A COMPUTATIONAL STUDY ON MULTIPLE PERFORATED HOLLOW CIRCULAR SECTION

WOO YIAN PEEN

UNIVERSITI SAINS MALAYSIA

2017

A COMPUTATIONAL STUDY ON MULTIPLE PERFORATED HOLLOW

CIRCULAR SECTION

by

WOO YIAN PEEN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

June 2017

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Associate Professor Dr. Choong Kok Keong, for his guidance and motivation throughout this study. His guidance and incisive advice have inspired me to generate fruitful approaches in achieving the objectives in this research. Without his effort, I would not able to proceed and bring this research to a completion.

My heartfelt gratitude is extended to my beloved family that supports me unlimitedly all along without any hesitation. I truly treasure their encouragement and moral support throughout these years. May they always be blessed with the merits of triple gems.

Last but not the least, my sincere thanks and regards to all the technicians and administrative staffs in School of Civil Engineering, my colleagues and friends for their unlimited support and hard work. Their helpful and insightful assistance in any form has brought my life journey to a higher level of wisdom and consciousness.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xviii
ABSTRAK	XX
ABSTRACT	xxii

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Perforated hollow sections	3
1.3	Examples of perforated hollow structures	8
1.4	The inspiration source - Cholla skeleton	11
	1.4.1 Helices / spirals on cacti	12
	1.4.2 Relative positioning of holes and tubercles position	14
1.5	Problem statement	15
1.6	Research objectives	16
1.7	Scope of the research	17
1.8	Layout of the thesis	17

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction 19		
2.2	Perforations in structural domain		20
	2.2.1	Perforated plates and tube sheets	20
	2.2.2	Perforated cylinders	27
	2.2.3	Summary of reviewed literatures on perforated plates and cylinder	34

2.3	Perforations in non-structural domain	35
2.4	Perforated hollow sections found in nature	37
2.5	Engineering solutions for stress concentration around holes	40
2.6	Load flow visualization	43
2.7	Summary	49

CHAPTER THREE: METHODOLOGY

Flow of	Now of this study			
3.1.1	Model overall dimensions	51		
3.1.2	Generation of perforation	53		
	3.1.2(a) Helix line generation	54		
	3.1.2(b) Clearances between perforations	60		
3.1.3	Influencing factors	63		
3.1.4	Model description	69		
3.1.5	3.1.5 Computational analysis			
3.1.6 Stages of computational analysis3.1.7 Results compilation, discussion and conclusions				
				3.1.8
	3.1.8(a) Verification with single perforated model from cited literature	95		
	3.1.8(b) Verification with experimental results	96		
	Flow of 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	 Flow of this study 3.1.1 Model overall dimensions 3.1.2 Generation of perforation 3.1.2(a) Helix line generation 3.1.2(b) Clearances between perforations 3.1.3 Influencing factors 3.1.4 Model description 3.1.5 Computational analysis 3.1.6 Stages of computational analysis 3.1.7 Results compilation, discussion and conclusions 3.1.8(a) Verification with single perforated model from cited literature 3.1.8(b) Verification with experimental results 		

CHAPTER FOUR: RESULTS ANALYSIS AND DISCUSSIONS

4.1	Introdu	iction		108
4.2	Results	comparis	on of verification stage	108
	4.2.1	Verificatio	on with results from selected literature	108
	4.2.2	Verificatio	on with experimental results	109
		4.2.2(a)	Compression load test	109
		4.2.2(b)	Flexural load test	113
		4.2.2(c)	Torsional load test	115
		4.2.2(d)	Summary for experimental verification	118

4.3	Results	discussion	for computational analysis stage	119
	4.3.1	Group 1: I difference (sub-stage 4.3.1(2)	Effect of perforations shapes, orientations, and in geometry and localized patterns A, B and C) Group 1: Compression load	120
		4.3.1(a)	Crown 1: Element load	120
		4.5.1(0)		120
		4.3.1(c)	Group 1: Torsional load	131
	4.3.2	Group 2: I (sub-stage	Effect of percentage of perforations C. D. E)	136
		4.3.2(a)	Group 2: Compression load	136
		4.3.2(b)	Group 2: Flexural load	139
		4.3.2(c)	Group 2: Torsional load	141
	4.3.3	Group 3: I	Effect of perforation aspect ratio (sub-stage D)	143
		4.3.3(a)	Group 3: Compression load	143
		4.3.3(b)	Group 3: Flexural load	145
		4.3.3(c)	Group 3: Torsional load	147
	4.3.4	Group 4: I (sub-stage	Effect of overall / global perforation patterns C and D)	148
		4.3.4(a)	Group 4: Compression load	149
		4.3.4(b)	Group 4: Flexural load	150
		4.3.4(c)	Group 4: Torsional load	152
	4.3.5	Group 5: I perforation	Effect of inclination, clearances and nos. of is (sub-stage E)	153
		4.3.5(a)	Group 5: Compression load	154
		4.3.5(b)	Group 5: Flexural load	159
		4.3.5(c)	Group 5: Torsional load	162
	4.3.6	Effect of c	changes in different sets of H-D-t on studied models	165
	4.3.7	Summary	for computational analysis stage	170

