EFFECT OF ALUMINA AND HALLOYSITE CLAY IN SILICONE RUBBER NANOCOMPOSITE ON THE ELECTRICAL TREE CHARACTERISTICS

MOHD HAFIZ BIN ISMAIL

UNIVERSITI SAINS MALAYSIA 2016

EFFECT OF ALUMINA AND HALLOYSITE CLAY IN SILICONE RUBBER NANOCOMPOSITE ON THE ELECTRICAL TREE CHARACTERISTICS

by

MOHD HAFIZ BIN ISMAIL

Thesis submitted in fulfillment of the requirements for the degree of

Master of Science

December 2016

DECLARATION

I hereby declare that the work reported in this thesis is the result of my own investigation and that no part of the thesis has been plagiarized from external sources. Materials taken from other sources are duly acknowledged by giving explicit references.

Signature:

Name of Student: MOHD HAFIZ BIN ISMAIL

Matrix Number: P-LM0016/14(R)

Date: 2 December 2016

ACKNOWLEDGEMENTS

Alhamdulillah, thanks and all praises to Allah for the strength and ability to complete this thesis within my study. Here I would like to thank somebody or parties who had helped me a lot during my study. With the guidance and help from them I had gain invaluable knowledge and experience especially in operating the equipments in certain laboratories in School of Electrical & Electronic, School of Material and Mineral Resources and School of Chemical. Without their guidance, support and help I believe that I cannot complete my research study successfully.

First of all, I would like to thank my supervisor, Associate Professor Ir. Dr. Mohamad Kamarol bin Mohd Jamil for his full commitment in supervising and assisting me to complete this research project. The meaningful ideas and comments throughout the experimental work and the thesis preparation have helped me a lot in the mission to accomplish this research study. Not to forget, my acknowledgment to my co-supervisor, Profesor Ir. Dr. Mariatti Bt. Jaafar @ Mustapha from School of Material and Mineral Resources for her invaluable opinions and suggestions regarding the selection of the material, methods of sample preparation and great ideas in discussing the data in term of material perspective.

I would also like to express my deep appreciation to Universiti Sains Malaysia (USM) and Ministry of Higher Education for financial support under Fundamental Grant Scheme (FRGS:6071265) and also Department of Polytechnic especially Ministry of Education Malaysia for sponsoring the scholarship. In addition, I would like to express my grand gratitude to School of Material and Mineral Resources and School of Chemical for equipments used within this period of research study. Next I would like to give my appreciation to all technicians from

School of Electrical & Electronic; Mr. Ahmad Shauki Noor, Mr. Jamaluddin Che

Mat, Mr. Hairul Nizam Abdul Rahman. Not to forget, my grand gratitude to all

technicians from School Material and Mineral Resources; Mr. Muhammad Khairi

Khalid, Mr. Mokhtar Mohamad, Mr. Azam Rejab, Mr Mohd Farid Abdul Rahim and

a technician from School of Chemical; Mrs. Nur'ain Natasya Shaari for their

readiness and willingness to help especially in the hand on task using the laboratory

equipments. I am indebted with my friends Noor Syazwani Mansor, Muhamad Fairus

Adzha Muhamad Raslani, Kiasatina Azmi, Tiang Tow Leong, Muhammad Faizal

Abdullah, Nor Azura Samsudin for their support and willingness to help during my

postgraduate study.

Last but not least, my unlimited gratitude to my supportive lovely wife

Nurhusna Ahmad Tarmizi who always stands behind me, both of my lovely sons;

Muhammad Hariz Mohd Hafiz and Muhammad Hadif Mohd Hafiz and my new

born daughter Nur Hana Mohd Hafiz who have inspired me for the accomplishment

of this study. Not to forget, both of my parents; Mr. Ismail Othman and Mrs. Nor

Hayati Mohd Lazim for their encouragement and pray and also to my brother and

sisters who give full support to me. A million thank again I wish to all the important

persons I have mentioned, I believe without them I cannot accomplish my master

research study successfully. Here I would like to ask forgiveness to those I forgot to

mention for this appreciation who involved in this research project directly or

indirectly. Thank you very much.

