FABRICATION OF POROUS CORDIERITE BY GELCASTING METHOD

by

AHMAD KAMIL FAKHRUDDIN BIN MOHD MOKHTAR

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

ACKNOWLEDGEMENTS

Alhamdulillah, praised to Allah The Almighty. This thesis would never have been completed without His guidance. First and foremost I would like to take this opportunity to thanks School of Materials and Mineral Resources Engineering (SMMRE) and the Dean of SMMRE, Prof. Dr. Zuhailawati Binti Hussain due to her generosity to let me experience how research life goes on. I also would like to express my deepest gratitude and appreciations to my supervisor, Assoc. Prof. Dr. Hasmaliza Mohamad who guide and supervise my project, inspire me with advice, motivation and support.

My gratitude extents to Ministry of Education for the FRGS under grant 6071282 for part of research financial support. Great thanks to the technicians, Mr. Sharul Ami Zainal Abidin, Mr. Kemuridan Md Desa, Mr. Abdul Rashid Selamat, Mr. Khairi Khalid, Mr. Zaini Saari, Mr. Meor Mohamad Noh Abdul Majid and Mr. Mohamad Syafiq Abdul Majid for technical help, as well as my postgraduate members for instruction and moral support.

Lastly, my special and deepest appreciation and thanks go to my beloved mother, Foziah Binti Hasumi. Her constant support and encouragement gives the warmth and strength to me. She always there, ever present to share my success as well as during my sad and down times. Their inspiration, understanding, patience and support help me to complete this thesis. For my siblings; Amiratul Husna Binti Mohd Moktar, Abdul Azim Waqiuddin Bin Mohd Mokhtar, Ayyub As'ad Bin Mohd Mokhtar, Adibah Saiyidah Binti Mohd Mokhtar, I love you all so much and you have inspired me to complete MSc.

TABLE OF CONTENTS

			Page
ACF	KNOWL	EDGEMENTS	ii
TAB	BLE OF	CONTENTS	iii
LIST	Γ OF TA	ABLES	ix
LIST	Γ OF FI	GURES	X
LIST	Γ OF AI	BBREVIATIONS	xiv
LIST	Γ OF SY	YMBOLS	xv
ABS	TRAK		xvi
ABS	TRACT		xviii
CHA	APTER (ONE - INTRODUCTION	
1.1	Cordi	erite	1
1.2	Proble	em Statement	3
1.3	Resea	arch Objective	6
1.4	Scope	e of Research	7
CHA	APTER '	TWO - LITERATURE REVIEW	
2.1	Cordie	erite	9
	2.1.1	Materials Use for Synthesis of Cordierite	11
		2.1.1 (a) Alumina	11
		2.1.1 (b) Silica	12
		2.1.1 (c) Magnesia	13
	2.1.2	Method to synthesis cordierite	13

		2.1.2 (a)	Solid State	13
		2.1.2 (b)	Sol-Gel Method	14
		2.1.2 (c)	Glass Route Method	15
	2.1.3	Process in	Glass Route Method	18
		2.1.3 (a)	Mixing	18
		2.1.3 (b)	Melting and Quenching	20
		2.1.3 (c)	Crushing and Milling	21
2.2	Porou	s Cordierite		23
	2.2.1	Method to	Fabricate Porous Ceramic	25
		2.2.1 (a)	Polymeric-Sponge Replication	25
		2.2.1 (b)	Direct Foaming Method	26
		2.2.1 (c)	Freezing Casting	28
		2.2.1 (d)	Gelcasting	29
	2.2.3	Process in	Gelcasting Method	30
		2.2.3 (a)	Mixing	31
		2.2.3 (b)	Foaming	32
		2.2.3 (c)	Gelation	33
		2.2.3 (d)	Casting	34
		2.2.3 (e)	Drying	34
		2.2.3 (f)	Sintering	34
2.3	Polyn	neric Binder	r	35
	2.3.1	Type of P	olymeric Binder	37
		2.3.1 (a)	Starch	37
		231(b)	Dried Egg White (DFW)	39