CHAPTER FIVE: INVESTIGATION OF LOAD TRANSFER IN MODELS

5.1	Introduction	174
5.2	Load transfer mechanism in models according to Group 1 influencing factors (sub-stage A, B and C)	174
5.3	Load transfer mechanism in models according to Group 2 influencing factors (sub-stage C, D and E)	179
5.4	Load transfer mechanism in models according to Group 3 influencing factors (sub-stage D)	185

5.5	Load transfer mechanism in models according to Group 4 influencing factors (sub-stage C and D)	192
5.6	Load transfer mechanism in models according to Group 5 influencing factors (sub-stage E)	210
5.7	Summary	237

CHAPTER SIX: CONCLUSIONS

6.1	Conclusions	239
6.2	Recommendations for future study	242

REFERENCES

244

APPENDICES

Appendix	Α	Investigation on variable transition lengths
Appendix	B	Buckling load analysis
Appendix	С	Sample of analysis results data and MATLAB algorithms to plot PST and LFO diagrams
Appendix	D	Material property test results for experimental models and sample of strain readings recorded by data logger
Appendix	Ε	Analysis results
Appendix	F	Graphs for NE/NE ' vs. H and D of selected perforated models for investigation of effects of different H - D - t
Appendix	G	Examples of principal stress trajectory diagrams

LIST OF PUBLICATIONS

LIST OF TABLES

Table 3.1	Perforation edge conditions	64
Table 3.2	Example of the approaches to achieve desired percentage of perforations	68
Table 3.3	Criteria used in model description	70
Table 3.4	Model description (sub-stage A)	75
Table 3.5	Model representation and description (sub-stage B)	77
Table 3.6	Percentages of perforations achieved for sub-stage C models	78
Table 3.7	Model representation and description (sub-stage C)	80
Table 3.8	Model description adopting b^* -p-d format (sub-stage C)	81
Table 3.9	Model representation and description (sub-stage D) - AR	84
Table 3.10	Model representation and description (sub-stage D) - HL	84
Table 3.11	Model representation and description (sub-stage E) (10%)	86
Table 3.12	Model representation and description (sub-stage E) (20%)	87
Table 3.13	Model representation and description (sub-stage E) (30%)	87
Table 3.14	Changes on parameters for multiple helices due to different <i>H-D</i> to ensure constant μ - κ - λ (ELT pattern - <i>C</i> models)	90
Table 3.15	Stress-strain behaviour of multi-linear material model (Han et al., 2006)	96
Table 4.1	Effective width, effective cross sectional area and nominal stress for sub-stage A models (compression load)	122
Table 4.2	Effective second moment of inertia and nominal stress for sub-stage A models (flexural load)	128
Table 4.3	Effective width, effective cross sectional area and nominal stress for sub-stage A models (torsional load)	134
Table 4.4	Range of NE/NE ' for ELT and RIT perforation patterns (all $H-D-t$)	166
Table 4.5	<i>NE/NE</i> ' for ELT and RIT pattern models with $H-D-t = 600-200-10$	166
Table 4.6	Summary of findings for effect of perforation shapes, orientations and localized patterns	171
Table 4.7	Recommended a/b ratios	172

LIST OF FIGURES

Page

Figure	1.1	Towards lighter structural member	3
Figure	1.2	Classifications of perforated hollow sections	5
Figure	1.3	Parameters associated to this study	7
Figure	1.4	Agridulce Lookout House / XPIRAL (Archdaily, 2009)	8
Figure	1.5	Egg shape concrete pod (Trendir, 2009)	9
Figure	1.6	The O-14 Tower	10
Figure	1.7	The inspiration source - Cholla skeleton	11
Figure	1.8	Concept of perforated hollow section	12
Figure	1.9	Cereus with spines arranged in spirals (Cook, 1979)	13
Figure	1.10	Opuntia fulgida with spine still in original location above holes in the wood skeleton (Gibson and Nobel, 1986)	14
Figure	1.11	Location of spines a, b, c and the corresponding holes on the skeleton (Gibson and Nobel, 1986)	15
Figure	2.1	Past studies related to perforated structures	19
Figure	2.2	RC membrane panels subjected to in-plane uniformly distributed loads by Vecchio and Chan (1990)	21
Figure	2.3	Perforated square plates with circular or square openings subjected to various axially compressive loads by Shanmugam et al. (1999)	21
Figure	2.4	Uni-axially and bi-axially loaded rectangular perforated plates with single eccentric hole by El-Sawy and Nazmy (2001), and El-Sawy and Martini (2007)	22
Figure	2.5	Perforated steel plates with circular hole located at the center of the plates under edge shear loading by Paik (2007)	23
Figure	2.6	Rectangular perforated plates subjected to linearly varying loads by Komur and Sonmez (2008)	24
Figure	2.7	Simply supported plates subjected to uniform compression by Maiorana et al. (2009)	25
Figure	2.8	Typical loading scheme and boundary conditions of perforated plate by Pallegrino et al. (2009)	25
Figure	2.9	Perforated plates studied by Degtyarev & Degtyareva (2012)	26