MOHD HAFIZ BIN ISMAIL

December 2016

iii

TABLE OF CONTENTS

		Page
AC	KNOWLEDGEMENTS	ii
TAI	BLE OF CONTENTS	iv
LIS	T OF TABLES	vii
ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS ABSTRAK ABSTRACT CHAPTER ONE: INTRODUCTION 1.1 Overview 1.2 Problem Statement 1.3 Objectives 1.4 Contribution of the Research Work 1.5 Scope of the Research 1.6 Outline of the Thesis CHAPTER TWO: LITERATURE REVIEW 2.1 Introduction	viii	
LIS	T OF SYMBOLS	xiii
LIS	T OF ABBREVIATIONS	xiv
ABS	STRAK	XV
ABS	STRACT	xvii
CH	APTER ONE: INTRODUCTION	
1.1	Overview	1
1.2	Problem Statement	4
1.3	Objectives	5
1.4	Contribution of the Research Work	5
1.5	Scope of the Research	6
1.6	Outline of the Thesis	6
CH	APTER TWO: LITERATURE REVIEW	
2.1	Introduction	9
2.2	High Voltage Underground Cable Systems and Causes of Their Failure	9
2.3	Types of Insulators Utilized in Cable Joints of High Voltage Underground Cable	14
2.4	Cold Shrinkable Cable Joints	17
2.5	Silicone Rubber as Insulator in Cable Accessories Application	19
2.6	Current Trends of Research on Electrical Tree Investigation in Silicone Rubber	20

2.7	Effect of Nanofiller on the Good Performance of Polymeric Insulation	34
CHA	APTER THREE: METHODOLOGY	
3.1	Introduction	40
3.2	Process Flow of Experimental Works of Electrical Tree Investigation	40
3.3	Specimens Preparation	42
3.4	Experimental Set Up	50
3.5	Analysis of Electrical Tree	52
3.3	3.5.1 Tree Inception Voltage (TIV) Analysis	52
	3.5.2 Electrical Tree Growth Process, Growth Rate and Expansion	52
	Coefficient (D/L) Analysis	32
	3.5.3 Electrical Tree Structure Analysis	53
	3.5.4 Electrical Tree Length Analysis	53
	3.5.5 Maximum Electrical Field (Emax) Analysis	54
	3.5.6 Accumulate Damage Analysis	54
3.6	SEM Image Analysis	55
3.7	Inter Particles Distance Analysis	56
CHA	APTER FOUR: RESULTS AND DISCUSSION	
4.1	Introduction	58
4.2	Experimental Results	58
	4.2.1 Tree Inception Voltage	58
	4.2.2 Electrical Tree Growth	59
	4.2.3 SEM Image	64
	4.2.4 Electrical Tree Structure	67
	4.2.5 Electrical Tree Length	72
	4.2.6 Electrical Tree Growth Rate	74
	4.2.7 Maximum Electrical Field (Emax)	75
	4.2.8 Accumulate Damage	77
	4.2.9 Expansion Coefficient (D/L)	79

LIST	LIST OF PUBLICATIONS		
APPENDICES			
REFERENCES		95	
5.2	Recommendation	93	
5.1	Conclusion	92	
CHA	APTER FIVE: CONCLUSION AND RECOMMENDATION		
	4.3.2 Effect of Nanoparticles on Electrical Tree Growth	85	
	4.3.1 Effect of Nanoparticles on Tree Inception Voltage	84	
4.3	Discussions	81	

LIST OF TABLES

		Page
Table 3.1	Mixture composition of SiR/Alumina nanocomposites	46
Table 3.2	Mixture composition of SiR/Halloysite clay nanocomposites	46
Table 4.1	Distance of inter particles in SiR/Alumina nanocomposites	65
Table 4.2	Maximum electrical fields (Emax) at the end of the tree branch during the TIV and at 30 minutes of electrical tree growth process	76
Table 4.3	Tree growth model for electrical tree growth process under apply of electrical field correspond with Band theory for solid (a) Unfilled SiR, (b) SiR with nanofillers and (c) SiR with agglomeration of nanofillers.	90

LIST OF FIGURES

		Page
Figure 2.1	XLPE power cable and its accessories	10
Figure 2.2	Lifetime exponent for XLPE power cable	13
Figure 2.3	Lifetime exponent for SiR	13
Figure 2.4	Basic construction of Extrusion molded joints (EMJ)	15
Figure 2.5	Basic construction of Prefabricated joints (PJ)	16
Figure 2.6	Basic construction of cold shrinkable Premolded joints	17
Figure 2.7	The cold shrink Premolded cable joints with SiR insulation body	20
Figure 2.8	Relationship between tree initial voltage to the different condition of temperature and frequency	21
Figure 2.9	The dimension of test specimen and experiment set up layout for the electrical tree investigation	22
Figure 2.10	Typical type of electrical tree structure	23
Figure 2.11	Effect of SiO ₂ nanofiller to the tree inception time	24
Figure 2.12	Relationship between the electrical tree lengths to the treeing time	24
Figure 2.13	Configuration of leaf-like specimen	25