2.4	Ceran	nic Filter		40
	2.4.1	Air Filter		42
СНА	PTER T	THREE - M	METHODOLOGY	
3.1	Introd	uction		46
3.2	Raw N	Materials		45
3.3	Metho	odology		48
	3.3.1	Synthesizi	ng of cordierite powder	48
		3.3.1 (a)	Mixing	48
		3.3.1 (b)	Glass Melting	50
		3.3.1 (c)	Quenching	51
		3.3.1 (d)	Drying	51
		3.3.1 (e)	Milling	51
		3.3.1 (f)	Pressing	52
		3.3.1 (g)	Sintering	53
	3.3.2	Fabricatio	n of porous cordierite	54
		3.3.2 (a)	Mixing	54
		3.3.2 (b)	Foaming	56
		3.3.2 (c)	Gelation	56
		3.3.2 (d)	Casting	56
		3.3.2 (e)	Drying	56
		3.3.2 (f)	Sintering	57

3.4	Charac	eterizations		58
	3.4.1	Cordierite	Powder	58
		3.4.1(a)	Particle Size Analysis	58
		3.4.2 (b)	X-ray Fluorescence (XRF)	58
		3.4.3 (c)	Differential Scanning Calorimetric (DSC)	59
		3.4.2 (a)	X-ray Diffraction (XRD)	60
	3.4.2	Porous Co	ordierite	61
		3.4.2 (a)	Thermal Gravimetric analysis (TGA)	61
		3.4.2 (b)	Density and porosity	61
		3.4.2 (c)	Scanning Electron Microscope (SEM)	62
		3.4.2 (d)	Modulus of Rupture (MOR)	62
		3.4.2 (e)	Compressive Strength Test	64
		3.4.10 (f)	Dust Passage Test	65
		3.4.2 (g)	Optical Microscope (OM)	67
CHA	PTER I	FOUR - RE	SULTS AND DISCUSSION	
4.1	Introd	uction		68
4.2	Raw n	naterials		68
	4.2.1	Silica (Si	$O_2)$	68
	4.2.2	Magnesia	(MgO)	69
	4.2.3	Alumina	(Al ₂ O ₃)	71
	4.2.4	Sodium D	Oodecyl Sulphate (SDS)	72
	4.2.5	Polyethve	eneimine (PEI)	73

	4.2.6	Sorbitol	Polyglycidyl Ether (SPE)	74	
	4.2.7	Glutinou	s Rice Flour (GRF)	75	
	4.2.8	Dried eg	g white (DEW)	77	
4.3	Synth	esis of cord	ierite powder	78	
	4.3.1	Physical	appearance	79	,
	4.3.2	DSC ana	alysis	80)
	4.3.3	XRD ana	alysis	81	
4.4	Prepar	ration of Po	orous Cordierite	84	
	4.4.1	Effect of l	Particle Size of Cordierite Powder	85	
		4.4.1 (a)	Particle size analysis	85	
		4.4.1 (b)	Physical appearance	86	
		4.4.1 (c)	Density and porosity	88	,
		4.4.1 (d)	Pore size and distribution	90	١
		4.4.1 (e)	Strength of Porous Cordierite	91	
	4.4.2	Effect of S	Solid Loading	93	
		4.4.2 (a)	Density and Porosity	94	
		4.4.2 (b)	Pore Size and Distribution	95	
		4.4.2 (c)	Strength	96	,
	4.4.3	Effect of l	Dispersant Amount	97	
		4.4.3 (a)	Density and Porosity	98	
		4.4.3 (b)	Pore Size and Distribution	99	,
		4.4.3 (c)	Strength	100)
4.5	Effect	of Starch a	and DEW on Porous Cordierite	102	,
	4.5.1	GRF as bi	nder	102	,

		4.5.1 (a)	Density and Porosity	103
		4.5.1 (b)	Pore Size and Distribution	104
		4.5.1 (c)	Strength	105
	4.5.2	DEW as bi	nder	106
		4.5.2 (a)	Density and Porosity	107
		4.5.2 (b)	Pore Size and Distribution	108
		4.5.2 (c)	Strength	109
4.6	Dust I	Passage Test		111
CHAI	PTER 5	5- CONCLU	ISIONS	
5.1	Concl	usions		113
5.2	Recon	nmendation	for Further Study	115
REFE	ERENC	ES		116
APPE	ENDICI	ES		
		A [Calculatinetry formul	on of cordierite fabrication based on ation]	