Figure	2.10	Perforated rectangular steel plate under uniaxial in-plane force of various loading bands by Shariati and Dadrasi (2012)	27
Figure	2.11	Models studied by Cousseau et al. (1998)	29
Figure	2.12	Elasto-plastic cylindrical shell studied by Yeh et al. (1999)	30
Figure	2.13	Cylindrical shells with elliptical cutout under oblique load by Shariati et al. (2012)	32
Figure	2.14	Shells with different door entrance like cutout shape under compression load by Ghazijahani et al. (2015)	34
Figure	2.15	Models with stress flow lines deflected when met with opening illustrated by Ghazijatiami et al. (2015)	34
Figure	2.16	Hollow sphere structures (HSS) and perforated hollow sphere structures (PHSS) studied by Hosseini et al. (2008)	36
Figure	2.17	Auxiliary holes by Rajaiah and Naik (1984)	40
Figure	2.18	Doublers studied by Engels and Becker, (2000)	42
Figure	2.19	The strengthened perforated square plate with a centric circular hole by Cheng and Zhao (2010)	42
Figure	2.20	Schematic of a force 'stream tube' comprises of load path walls shown for the resolved x-direction by Kelly and Elsley (1993, 1995)	45
Figure	2.21	Orientations of principal stresses σ_{p1} and σ_{p2} around a circular hole in a large square plate by Waldman et al. (1999, 2002)	46
Figure	2.22	Resolved x-direction and y-direction load flow orientations for a circular hole in a large square plate by Waldman et al. $(1999, 2002)$	47
Figure	2.23	Load paths in vicinity of recirculation region for a circular hole in a large square plate by Waldman et al. (1999, 2002)	48
Figure	3.1	Flow of the study	51
Figure	3.2	AR and HL models with imaginary lines on the model surface	53
Figure	3.3	Right hand helix definition and the presentation in curved and straight lines	55
Figure	3.4	Helical arrangement of perforations generated with simplified approach	56
Figure	3.5	Generation of perforations for <i>HL</i> pattern using parametric equations	57
Figure	3.6	Examples of models with helical pattern perforations (b^*-p-d)	58
Figure	3.7	Helices in opposite direction generated after helix duplication	58

Figure	3.8	Hidden triangle formed by joining centers of three closest perforations	59
Figure	3.9	Three specific hidden triangles	60
Figure	3.10	Clearances between perforations for AR models	61
Figure	3.11	Method to produce perforations on circular hollow section surface with LUSAS	62
Figure	3.12	Projected length and distorted length	62
Figure	3.13	Influencing factors that have effect on the hollow section's structural capability	63
Figure	3.14	Example of aspect ratio for various perforation shapes	64
Figure	3.15	Example of perforation orientations	65
Figure	3.16	Global array and helical arrangement patterns	66
Figure	3.17	Global and local arrangement pattern	66
Figure	3.18	Support conditions for models in this study	71
Figure	3.19	Approach to apply loadings on the models	72
Figure	3.20	Computational analysis sub-stages	73
Figure	3.21	Models in sub-stage A	74
Figure	3.22	Models in sub-stage B	76
Figure	3.23	Localized arrangement pattern in sub-stage B	77
Figure	3.24	AR pattern models (sub-stage C) – circular	79
Figure	3.25	HL pattern models (sub-stage C) - circular	80
Figure	3.26	Models with $a/b = 1.0$ to 3.0 (20% - AR pattern)	83
Figure	3.27	Models with $a/b = 1.0$ to 3.0 (20% - <i>HL</i> pattern)	83
Figure	3.28	Examples of sub-stage E models	88
Figure	3.29	H, D and t range for models with different overall dimensions	89
Figure	3.30	Opened up cylinder	94
Figure	3.31	Model T1_5D_7_50L with its computational and experimental results from Han et al. (2006)	96
Figure	3.32	FEA models selected for experimental verification	97
Figure	3.33	Equipment used for physical tests	98
Figure	3.34	Test specimens	99
Figure	3.35	Extensometer and strain gauges installed on a tensile coupon	100
Figure	3.36	Simplified stress-strain curve for FEA models	101
Figure	3.37	Experimental set-up for test specimens	103

