effects to
aquatic or terrestrial ecosystems, such as immobilization, mortality, inhibition of
growth and reproduction (Quadra et al., 2016).

Other advanced treatment methods such as activated carbon adsorption, air
stripping and reverse osmosis have also been investigated for the elimination of
retained pharmaceuticals. Yet, studies have found out that these processes are less
effective for the overall mineralization of pharmaceutical into the end product. This
is due to the fact that those processes only transfer the pharmaceutical compounds
from one phase to another or just collecting the pharmaceutical compounds without
eliminating them (Elmolla and Chaudhuri, 2010b). The continuous input and
persistence of pharmaceuticals in the aquatic ecosystem indicates an environmental
challenge even their retained concentrations only range from the low ng/L to mg/L.