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KAJIAN PENGIRAAN KE ATAS KERATAN BULATAN BERONGGA 

YANG BERLIANG BERBILANG 

 

 
     ABSTRAK 

 

 

Berasal dari kekurangan dalam kajian mengenai kesan liang berbilang, serta 

kekurangan kepelbagaian dalam parameter liang berbilang dalam kajian lepas, kajian 

ini bertujuan untuk mengkaji kemungkinan idea keratan bulatan berongga berliang 

berbilang yang meniru geometri dan corak tebukan yang dijumpai di permukaan 

rangka kaktus Cholla (sejenis kaktus yang dijumpai di padang pasir panas Barat 

Daya Amerika). Kesan parameter liang ke atas tingkah laku struktur, dan mekanisma 

pemindahan beban dalam keratan berongga berliang berbilang telah disiasat secara 

meluas melalui analisis unsur terhingga. Analisa telah dijalankan di bawah kes beban 

mampatan, lenturan dan kilasan. Parameter liang yang disiasat adalah: bentuk dan 

orientasi, peratusan tebukan, nisbah aspek, corak susunan global, sudut kecondongan 

heliks yang terbentuk di antara liang, dan kelegaan di antara liang berjiranan. Model 

dengan corak jajaran menunjukkan prestasi yang lebih baik daripada model dengan 

corak heliks di bawah kes beban mampatan dan lenturan, dan ia adalah sebaliknya 

untuk kes beban kilasan. Antara variasi corak heliks, corak segi tiga sama sisi 

menunjukkan prestasi terbaik di bawah kes beban mampatan dan lenturan. 

Sebaliknya, corak segi tiga sama kaki kanan menghasilkan prestasi terbaik di bawah 

kes beban kilasan. Bentuk elips dengan paksi utamanya selari dengan paksi 

membujur model memaparkan prestasi terbaik di bawah kes beban mampatan dan 

lenturan; manakala bentuk bulat menghasilkan prestasi terbaik untuk kes beban 

kilasan. Nisbah aspek yang disyorkan untuk bentuk elips bergantung kepada susunan 

liang dan jenis beban. Had atas untuk peratusan tebukan adalah disyorkan sebagai 30% 
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untuk membolehkan tindak balas struktur kekal dalam keadaan lelurus. Merujuk 

kepada analisa ke atas garis trajektori tegasan prinsipal (PST), didapati sudut 

kecenderungan relatif lebih kecil pada kawasan selepas liang menunjukkan 

berlakunya halangan aliran beban yang kurang teruk. Model yang berprestasi lebih 

baik adalah berkait dengan model yang mempunyai keluasan kawasan di mana garis 

PST tidak dapat condong kembali ke jajaran asal, yang lebih kecil. Model dengan 

pusaran (didapati dalam gambarajah PST) dan edaran semula aliran beban (didapati 

dalam gambarajah orientasi aliran beban) dengan bentuk yang lebih lancar, dan saiz 

yang lebih kecil sepadan dengan model yang mengalami halangan aliran beban 

kurang teruk. Penemuan daripada kajian ini menunjukkan bahawa idea keratan 

bulatan berongga berliang berbilang yang novel dan ringan boleh digunapakai dari 

segi struktur dan boleh diterokai lagi untuk kegunaan praktikal. 
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A COMPUTATIONAL STUDY ON MULTIPLE PERFORATED HOLLOW 

CIRCULAR SECTION  

 

 

ABSTRACT 

 

 

Originated from the insufficiency in the studies on effect of multiple perforations, 

and lack of variability in multiple perforation parameters in the available past studies,  

this study studied the feasibility of the idea of multiple perforated circular hollow 

section mimicking the geometry and pattern of perforations found on the surface of 

Cholla cactus (a cacti genus found in hot deserts of American Southwest) skeleton. 

Effect of perforation parameters on the structural behaviour of the section, the 

mechanism of load transfer affected by the perforations, and the load carrying 

capacity of multiple perforated hollow section were extensively investigated by 

means of finite element analysis. Analysis was carried out under compression, 

flexural and torsional load cases. The perforation parameters investigated are: shapes 

and orientations, percentage of perforations, aspect ratios, global arrangement 

patterns, inclination angles of helices formed where perforations are located, and 

clearances between neighbouring perforations. Models with perforations arranged in 

array pattern are found to perform better under compression and flexural load cases. 

Models with helical pattern perform better under torsional load case. Among models 

with perforations arranged in helical patterns, equilateral triangle pattern produces 

the best performance under compression and flexural load cases. On the contrary, 

right isosceles triangle pattern produces the best performance under torsional load 

case. Elliptical shape perforation with its larger axis parallel to the longitudinal axis 

of model produces best performance under compression and flexural load cases, 

while circular shape produces best performance under torsional load case. The 
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recommended aspect ratios for elliptical shape depend on the perforation 

arrangement and load case. The upper limit of percentage of perforations for multiple 

perforated models is recommended as 30%, beyond which the relationship between 

structural responses and percentage of perforations ceases to be linear.  Based on the 

analysis of principal stress trajectory (PST) lines, it is found that smaller relative 

inclination of PST lines at regions after perforations shows less severe load flow 

obstruction. Models showing better performance are associated with those having 

smaller size of the regions where PST lines are unable to tilt back to original 

alignment. It is found that models which produce eddies (in PST diagrams) and load 

flow recirculations (in load flow orientation diagrams) with smoother shape and 

smaller size are associated to models experiencing less severe load flow obstruction.  

Findings from this study indicates that the idea of novel and lightweight multiple 

perforated hollow circular section is structurally feasible and could be explored 

further for practical usage. 
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