Figure	3.38	Locations for strain gauges (compression specimens)	104
Figure	3.39	Locations for strain gauges (flexural specimens)	105
Figure	3.40	Locations for strain gauges (torsional specimens)	105
Figure	3.41	Orientations of rosettes	106
Figure	3.42	Example of usable strain component readings for strain rosette	107
Figure	3.43	Example of unusable strain component readings for strain rosette	107
Figure	4.1	Comparison of LUSAS analysis results with results from Han et al. (2006)	109
Figure	4.2	Graphs of F/F_{ref} vs. ε_z for control models (compression load)	110
Figure	4.3	Graphs of F/F_{ref} vs. ε_z for perforated models (compression load)	111
Figure	4.4	Unevenness at the physical models' inner surface	112
Figure	4.5	Deformed shape of physical and FEA models (with incorporated approximately 5 mm eccentricity) (compression load)	112
Figure	4.6	Graphs of M vs. ε_z for control models (flexural load)	113
Figure	4.7	Graphs of M vs. ε_z for perforated models (flexural load)	113
Figure	4.8	Deformed shapes for physical and FEA models (flexural load)	114
Figure	4.9	Graphs of T vs. strain for control models (torsional load)	116
Figure	4.10	Graphs of T vs. strain for perforated models (torsional load)	117
Figure	4.11	Deformed shapes for physical and FEA models (torsional load)	118
Figure	4.12	Maximum D_z , NE , and N_z for sub-stage A models (compression load)	120
Figure	4.13	Effective cross sectional area to resist compression	121
Figure	4.14	Maximum D_z , NE, and N_z for sub-stage B models - divided into localized patterns (compression load)	124
Figure	4.15	Maximum D_z , NE , and N_z for sub-stage B models (compression load)	124
Figure	4.16	Reduced cross sectional area for perforated models with local rhombus pattern	125
Figure	4.17	NE vs. percentage of perforations graphs (sub-stage C) - comparison between circular (C) and elliptical (EL) shapes (compression load)	125

Figure 4.18	D_z vs. percentage of perforations graphs (sub-stage C) - comparison between circular (<i>C</i>) and elliptical (<i>EL</i>) shapes (compression load)	126
Figure 4.19	Maximum D_z , NE, and N_z for sub-stage A models (flexural load)	127
Figure 4.20	Maximum D_z , NE , and N_z for sub-stage B model - divided into localized patterns (flexural load)	129
Figure 4.21	Maximum D_z , NE , and N_z for sub-stage B models (flexural load)	130
Figure 4.22	NE vs. percentage of perforations graphs (sub-stage C) - comparison between C and EL shapes (flexural load)	130
Figure 4.23	D_z vs. percentage of perforations graphs (sub-stage C) - comparison between C and EL shapes (flexural load)	131
Figure 4.24	Maximum D_t , NE , N_z , N_t and N_{tz} for sub-stage A models (torsional load)	132
Figure 4.25	Maximum D_z , NE , N_t , N_z and N_{tz} for sub-stage B models - divided into localized patterns (torsional load)	132
Figure 4.26	Maximum D_t , NE , N_z , N_t and N_{tz} for sub-stage B models (torsional load)	134
Figure 4.27	NE vs. percentage of perforations graphs (sub-stage C) - comparison between C and EL shapes (torsional load)	135
Figure 4.28	D_t vs. percentage of perforations graphs (sub-stage C) - comparison between C and EL shapes (torsional load)	135
Figure 4.29	Graphs of N_t , N_z , N_{tz} and NE vs. percentage of perforations for sub-stage C - <i>HL</i> models (compression load)	137
Figure 4.30	Graphs NE vs. percentage of perforations for sub-stage C models (compression load)	138
Figure 4.31	Graphs D_z vs. percentage of perforations for sub-stage C models (compression load)	139
Figure 4.32	Graphs of N_t , N_z and NE vs. percentage of perforations for sub-stage C - <i>HL</i> models (flexural load)	140
Figure 4.33	Graphs NE vs. percentage of perforations for sub-stage C models (flexural load)	140
Figure 4.34	Graphs D_z vs. percentage of perforations for sub-stage C models (flexural load)	141
Figure 4.35	Graphs NE vs. percentage of perforations for sub-stage C models (torsional load)	142
Figure 4.36	Graphs D_t vs. percentage of perforations for sub-stage C models (torsional load)	142
Figure 4.37	Graphs of NE vs. a/b ratio for sub-stage D - FS models (compression load)	144