Appendix B [XRD phase analysis]

LIST OF TABLES

		Page
Table 2.1	General properties of cordierite	10
Table 2.2	Advantages and disadvantages of different synthesis methods	17
Table 2.3	The proteins found in egg albumen and the approximate percent of total protein content	40
Table 2.4	Properties of palm oil mill boiler filter	45
Table 3.1	Summary of Raw Materials	47
Table 4.1	Elemental analysis of SiO ₂ by XRF	68
Table 4.2	Elemental analysis of MgO by XRF	70
Table 4.3	Elemental analysis of Al ₂ O ₃ by XRF	71
Table 4.4	Quantitative phase analysis for cordierite powder	84
Table 4.5	Particle size (d ₅₀) of cordierite powder produced at different milling time	86
Table 4.6	Density and porosity of porous cordierite at different solid loading	93
Table 4.7	Strength of porous cordierite at different of solid loading	95
Table 4.8	Porosity and density of porous cordierite for sample with different amount of dispersant	97
Table 4.9	Strength and porosity of porous cordierite at the different amount of dispersant	99
Table 4.10	Efficiency of filtration at the different thickness of porous cordierite	110

LIST OF FIGURES

		Page
Figure 1.1	General experimental procedure	8
Figure 2.1	Ternary phase diagram of MgO.Al ₂ O ₃ .SiO ₂	10
Figure 2.2	Cordierite powder processing flow	18
Figure 2.3	Particle arrangement in two dimension mixture	19
Figure 2.4	Continuous and isothermal cooling transformation design for silicate based glass	21
Figure 2.5	Schematic diagram of planetary ball milling process	22
Figure 2.6	SEM image of porous cordierite	25
Figure 2.7	Schematic diagram of replica technique of porous ceramic	26
Figure 2.8	Schematic diagram represent direct foaming route in porous	27
	ceramic	
Figure 2.9	Schematic diagram represent freezing casting method in	29
	produce porous ceramic	
Figure 2.10	Schemetic diagram represent repulsive forces due to	32
•••	electrostatic repulsion	
Figure 2.11	Schemetic diagram represent surface tension	33
Figure 2.12	Starch as a polymer consist of condensed glucose unit	39
Figure 2.13	The four basic filtration mechanism	42
Figure 2.14	Schematic diagram of palm oil boiler process	45

Figure 3.1	Flowchart process of cordierite powder synthesis	49
Figure 3.2	Temperature profile for glass melting	50
Figure 3.3	Schematic diagram of powder pressing	52
Figure 3.4	Sintering profile for cordierite powder synthesized	53
Figure 3.5	Flowchart process of gelcasting for porous cordierite	55
Figure 3.6	Temperature profile for green body sintering	57
Figure 3.7	Schematic diagram of Modulus of Rupture	63
Figure 3.8	Schematic diagram of compressive testing	64
Figure 3.9	Experimental setup of Dust Passage Test	67
Figure 3.10	Schematic diagram of Dust Collection Test	66
Figure 4.1	XRD pattern of SiO ₂ powder	69
Figure 4.2	XRD pattern of MgO powder	70
Figure 4.3	XRD pattern of Al ₂ O ₃ powder	71
Figure 4.4	TGA result of SDS	72
Figure 4.5	TGA result for PEI	73
Figure 4.6	TGA result of SPE	74
Figure 4.7	Particle size distribution of GRF	75
Figure 4.8	TGA result of GRF	76
Figure 4.9	Particle size distribution for DEW	79

