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PEMBANGUNAN PENAPIS LALUAN JALUR GELOMBANG MIKRO 
MENGGUNAKAN STRUKTUR BUMI CACAT DALAM PERBANDINGAN 

DENGAN PENAPIS PELBAGAI LAPISAN DAN PENYALUN DIELEKTRIK 
 

  
ABSTRAK 

 
 Penapis laluan jalur berfungsi melaksanakan tugas penting penapisan dalam 

sesebuah pemancar-terima radio. Jalur halangan yang sempit dan kecerunan rendah 

dalam kedua-dua jalur peralihan pada litar gandingan selari konvensional atau 

elektromagnet celahan jalur (EBG) merupakan dua (2) cabaran di dalam mereka 

bentuk penapis laluan jalur. Tesis ini akan memperkenalkan tiga (3) struktur penapis 

laluan jalur. Pertama adalah satu kombinasi baru gandingan selari dan struktur bumi 

cacat (DGS) beroperasi pada frekuensi pusat 7.8 GHz bagi kegunaan satelit mudah 

alih. Pada dasarnya, struktur gabungan ini telah menghasilkan faktor kualiti-Q yang 

tinggi dan gelombang peralihan yang menyumbang kepada cerun yang tinggi dan 

mengurangkan nilai tidak tetap (palsu). Penyalun dielektrik berbentuk silinder juga 

digunakan di dalam litar ini untuk meningkatkan kehilangan balikan dalam jalur 

laluan atau untuk meningkatkan kelebaran jalur. Penyalun dielektrik, Zirconate Tin 

Titanate, ZrSnTiO3 (r = 37.4, kehilangan tangen = 0.002) dan bahan asas RO3003 

dengan kehilangan pemalar dielektrik dan tangen masing-masing sebanyak 3.0 dan 

0.0013, telah digunakan dalam projek ini. Keseluruhan Dimensi litar adalah 47.2 mm 

× 19.16 mm, manakala saiz DGS berbentuk segi empat tepat adalah 1 mm × 7.36 

mm. Struktur kedua merupakan gabungan gandingan-hujung dan penyalun berbentuk 

cincin terpisah dalam struktur pelbagai lapis beroperasi pada frekuensi 3.47 – 3.79 

GHz untuk applikasi Worldwide Interoperability for Mocrowave Access (WiMAX). 

Satu bentuk cincin terpisah yang diubah suai telah diperkenalkan untuk mendapatkan 

pertambahan beberapa sub-penyalun gandingan magnet di antara lapisan menegak 

bagi meningkatkan kesan gandingan tambahan dari struktur pelbagai lapis. Bahan 
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asas Flame Retardant 4 (FR-4) dengan pemalar dielectrik, r sebanyak 4.6 telah 

digunakan sebagai bahan utama. Struktur yang ketiga ialah gabungan litar 

penghantaran mudah bersama tiga (3) penyalun dielektrik berbentuk silinder 

berdasarkan konsep padanan rangkaian sukuan panjang gelombang untuk kegunaan 

jalur-X. Simulasi ketiga-tiga (3) struktur penapis ini menggunakan perisian 

gelombang mikro Computer Simulation Technology (CST), manakala pengukuran 

parameter-S menggunakan Network Analyzer E8364B. Keputusan simulasi 

menunjukkan penapis DGS telah memberikan nilai kehilangan masukkan minimum 

dan lebar jalur masing-masing sebanyak -0.62 dB dan 440 MHz pada jalur laluan. 

Struktur ini telah digunakan untuk mereka bentuk beberapa penapis bagi aplikasi 

yang lain untuk dibandingkan dengan penapis pelbagai lapisan dan penyalun 

dielektrik. Struktur pelbagai lapis mempunyai kehilangan masukkan minimum dan 

lebar jalur masing-masing sebanyak -2.86 dB dan 320 MHz. Berikutnya, penapis 

jalur lebar penyalun dielektrik mempunyai kehilangan memasukkan sebanyak -0.86 

dB dan lebar jalur 1.28 GHz. Kajian menunjukkan bahawa apabila panjang talian 

penghantaran diubah, peralihan frekuensi berlaku. Kelebihan penapis DGS 

gandingan selari termasuklah: jalur peralihan yang sempit, keupayaan menawarkan 

kelebaran jalur yang luas, konfigurasi litar mudah, dan mudah untuk difabrikasi. Ia 

terbukti berdasarkan  nilai-nilai ukuran dari semua litar mempunyai persamaan rapat 

dengan keputusan simulasi. Antara ketiga-tiga struktur, penapis gandingan selari 

DGS menunjukkan jalur peralihan terkecil dan jalur halangan yang luas. 
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DEVELOPMENT OF MICROWAVE BANDPASS FILTER USING 
DEFECTED GROUND STRUCTURE IN COMPARISON WITH 