Figure	4.38	Graphs of <i>NE</i> vs. <i>a/b</i> ratio for sub-stage D - FN models (compression load)	144
Figure	4.39	Graph of NE vs. <i>a/b</i> ratio for sub-stage D - FS models (flexural load)	146
Figure	4.40	Graph of <i>NE</i> vs. <i>a/b</i> ratio for sub-stage D - FN models (flexural load)	146
Figure	4.41	Graph of NE vs. a/b ratio for sub-stage D - FS models (torsional load)	148
Figure	4.42	Graph of NE vs. a/b ratio for sub-stage D - FN models (torsional load)	148
Figure	4.43	NE vs. a/b for sub-stage D AR and HL models - FS (compression load)	149
Figure	4.44	NE vs. a/b for sub-stage D AR and HL models - FN (compression load)	150
Figure	4.45	<i>NE</i> vs. a/b for sub-stage D AR and HL models - FS (flexural load)	151
Figure	4.46	<i>NE</i> vs. a/b for sub-stage D AR and HL models - FN (flexural load)	151
Figure	4.47	<i>NE</i> vs. a/b for sub-stage D AR and HL models - FS (torsional load)	152
Figure	4.48	NE vs. a/b for sub-stage D AR and HL models - FN (torsional load)	153
Figure	4.49	Angles and clearances in hidden triangle (reproduced from Figure 3.8)	154
Figure	4.50	<i>NE</i> vs. b^* - <i>p</i> - <i>d</i> for sub-stage E <i>C</i> models (compression load)	155
Figure	4.51	<i>NE</i> vs. clearances for sub-stage E 20%- <i>C</i> models (compression load)	156
Figure	4.52	<i>NE</i> , κ and λ vs. b^* - p - d for sub-stage E 20%- C models (compression load)	157
Figure	4.53	Effective horizontal clearance in hidden triangle	158
Figure	4.54	Graphs of <i>NE</i> ratio with constant μ - κ - λ and varying nos. of perforations for sub-stage E <i>C</i> models (compression load)	159
Figure	4.55	NE vs. b^* -p-d for sub-stage E C models (flexural load)	160
Figure	4.56	Graphs of <i>NE</i> ratio with constant μ - κ - λ and varying nos. of perforations for sub-stage E <i>C</i> models (flexural load)	161
Figure	4.57	<i>NE</i> vs. clearances for sub-stage E 20%- <i>C</i> models (flexural load)	161
Figure	4.58	<i>NE</i> vs. b^* - <i>p</i> - <i>d</i> for sub-stage E <i>C</i> models (torsional load)	163
Figure	4.59	Graphs of <i>NE</i> ratio with constant μ - κ - λ and varying nos. of perforations for sub-stage E <i>C</i> models (torsional load)	163

Figure	4.60	<i>NE</i> vs. clearances for sub-stage E 20%- <i>C</i> models (torsional load)	164
Figure	4.61	NE/NE' vs. D for ELT-C models (compression load)	166
Figure	4.62	NE/NE' vs. D for ELT-C models (flexural load)	167
Figure	4.63	NE/NE' vs. D for ELT-C models (torsional load)	167
Figure	4.64	NE/NE' vs. H for ELT-C models (compression load)	168
Figure	4.65	NE/NE' vs. H for ELT-C models (flexural load)	168
Figure	4.66	NE/NE' vs. H for ELT-C models (torsional load)	169
Figure	5.1	NE contours for perforated models in sub-stage A (compression load)	175
Figure	5.2	Perforations with different curvature conditions (compression load)	176
Figure	5.3	Hot spots comparison between models with different curvature conditions (compression load)	176
Figure	5.4	Disruptions to load flow deflection for different localized patterns (compression load)	177
Figure	5.5	NE contours for sub-stage A perforated models (flexural load)	178
Figure	5.6	NE contours for sub-stage A perforated models (torsional load)	179
Figure	5.7	<i>NE</i> contours for model C1 to C5 (10% - 50%) (compression load)	180
Figure	5.8	<i>NE</i> contours for model C11 to C15 (10% - 50%) (compression load)	181
Figure	5.9	NE contours for model C1 to C5 (10% - 50%) (flexural load)	182
Figure	5.10	NE contours for model C11 to C15 (10% - 50%) (flexural load)	183
Figure	5.11	NE for model C1 to C5 (10% - 50%) (torsional load)	184
Figure	5.12	<i>NE</i> contours for model C11 to C15 (10% - 50%) (torsional load)	185
Figure	5.13	<i>NE</i> contours for sub-stage D 20% perforated <i>AR</i> models with different a/b ratios (compression load)	186
Figure	5.14	<i>NE</i> contours for sub-stage D 20% perforated <i>HL</i> models with different a/b ratios (compression load)	187
Figure	5.15	<i>NE</i> contours for sub-stage D 20% perforated <i>AR</i> models with different a/b ratios (flexural load)	188
Figure	5.16	<i>NE</i> contours for sub-stage D 20% perforated <i>HL</i> models with different a/b ratios (flexural load)	189