Figure 2.14	Illustrated model of electrical tree formation in (a) Neat SiR, (b) SiR containing 1 wt% TiO ₂ , and (c) SiR containing 3 wt% TiO ₂	26
Figure 2.15	Total numbers of PD as a function of time	27
Figure 2.16	Breakdown time for neat SiR and SiR nanocomposites	27
Figure 2.17	Tree inception probability at 5 minutes	28
Figure 2.18	Relationship between the tree proportion and the temperature	29
Figure 2.19	Relationship between the electrical tree length and the treeing time	30
Figure 2.20	Typical electrical tree structure at different positive pulse amplitude under 200 mT for 5 minutes	31
Figure 2.21	Electrical tree length and electrical tree width as a function of time with the positive pulse under 200 mT	31
Figure 2.22	Electrical tree growth at different polarities under 100mT for 5 minutes	32
Figure 2.23	Accumulate damage as a function of time with different polarities under	32
Figure 2.24	Typical electrical tree at 6 kV positive pulse voltage for 10 minutes	33
Figure 2.25	Relationship between the breakdown probability at different	33

positive pulse voltage and B

Figure 2.26	Dual layer model	35
Figure 2.27	Variation of tree inception voltage at different wt% of nano- alumina in LDPE	37
Figure 2.28	The images of the electrical tree structures in unfilled LDPE and LDPE nanocomposites 2 hours after the tree initiation	37
Figure 3.1	Flow chart diagram of experimental works of electrical tree investigation of unfilled SiR, SiR/Alumina and SiR/Halloysite clay nanocomposites.	42
Figure 3.2	Dimension of block test specimen for electrical treeing studies	43
Figure 3.3	Ultrasonic mixer model UP200S	48
Figure 3.4	National vacuum set model 5831	48
Figure 3.5	Photograph of the prepared samples for electrical tree growth investigation	49
Figure 3.6	Schematic diagram for electrical tree growth investigation	50
Figure 3.7	Photograph of the apparatus used in investigating the electrical tree growth	51
Figure 3.8	A photograph of SEM utilized for the morphology analysis	55
Figure 3.9	Schematic diagram in considering the inter particle distance	56

Figure 4.1	Tree inception voltage as a function of nanofiller concentration in SiR composite	59
Figure 4.2	Electrical tree growth process in SiR/Alumina nanocomposites within 30 minutes at 8 kVrms	61
Figure 4.3	Electrical tree growth process in SiR/Halloysite clay nanocomposites within 30 minutes at 8 kVrms	63
Figure 4.4	SEM image of unfilled SiR and SiR/Alumina nanocomposites at different concentration of filler	65
Figure 4.5	SEM image of unfilled SiR and SiR/Halloysite clay nanocomposites at different concentration of filler	66
Figure 4.6	Typical type of electrical tree structure in SiR nanocomposite (a) Unfilled SiR, (b) SiR with 1 vol% nanoalumina, (c) SiR with 3 vol% nano-alumina and (d) SiR with 3 vol% halloysite nanoclay at 8 kVrms within 30 minutes observation	68
Figure 4.7	Probabilities occurance of electrical tree structure at different concentration of filler in SiR nanocomposites at 30 minutes with 8 kVrms supplied voltage	70
Figure 4.8	Relationship between the tree length and the treeing time at different concentration of nano-alumina and halloysite	73

calculation of nano-alumina (surface to surface) for

SiR/Alumina nanocomposites

voltage

nanoclay in SiR within 30 minutes of 8 kVrms applied

Figure 4.9	Electrical tree growth rate as a function of treeing time within 30 minutes at 8 kVrms	74
Figure 4.10	Relation between maximum electrical field (Emax) for bush type tree to the electrical tree length within 30 minutes at 8 kVrms	76
Figure 4.11	Accumulate damage versus electrical tree growth within 30 minutes at 8 kVrms	78
Figure 4.12	Relation of expansion coeffisient to the treeing time within 30 minutes in (a) unfilled SiR, (b) SiR with 1 vol% nano-alumina, (c) SiR with 2 vol% nano-alumina, (d) SiR with 3 vol% nano-alumina and (e) SiR with 3 vol% halloysite nanoclay	79
Figure 4.13	Electrical tree growth process	81
Figure 4.14	Mechanism of injected and returned electrons during negative and positive half cycle	82
Figure 4.15	Mechanism of fatigue cracking in the polymeric insulator due the repeated mechanical stress under high electrical field at the point of needle electrode	83
Figure 4.16	Dual layer model	86
Figure 4.17	Effect of nano particles on electrical tree growth process in SiR	88