Figure 4.10	TGA graph of DEW	78
Figure 4.11	Glass produced at different melting temperature	79
Figure 4.12	DSC graph of cordierite powder	80
Figure 4.13	Xray diffraction of glass powder produced	82
Figure 4.14	XRD pattern of sintered condierite	83
Figure 4.15	Particle size distribution of cordierite powder at different milling time	85
Figure 4.16	Physical appearance of porous cordierite	87
Figure 4.17	Correlation between density and porosity for porous cordierite	88
Figure 4.18	SEM of porous cordierite produced at different particle size	89
Figure 4.19	Strength of porous cordierite at different particle size	91
Figure 4.20	SEM of porous cordierite produced at different solid loading	94
Figure 4.21	SEM of porous cordierite at different amount of dispersant	98
Figure 4.22	Porosity and density of porous cordierite using different amount of GRF	101
Figure 4.23	SEM of porous cordierite with different amount of GRF	102
Figure 4.24	Strength with different amount of GRF	103
Figure 4.25	Density and porosity with different amount of DEW	105
Figure 4.26	SEM of porous cordierite with different amount of DEW	106

Figure 4.27	Strength of porous cordierite with different amount of	
	DEW	
Figure 4.28	Cross section of porous cordierite after filtration	111

LIST OF ABBREVIATIONS

CTE Coefficient of thermal expansion

DPF Diesel Particulate Filter

DSC Differential Scanning Calorimetric

GRF Glutinous rice flour

DEW Dried egg white

FESEM Field emission scanning electron microscopic

rpm Revolution per minutes

XRF X-ray florescence

XRD X-ray diffraction

TEOS Tetraethylorthosilicate

TTT Time temperature transformation

LIST OF SYMBOLS

Tm Melting temperature

Tg Glass transition temperature

Tp Crystallization temperature

To Initial temperature

T Temperature

ρ Density

αl Coefficient of thermal expansion

 θ Plane angle

Ø Diameter

°C Degree Celsius

Md Weight of dry pellet

Ms Weight of suspended pellet

Mw Weight of saturated pellet

wt % Weight percent

Equivalency or similarity between two value

 λ CuK α radiation

FABRIKASI KORDERIT BERLIANG MENGGUNAKAN KAEDAH PENUANGAN GEL

ABSTRAK

Di pelbagai bahan seramik untuk tujuan penapisan, (2MgO.2Al₂O₃.5SiO₂) berliang menawarkan ciri pengembangan pekali rendah haba yang rendah, rintangan yang tinggi kepada kejutan haba dan kekuatan yang tinggi. Dalam kajian ini, korderit telah disediakan dengan kaedah penghasilan kaca menggunakan SiO₂, Al₂O₃ dan MgO sebagai bahan mentah. Serbuk korderit yang dihasilkan kemudiannya digunakan untuk fabrikasi korderit berliang dengan menggunakan kaedah penuangan gel. Kaca yang telah dikisar dicampur dengan air suling dan agen penyerak selama 2 jam pada 600 rpm. Ejen pembuih telah ditambah ke dalam buburan diikuti dengan ejen gel kemudian dituang ke dalam acuan dan dikeringkan. Akhir sekali, sampel telah disinter pada 1350 °C. Kesan saiz partikel korderit (masa kisaran yang berbeza), jumlah pepejal, dan jumlah bahan penyebaran, telah dikaji untuk mendapatkan ciri-ciri optimum korderit berliang. Setelah korderit berliang yang optimum diperolehi, jumlah tepung beras (GRF) dan putih telur kering (DEW) yang berbeza telah ditambah. Pencirian telah dilakukan melalui analisis saiz partikel, pembelauan sinar-X (XRD), kalorimetri pengimbasan pembezaan (DSC), ketumpatan, keliangan, kekuatan mampatan, modulus pecah (MOR), mikroskopi imbasan elektron (SEM) dan ujian kelepasan habuk. Keputusan XRD menunjukkan jumlah korderit sebagai fasa utama meningkat dengan peningkatan suhu lebur. Analisis saiz partikel menunjukkan pengurangan saiz partikel telah meningkatkan ketumpatan, mengurangkan keliangan dan meningkatkan kekuatan. Tambahan pula, pengurangan jumlah pepejal menunjukan pengurangan ketumpatan, peningkatan keliangan dan pengurangan kekuatan. Manakala, pengurangan jumlah agen penyerak menunjukkan pengurangan ketumpatan, peningkatan keliangan dan pengurangan kekuatan. Sifat-sifat optimum korderit berliang telah diperolehi dengan penambahan 4.0 g kanji (GRF), mempunyai 0.5 g/cm³ ketumpatan, 74% keliangan, 9.13 MPa kekuatan mampatan dan 4.07 MPa MOR. Ujian kelepasan habuk menunjukkan ketebalan optimum korderit berliang adalah 10.0 mm yang memberikan kecekapan 100% dan kebolehtelapan yang tinggi dengan pengurangan tekanan yang rendah pada 200 Pa. Secara umumnya, keputusan yang diperolehi menunjukkan korderit berliang yang dihasilkan adalah berkemungkinan menjadi bahan alternatif bagi penapis udara dandang kilang minyak kelapa sawit.