Figure	5.17	<i>NE</i> contours for sub-stage D 20% perforated <i>AR</i> models with different a/b ratios (torsional load)	190
Figure	5.18	<i>NE</i> contours for sub-stage D 20% perforated <i>HL</i> models with different a/b ratios (torsional load)	191
Figure	5.19	Part of selected models to be presented in PST and LFO	192
Figure	5.20	PST-N _{min} diagram - part of model D2-1.0 (compression load)	193
Figure	5.21	PST-N _{min} diagram - part of model D8-1.0 (compression load)	194
Figure	5.22	LFO-z diagram - part of model D2-1.0 (compression load)	197
Figure	5.23	LFO-z diagram - part of model D8-1.0 (compression load)	197
Figure	5.24	PST-N _{maj} diagram - part of model D2-1.0 (flexural load)	199
Figure	5.25	PST-N _{min} diagram - part of model D2-1.0 (flexural load)	199
Figure	5.26	PST-N _{maj} diagram - part of model D8-1.0 (flexural load)	201
Figure	5.27	PST-N _{min} diagram - part of model D8-1.0 (flexural load)	202
Figure	5.28	LFO-z diagram - part of model D2-1.0 (flexural load)	204
Figure	5.29	LFO-z diagram - part of model D8-1.0 (flexural load)	204
Figure	5.30	PST- <i>N_{maj}</i> diagram - part of model D2-1.0 (torsional load)	205
Figure	5.31	PST-N _{min} diagram - part of model D2-1.0 (torsional load)	205
Figure	5.32	PST- <i>N_{maj}</i> diagram - part of model D8-1.0 (torsional load)	206
Figure	5.33	PST-N _{min} diagram - part of model D8-1.0 (torsional load)	206
Figure	5.34	LFO-t diagram - part of model D2-1.0 (torsional load)	208
Figure	5.35	LFO-z diagram - part of model D2-1.0 (torsional load)	208
Figure	5.36	LFO-t diagram - part of model D8-1.0 (torsional load)	209
Figure	5.37	LFO-z diagram - part of model D8-1.0 (torsional load)	209
Figure	5.38	<i>NE</i> contours for E2-100-9-5, E2-173-7-7, E2-200-5-3, E2-200-6-4, E2-200-7-5 (20% - <i>C</i>) (compression load)	211
Figure	5.39	PST- N_{min} diagram - part of model E2-100-9-5 (compression load)	213
Figure	5.40	PST- N_{min} diagram - part of model E2-173-7-7 (compression load)	214
Figure	5.41	PST- N_{min} diagram - part of model E2-200-7-5 (compression load)	215
Figure	5.42	LFO-z diagram - part of model E2-100-9-5 (compression load)	216
Figure	5.43	LFO- <i>z</i> diagram - part of model E2-173-7-7 (compression load)	217
Figure	5.44	LFO- <i>z</i> diagram - part of model E2-200-7-5 (compression load)	217

Figure	5.45	<i>NE</i> contours for E2-100-9-5, EM-173-7-7, E2-200-5-3, E2-200-6-4, E2-200-7-5 (20% - <i>C</i>) (flexural load)	218
Figure	5.46	PST-N _{maj} diagram - part of model E2-100-9-5 (flexural load)	219
Figure	5.47	PST-N _{min} diagram - part of model E2-100-9-5 (flexural load)	220
Figure	5.48	PST-N _{maj} diagram - part of model E2-173-7-7 (flexural load)	221
Figure	5.49	PST-N _{min} diagram - part of model E2-173-7-7 (flexural load)	222
Figure	5.50	PST-N _{maj} diagram - part of model E2-200-7-5 (flexural load)	223
Figure	5.51	PST-N _{min} diagram - part of model E2-200-7-5 (flexural load)	224
Figure	5.52	LFO-z diagram - part of model E2-100-9-5 (flexural load)	226
Figure	5.53	LFO-z diagram - part of model E2-173-7-7 (flexural load)	226
Figure	5.54	LFO-z diagram - part of model E2-200-7-5 (flexural load)	227
Figure	5.55	<i>NE</i> contours for E2-100-9-5, E2-173-7-7, E2-200-5-3, E2-200-6-4, E2-200-7-5 (20% - <i>C</i>) (torsional load)	228
Figure	5.56	PST- N_{maj} diagram - part of model E2-100-9-5 (torsional load)	229
Figure	5.57	PST- N_{min} diagram - part of model E2-100-9-5 (torsional load)	230
Figure	5.58	PST- N_{maj} diagram - part of model E2-173-7-7 (torsional load)	231
Figure	5.59	PST- N_{min} diagram - part of model E2-173-7-7 (torsional load)	231
Figure	5.60	PST- N_{maj} diagram - part of model E2-200-7-5 (torsional load)	232
Figure	5.61	PST- <i>N_{min}</i> diagram - part of model E2-200-7-5 (torsional load)	232
Figure	5.62	LFO-t diagram - part of model E2-100-9-5 (torsional load)	234
Figure	5.63	LFO-z diagram - part of model E2-100-9-5 (torsional load)	234
Figure	5.64	LFO-t diagram - part of model E2-173-7-7 (torsional load)	235
Figure	5.65	LFO-z diagram - part of model E2-173-7-7 (torsional load)	235
Figure	5.66	LFO-t diagram - part of model E2-200-7-5 (torsional load)	236
Figure	5.67	LFO-z diagram - part of model E2-200-7-5 (torsional load)	236