LIST OF SYMBOLS

Kilovolt kVSecond sec Hz Hertz Ω Ohm Degree 0 Volume percentage vol% wt% Weight percentage A Ampere C Celsius T Tesla

LIST OF ABBREVIATIONS

XLPE Crosslink polyethylene

SiR Silicone rubber

TIV Tree inception voltage

SEM Scanning electron microscopy

rms Root mean square

TiO₂ Titanium dioxide

SiO₂ Silicon dioxide

MMT Montmorillonite

OMMT Organo-montmorillonite

LDPE Low density polyethylene

EMJ Extrusion molded joints

PJ Prefabricated joints

EPDM Ethylene propylene dienemonomer

IEC International Electrotechnical Commission

KESAN ALUMINA DAN TANAH LIAT HALOISIT DALAM GETAH SILIKON NANOKOMPOSIT PADA CIRI-CIRI POKOK ELEKTRIK

ABSTRAK

Kajian kesan pengisi nano dalam SiR terhadap sifat dielektrik adalah masih baru. Oleh itu, kajian ini perlu diteruskan untuk mendapatkan pemahaman yang lebih jelas dan terang. Beberapa kajian telah dilaporkan bahawa pengisi nano-alumina dan tanah liat haloisit mampu meningkatkan ciri-ciri elektrik dan mekanik dalam bahan polimer seperti dalam nanokomposit epoxy dan LDPE. Oleh itu, dalam kajian ini kesan pengisi nano-alumina dan tanah liat haloisit dalam SiR terhadap ciri-ciri elektrik seperti voltan permulaan pokok (TIV), proses perkembangan pokok elektrik, kebarangkalian kejadian struktur pokok elektrik, jenis-jenis pokok elektrik, panjang pokok elektrik dan kadar perkembangan pokok elektrik telah dikaji. Selain itu, medan elektrik maksimum, kerosakan terkumpul dan faktor perkembangan juga telah dipelajari dan dikaji. Analisis struktur permukaan nanokomposit SiR/Alumina dan SiR/Tanah liat haloisit juga telah dilakukan menggunakan pengimbas Elektron Mikroskop (SEM). Selain itu, jarak antara zarah-zarah nano (permukaan ke permukaan) di dalam nanokomposit SiR/Alumina yang dianalisa menggunakan mesin SEM dipastikan dengan menggunakan perisian ImejJ dan persamaan untuk pengiraan jarak antara zarah-zarah juga turut dibincangkan. Keputusan telah menunjukkan 2 vol% nano-alumina di dalam SiR berkemampuan untuk memperbaiki ciri-ciri pokok elektrik seperti voltan permulaan pokok, panjang pokok elektrik dan kadar perkembangan pokok elektrik berbanding SiR yang asli. Walau bagaimanapun pengisian nano-alumina kepada 3 vol% telah menjatuhkan TIV secara drastik dan menyebabkan kadar perkembangan pokok dan pecah tebat berlaku dengan cepat. Sebaliknya pengisian tanah liat haloisit sehingga 3 vol% dalam SiR telah

memperbaiki voltan permulaan pokok, panjang pokok elektrik dan kadar perkembangan pokok elektrik berbanding SiR yang asli. Keputusan ini menunjukkan pengisian nano-alumina sehingga 2 vol% dan pengisian tanah liat haloisit sehingga 3 vol% di dalam SiR cenderung untuk pokok elektrik muncul dengan pokok jenis bush. Selain itu ia juga telah meningkatkan medan elektrik maksimum, kurangkan peratusan kerosakan terkumpul dan faktor perkembangan terjadi lebih kurang 1. Selain itu, keputusan dari analisa imej SEM menunjukkan bahawa nano-alumina bertaburan secara sekata sehingga 2 vol% walau bagaimanapun pengisian sehingga 3 vol% pengisi nano-alumina dalam SiR cenderung terjadinya gumpalan pada pengisi nano. Jarak antara zarah-zarah nano dalam nanokomposit SiR/Alumina(permukaan ke permukaan) pada 1 vol% dan 2 vol% hampir sama setelah dipastikan dengan menggunakan perisian ImejJ dan persamaan untuk pengiraan jarak antara zarah-zarah. Sementara itu, untuk tanah liat haloisit, pengisi nano bertaburan sekata sehingga 3 vol%.