FABRICATION OF POROUS CORDIERITE BY GELCASTING METHOD

ABSTRACT

Among various ceramics materials for filtration purpose, porous cordierite (2MgO.2Al₂O₃.5SiO₂) offers promising properties due to low coefficient thermal expansion, high resistance to thermal shock and high strength. In this study, cordierite was prepared by glass melting method using SiO₂, Al₂O₃ and MgO as raw materials. Cordierite powder produced was then used to fabricate porous cordierite using gel casting method. The glass was milled, mixed with distilled water and dispersant for 2 hours at 600 rpm. The foaming agent was added into slurry followed by gelling agent then cast into a mould and dried. Finally, the sample was sintered at 1350 °C. The effect of cordierite particle size (different milling time), solid loading and amount of dispersant were studied to obtain optimum properties of porous cordierite. After the optimum porous cordierite obtained, the different amount of glutinous rice flour (GRF) and dried egg white (DEW) was added. Characterizations were done through particle size analysis, X-ray diffraction (XRD), Differential Scanning Calorimetric (DSC), density, porosity, compressive strength, modulus of rupture (MOR), Scanning Electron Microscopy (SEM) and Dust Passage Test. XRD results shows the amount of cordierite as the main phase has increased with the increasing of melting temperature. Particle size analysis shows that decreasing of particle size increased the density with decreasing of porosity and increasing of strength. Furthermore, the decreasing of solid loading shows decreasing of density, increasing of porosity and decreasing of strength of porous cordierite. While, decreasing of dispersant amount shows decreasing of density, increasing of porosity and decreasing of strength. The optimum properties of porous cordierite obtained with the addition of 4.0 g GRF , having $0.5~\rm g/cm^3$ density, $74~\rm \%$ porosity, $9.13~\rm MPa$ compressive strength and $4.07~\rm MPa$ MOR. Dust Passage Test shows that the optimum thickness of porous cordierite was $10.0~\rm mm$ which demonstrate $100~\rm \%$ efficiency and high permeability with low pressure drop at $200~\rm Pa$. Generally, results obtained shows that porous cordierite produced from this study was possible to become alternative materials for palm oil mill boiler filter.

APPENDICES

Appendix A [Calculation of cordierite fabrication based on non-stoichiometry formulation]

xCaO. (21-xMgO) .26Al2O3. 53SiO2

For CaO = 0

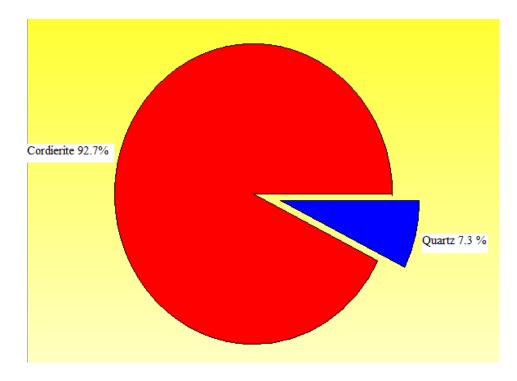
(0)CaO. (21-(0)MgO).26Al₂O₃. 53SiO₂

 $= 21 MgO.26 Al_2O_3.53 SiO_2$

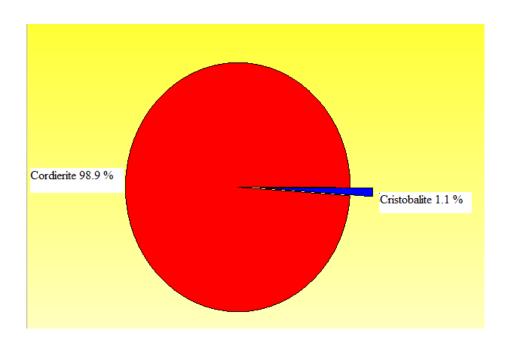
Actual weight percent of individual materials to be mixed were calculated use in nonstoichiometry for 100 wt.%.