LIST OF ABBREVIATIONS

AR	Array pattern
С	Circular perforation shape
CNC	Computerized numerical control
EG	Elongated perforation shape
EL	Elliptical perforation shape
ELT	Equilateral triangle arrangement pattern
FN	Fix number approach
FS	Fix size approach
HL	Helical pattern
LFO	Load flow orientation
LVDT	Linear Variable Differential Transducer
PST	Principal stress trajectory
RB	Strain rosette installed at physical model's bottom surface
RB1	Strain rosette installed at physical model's bottom surface – component 1
RB2	Strain rosette installed at physical model's bottom surface – component 2
RB3	Strain rosette installed at physical model's bottom surface – component 3
RIT	Right isosceles triangle arrangement pattern
RT	Strain rosette installed at physical model's top surface
RT1	Strain rosette installed at physical model's top surface – component 1
RT2	Strain rosette installed at physical model's top surface – component 2
RT3	Strain rosette installed at physical model's top surface – component 3
SGD	Strain gauge installed at diagonal (45° to physical model's longitudinal axis) direction
SGV	Strain gauge installed parallel to physical model's longitudinal direction

LIST OF SYMBOLS

A	Effective cross sectional area
a	Half of the larger dimension for 'elongated' shape
α_t	Local load flow orientation in the resolved t direction
α_z	Local load flow orientation in the resolved z direction
b	Half of the smaller dimension for 'elongated' shape
<i>b</i> *	Helix pitch coefficient for right hand helix
<i>b</i> -*	Helix pitch coefficient for left hand helix
β	Angle measured between two perforations along circumference
β_p	Angle of major principal plane to local t-axis
γ	Right hand helix slope
γ*	Left hand helix slope
Ytz.	Shear strain
D	Diameter of model
D_t	Displacement in tangential axis
D_z	Displacement in longitudinal axis
d	Total numbers of helix duplication along circumference direction
δ	Axial displacement
E	Modulus of elasticity
EI	Strain value for strain component I in strain rosette
EII	Strain value for strain component II in strain rosette
EIII	Strain value for strain component III in strain rosette
\mathcal{E}_{p1}	Major principal strain
Ep2	Minor principal strain
Et	Normal strain in t direction
$\mathcal{E}_{\mathcal{I}}$	Normal strain in z direction
F	Force recorded under compression load
Fref	Force at yield stress for control model under compression load
Н	Total height of model
H_{cl}	Horizontal clearance between perforations for array models
Ι	Moment of inertia

J	Polar moment of inertia
Κ	Distance between center of perforations along left hand helix
K_{cl}	Clear distance between perforations along left hand helix
κ	Angle of right hand helix to tangential axis
Λ	Distance between center of perforations along right hand helix
Λ_{cl}	Clear distance between perforations along right hand helix
λ	Angle of left hand helix to tangential axis
М	Distance between center of perforations along circumference
M_{cl}	Clear distance between perforations along circumference
μ	Angle between left and right hand helices
m	Numbers of layers of perforations along longitudinal axis
NE	Equivalent (von Mises) stress resultant
N _{maj}	Major principal stress resultant
Nmin	Minor principal stress resultant
N_t	Stress resultant component in tangential axis
N _{tz}	Shear stress resultant in $t-z$ plane
N_z	Stress resultant component in longitudinal axis
n	Numbers of perforations along circumference direction
р	Total number of perforations along a single helix line
R	Radius of model
σ_y	Material yield strength
t	Thickness of model
θ	Rotational angle of right hand helix
$ heta_I$	Angle of strain component I to horizontal axis
$ heta_{II}$	Angle of strain component II to horizontal axis
$ heta_{III}$	Angle of strain component III to horizontal axis
V_{cl}	Vertical clearance between perforations for array models
V	Poisson's ratio