EFFECT OF ALUMINA AND HALLOYSITE CLAY IN SILICONE RUBBER NANOCOMPOSITE ON THE ELECTRICAL TREE CHARACTERISTICS

ABSTRACT

The research on the effect of nanofiller in SiR on the dielectric properties is still new. Thus, it needs to be explored to expand on past work in the field for better understanding. It has been reported that research on nano-alumina and halloysite nanoclay have been carried out where the nanofillers has an ability to enhance the electrical and mechanical properties in other polymer material such as in epoxy and LDPE nanocomposites. Thus in this research, the influence of nano-alumina and halloysite nanoclay in SiR on the electrical tree characteristics tree such as tree inception voltage (TIV), electrical tree growth process, probability occurrences of electrical tree structure, types of electrical tree, electrical tree length and electrical tree growth rate are investigated. In addition, maximum of electrical field, accumulate damage and expansion coefficient are also studied and investigated. Surface morphology analysis of SiR/Alumina nanocomposites and SiR/Halloysite clay nanocomposites using Scanning Electron Microscopy (SEM) are also performed. Furthermore, the inter particle distance of nanofiller (surface to surface) in SiR/Alumina nanocomposites analyzed from SEM images are evaluated using ImageJ software and inter particles distance equation is also discussed. The results have revealed that 2 vol% nano-alumina has an ability to improve the electrical tree characteristics such as tree inception voltage (TIV), electrical tree length, electrical tree growth rate compared to unfilled SiR. However the increase of nano-alumina up to 3 vol% drops the TIV and contributes to rapid electrical tree growth rate and insulation breakdown. On the other hand, the presence of halloysite nanoclay up to 3 vol% in SiR has improved the TIV, electrical tree length, electrical tree growth rate

compared to the unfilled SiR. It is shown that, the addition of nano-alumina up to 2 vol% and up to 3 vol% for halloysite nanoclay in SiR tends the tree structure appeared in bush type tree. Furthermore, it has also increased the maximum electrical field, reduced the percentage of accumulate damage and the expansion coefficient is varied almost to unity. In addition, the result from SEM image analysis depicted that nano-alumina is homogenously dispersed up to 2 vol% however further increase of 3 vol% nano-alumina in SiR yielded to the filler agglomeration. The inter particle distance of nano-alumina (surface to surface) in SiR/Alumina nanocomposites at 1 vol% and 2 vol% are considered similar evaluated by using ImageJ software and inter particles distance equation. Meanwhile, the halloysite nanoclay in SiR is homogenously dispersed up to 3 vol%.

CHAPTER ONE

INTRODUCTION

1.1 Overview

Transmission lines for high voltage power cables are the most important medium to transmit the electrical power from the power generation to the consumers. Generally the electrical power is distributed either by overhead or underground transmission line. Currently, Crosslink Polyethylene (XLPE) power cable is one of the high voltage underground transmission line cables which can stand the voltages range up to 500kV [1]. Generally, XLPE power cable used accessories such as cable joints and cable termination in order to join between two power cables and to terminate the end of the power cable [2].

Lately, Silicone Rubber (SiR) is being preferred and widely used in underground high voltage cable accessories for XLPE power cable as it offers for flexibility, stand for oxidization, excellent electrical and mechanical properties also can stand for wide temperature and voltage range application [3]. However, the power cables and the cable accessories that have been installed for a longer time may become aged and exposed to the contamination and moisture. Under influence of non-uniformed high electrical field, this power cables and the cable accessories may deteriorated and eventually may lead to the cable breakdown [4]. Besides, cable accessories have complex physical shape and structure and the distribution of electrical field inside the cable accessories is not as uniformed as in high voltage power cable and can cause to the generation of water tree, electrical tree and finally lead to the degradation and cable failure [5].