For MgO:

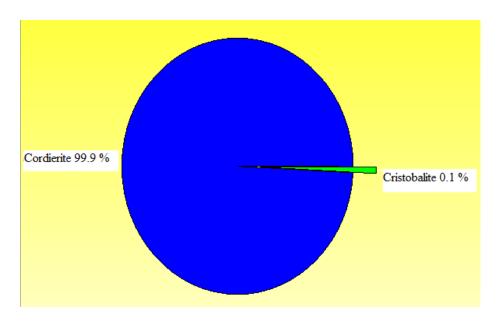
 $21/100 \times 100 \text{ wt.}\% = 21 \text{ wt.}\%$


For Al₂O₃:

 $26/100 \times 100 \text{ wt.}\% = 26 \text{ wt.}\%$


For MgO:

 $53/100 \times 100 \text{ wt.}\% = 53 \text{ wt.}\%$


Appendix B [XRD phase analysis]

1540 °C

1550 °C

1580 °C

CHAPTER ONE

INTRODUCTION

1.1 Cordierite

Cordierite is a useful crystalline phases in MgO-Al₂O₃-SiO₂ ternary system (Guo et al., 2014) with interesting properties such as low dielectric constant, low coefficient of thermal expansion, high resistance to thermal shock, and good mechanical properties (~ 243 MPa) (Sanad et al., 2014), high chemical durability and a high electrical resistivity (Demirci and Günay, 2011). Due to the properties offered by cordierite, it was successfully applied for diesel particulate filters, steam engine heat exchanger and substrate material for integrated circuit boards (Guo et al., 2014). Besides that, cordierite based materials are extensively used in a wide range of applications such as automotive, electronic, filters and refractories (Bejjaoui et al., 2010). It is considered as potential candidate for advanced applications in various field (Benhammou et al., 2014).

Synthesis of cordierite ceramic materials were greatly explored and suggested. Among various synthesis methods, solid-state sintering, sol-gel routes and glass melting routes MgO, Al₂O₃ and SiO₂ in ratios corresponding as raw materials to the chemical composition of cordierite (2MgO.2Al₂O₃.5SiO₂) were widely used. Natural mineral raw materials such as talc, kaolin, feldspar and dolomite were raw materials that commonly used to synthesis cordierite ceramics in industry production (Bejjaoui et al., 2010).

1.11 Porous Cordierite

Ceramics structure with more than 30 % porosity could be considered as porous ceramics. The porous ceramics system consist of solid substance that form walls between the hole part that called pore and the pore fill with air (Ewais, 2009). Porous ceramics materials have a very wide application due to the unique structure that provide several properties such as low density, high porosity, low thermal conductivity, high temperature resistance, high specific surface area and high permeability (Colombo and Hellman, 2002).

Porous cordierite is among the special porous ceramic materials due to its extensive properties which can withstand high temperature with very low thermal expansion ($a = 1-3 \times 10^{-6} \,^{\circ}\text{C}^{-1}$) over a wide range of temperature and thus, offers outstanding resistance to the thermal shock in an abrupt temperature change (Albhilil et al., 2013). According to Sandoval et al. (2012), the porous cordierite are used as thermal insulators because of its low thermal expansion coefficient and low thermal conductivity. Besides that, the porous cordierite is a very good option due to its high resistance to thermal shock (Benhammou et al., 2014). There is no doubt porous cordierite offers as one of the high temperature applications.

Furthermore, the porous cordierite is also well known as high mechanical properties (up to 10 MPa). There are several porous ceramics which high mechanical strength properties, however, porous cordierite has advantage with high mechanical strength at elevated temperature (Sandoval et al., 2012).