KAJIAN PENGIRAAN KE ATAS KERATAN BULATAN BERONGGA YANG BERLIANG BERBILANG

ABSTRAK

Berasal dari kekurangan dalam kajian mengenai kesan liang berbilang, serta kekurangan kepelbagaian dalam parameter liang berbilang dalam kajian lepas, kajian ini bertujuan untuk mengkaji kemungkinan idea keratan bulatan berongga berliang berbilang yang meniru geometri dan corak tebukan yang dijumpai di permukaan rangka kaktus Cholla (sejenis kaktus yang dijumpai di padang pasir panas Barat Daya Amerika). Kesan parameter liang ke atas tingkah laku struktur, dan mekanisma pemindahan beban dalam keratan berongga berliang berbilang telah disiasat secara meluas melalui analisis unsur terhingga. Analisa telah dijalankan di bawah kes beban mampatan, lenturan dan kilasan. Parameter liang yang disiasat adalah: bentuk dan orientasi, peratusan tebukan, nisbah aspek, corak susunan global, sudut kecondongan heliks yang terbentuk di antara liang, dan kelegaan di antara liang berjiranan. Model dengan corak jajaran menunjukkan prestasi yang lebih baik daripada model dengan corak heliks di bawah kes beban mampatan dan lenturan, dan ia adalah sebaliknya untuk kes beban kilasan. Antara variasi corak heliks, corak segi tiga sama sisi menunjukkan prestasi terbaik di bawah kes beban mampatan dan lenturan. Sebaliknya, corak segi tiga sama kaki kanan menghasilkan prestasi terbaik di bawah kes beban kilasan. Bentuk elips dengan paksi utamanya selari dengan paksi membujur model memaparkan prestasi terbaik di bawah kes beban mampatan dan lenturan; manakala bentuk bulat menghasilkan prestasi terbaik untuk kes beban kilasan. Nisbah aspek yang disyorkan untuk bentuk elips bergantung kepada susunan liang dan jenis beban. Had atas untuk peratusan tebukan adalah disyorkan sebagai 30% untuk membolehkan tindak balas struktur kekal dalam keadaan lelurus. Merujuk kepada analisa ke atas garis trajektori tegasan prinsipal (PST), didapati sudut kecenderungan relatif lebih kecil pada kawasan selepas liang menunjukkan berlakunya halangan aliran beban yang kurang teruk. Model yang berprestasi lebih baik adalah berkait dengan model yang mempunyai keluasan kawasan di mana garis PST tidak dapat condong kembali ke jajaran asal, yang lebih kecil. Model dengan pusaran (didapati dalam gambarajah PST) dan edaran semula aliran beban (didapati dalam gambarajah orientasi aliran beban) dengan bentuk yang lebih lancar, dan saiz yang lebih kecil sepadan dengan model yang mengalami halangan aliran beban kurang teruk. Penemuan daripada kajian ini menunjukkan bahawa idea keratan bulatan berongga berliang berbilang yang novel dan ringan boleh digunapakai dari segi struktur dan boleh diterokai lagi untuk kegunaan praktikal.

A COMPUTATIONAL STUDY ON MULTIPLE PERFORATED HOLLOW CIRCULAR SECTION

ABSTRACT

Originated from the insufficiency in the studies on effect of multiple perforations, and lack of variability in multiple perforation parameters in the available past studies, this study studied the feasibility of the idea of multiple perforated circular hollow section mimicking the geometry and pattern of perforations found on the surface of Cholla cactus (a cacti genus found in hot deserts of American Southwest) skeleton. Effect of perforation parameters on the structural behaviour of the section, the mechanism of load transfer affected by the perforations, and the load carrying capacity of multiple perforated hollow section were extensively investigated by means of finite element analysis. Analysis was carried out under compression, flexural and torsional load cases. The perforation parameters investigated are: shapes and orientations, percentage of perforations, aspect ratios, global arrangement patterns, inclination angles of helices formed where perforations are located, and clearances between neighbouring perforations. Models with perforations arranged in array pattern are found to perform better under compression and flexural load cases. Models with helical pattern perform better under torsional load case. Among models with perforations arranged in helical patterns, equilateral triangle pattern produces the best performance under compression and flexural load cases. On the contrary, right isosceles triangle pattern produces the best performance under torsional load case. Elliptical shape perforation with its larger axis parallel to the longitudinal axis of model produces best performance under compression and flexural load cases, while circular shape produces best performance under torsional load case. The

recommended aspect ratios for elliptical shape depend on the perforation arrangement and load case. The upper limit of percentage of perforations for multiple perforated models is recommended as 30%, beyond which the relationship between structural responses and percentage of perforations ceases to be linear. Based on the analysis of principal stress trajectory (PST) lines, it is found that smaller relative inclination of PST lines at regions after perforations shows less severe load flow obstruction. Models showing better performance are associated with those having smaller size of the regions where PST lines are unable to tilt back to original alignment. It is found that models which produce eddies (in PST diagrams) and load flow recirculations (in load flow orientation diagrams) with smoother shape and smaller size are associated to models experiencing less severe load flow obstruction. Findings from this study indicates that the idea of novel and lightweight multiple perforated hollow circular section is structurally feasible and could be explored further for practical usage.