Electrical tree is one the main factors which can contribute to the failure of accessories and high voltage cable [6]. This phenomenon initiates at the weakest point of the cable accessories and high voltage cable that may occur at the cable joints or cable termination due to its complex physical structure and defect during installation and manufacturing process [7], [8]. Electrical tree may start from the creation of water tree due to the non uniform electrical field, contamination and moisture [9], [10]. Once water tree occurred in the cable under continuously electric field stressed, it will lead to creation of electrical tree. Electrical tree can be divided into three main stages. There are initial stage, propagation stage and breakdown stage. Once the electrical tree initiates, it will propagate and finally reach the breakdown stage [1].

In order to improve and upgrade the electrical and mechanical properties in cable accessories fabrication, a few approaches have been applied by SiR manufacturers such as improving the process of material preparation, concerning on material quality for cable accessories fabrication and producing the material with the inhibitor. Presently the application of nanofiller in nanocomposites material has been paid much concern because of its capability in enhancing the electrical and mechanical properties without modifying the polymer nanocomposites material compared to the conventional polymer [11]. The application of few nanofillers in different dielectric materials have been investigated and reported such as the effect of Titanium dioxide (TiO₂), Silicon dioxide (SiO₂), Montmorillonite (MMT) and Organo-montmorillonite (OMMT) on electrical tree resistance in SiR [12]. It is observed that the presence of these fillers in certain wt% concentration has improved the electrical tree resistance in SiR respectively [13]. In addition, it is reported that the nano-alumina up to 5 wt % has improved electrical properties in Low-density

polyethylene (LDPE) nanocomposites such as partial discharge resistance, tree inception voltage and electrical tree length [14]. It is mentioned that the presence of certain wt% concentration of nano-alumina in epoxy nanocomposites has enhanced electrical tree properties compared to the unfilled epoxy [15]. It is also mentioned that the electrical breakdown strength significantly improved in SiR/EPDM nanocomposites with the presence of nano-alumina at certain vol% [16]. Furthermore it is reported that, nano-alumina offers excellent electrical resistance resistivity, has relatively high thermal conductivity and also offers affordable price.

On the other hand, it is reported that the presence of 3 wt% of halloysite nanoclay in cement mortar has shown better compressive strength up to 24% than unfilled one [17]. Besides, the presence of halloysite nanoclay in halloysite/bovine gelatin films nanocomposites and halloysite/fluoroelastomer nanocomposites have improved the mechanical properties respectively [18], [19]. Although many improvement on dielectric properties have been reported with the presence of nanoalumina and halloysite nanoclay in material nanocomposites, the influence of nanoalumina and halloysite nanoclay on electrical tree properties in SiR nanocomposites have not yet been studied and reported. Therefore, the main objective for this study is to investigate the electrical tree properties in SiR nanocomposites with the presence of nano-alumina (Al₂O₃) and halloysite nanoclay (H₄Al₂O₉Si₂.2H₂O) at 0, 1, 2 and 3 vol% of filler loading. Then, the electrical tree properties in SiR nanocomposites such as TIV, tree length, tree growth process, tree growth rate, tree structures, maximum electrical field, accumulate damage, expansion coefficient and image of filler dispersion have been studied and analyzed.

1.2 Problem Statement

High voltage cable accessories such as cable joints and cable termination is one of the most important parts in underground transmission line system. Nowadays SiR is widely used as cable accessories in XLPE high voltage power cable up to 500 kV because it offers wide range of temperature and voltage and application, flexibility, stand for oxidization and also offers superb electrical and mechanical properties. Generally, these cable accessories are used to join two high voltage power cables and to terminate the high voltage power cables. However the joint and termination area are more exposed to the defects and cable failures than the normal cable. It is because the part of jointed and termination area are exposed to the moisture and contamination which leads to the generation of water and electrical trees and finally can contribute to the cable breakdown. Moreover, their complex physical structure, defect during installation and the influence of non uniformed electrical field distribution may cause cable accessories failure and cable breakdown. As a result, numerous researchers have introduced nano technology as a new approach and a few nanofillers such as TiO₂, SiO₂, MMT and OMMT at different concentration (wt%) have been applied in order to enhance the electrical tree resistance in SiR nanocomposite. It is observed that these nanofillers have improved the electrical tree properties such as TIV, tree length and tree growth rate in SiR nanocomposites. However the influence of nano-alumina and halloysite nanoclay on electrical tree resistance in SiR nanocomposites at different vol% concentration is not known. Therefore the effect of nano-alumina and halloysite nanoclay in SiR is investigated in order to gain some knowledge on the electrical tree behavior and finally to evaluate the enhancement of electrical tree resistance in SiR nanocomposites.