MULTILAYER AND DIELECTRIC RESONATOR FILTERS  
 

ABSTRACT 

Bandpass filters perform an important filtering task in a radio transceiver. The 

narrow stopbands and low gradient in transition bands of conventional parallel-coupled 

or electromagnetic band gap (EBG) are two (2) of the challenges in designing a bandpass 

filter. This thesis will introduce three (3) structures of bandpass filter. The first is a new 

combination of parallel-coupled and defected ground structure (DGS) that operates at 

a center frequency of 7.8 GHz for mobile satellite application. In essence, this 

combination structure has resulted to high Q-factor and slow wave which contributes 

to a high slope and spurious suppression. Cylindrical dielectric resonators were also 

applied to the circuit in order to increase the return loss in the passband or to enhance 

the bandwidth of the design. The Zirconate Tin Titanate, ZrSnTiO3 (r = 37.4, tangent 

loss = 0.002) dielectric resonator and RO3003 substrate with dielectric constant and 

tangent loss of 3.0 and 0.0013 respectively were applied in this project. The overall 

dimension of the circuit was 47.2 mm × 19.16 mm, while the size of the rectangular 

DGS was 1 mm × 7.36 mm. The second structure is a combination of end-coupled and 

split ring resonators in a multilayer configuration that operate at 3.47 - 3.79 GHz for 

Worldwide Interoperability for Microwave Access (WiMAX) application. A 

modified split ring was introduced to obtain the additional sub-resonators from the 

magnetic coupled between vertical layers in order to increase the coupling effect 

from the multilayer structure. The Flame Retardant 4 (FR-4) substrate with dielectric 

constant, r of 4.6 was used as a core material. The third structure is a combination of 

a simple transmission line and three (3) cylindrical dielectric resonators based on 

quarter wavelength matching network for X-Band application. Simulations of the 

three (3) filter structures were carried out using Computer Simulation Technology 
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(CST) Microwave Studio software while measurement of the S-parameters was 

analyzed using the E8364B Network Analyzer. Simulation results demonstrate the 

DGS filter has minimum passband insertion loss and bandwidth of -0.62 dB and 440 

MHz, respectively.  This structure was used to design a couple of filters for different 

applications in order to compare with the multilayer and dielectric resonator filters. The 

multilayer structure has a minimum insertion loss and a bandwidth of -2.86 dB and 

320 MHz, respectively. Subsequently, the broadband dielectric resonator filter has 

minimum insertion loss of -0.86 dB and a bandwidth of 1.28 GHz. Investigations 

show that when the length of the transmission lines is varied, frequency shifting occurs. 

The advantages of the parallel-coupled DGS filter include: narrow transition bands, the 

ability to offer a broad bandwidth, simple circuit configuration, and finally, ease of 

fabrication. It was proven that the measurement values from all circuits are closely 

agreed to the simulation results. Among the three (3) structures, parallel-coupled 

DGS filter shows the smallest transition bands and wide stopbands. 
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CHAPTER ONE 
 

1.0   INTRODUCTION 
 

 

1.1 Background and Motivation 

The advance of telecommunication systems in the modern world today 

increases the need of more sophisticated devices in supporting the variety of the 

applications. Ideally, a low loss filter passes a selected band of frequencies but 

attenuates frequencies out of the desired passband. The filter together with compact 

structures is required as a lot of applications are integrated in a single device. The 

filters with high quality rejection together with a broadband capacity will perform 

well in transmission data such as moving videos as well as high quality of audio. 

Good filters can reconfigure a communication system to facilitate an efficient 

utilization of the available frequency spectrum since there are demands in front-end 

receivers to suppress signal interferences. 

 

A microstrip line incorporation with Defected Ground Structure (DGS) has 

been proven to exhibit  good passband and stopband filter characteristics due to a 

slow wave effect (Kakhki and Neshati, 2010). These features have been used in 

bandstop filter applications to eliminate unwanted frequencies as well as to 

miniaturize microstrip filters. However, the filter skirt performance at both low and 

high frequency ends in conventional DGS are very low.  

 

Previously, an improved stopband performance can be achieved only at the 

expense of the passband performance and vice versa (Crute and Davis, 2000). 

However, a good filter is needed to solve both the passband and the stopband 
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simultaneously. To achieve better performance, a combination of several approaches 

and structures such as parallel-coupled microstrip together with a rectangular DGS 

slot etched on the ground plane for a miniature microstrip bandpass filter which is 

one of the alternatives that can be further investigated (Boutejdar et al., 2008a). 

 

Multilayer design structures offer more advantages in certain areas as compared 

to single layer structures (Brzezina et al., 2007; Zhang et al., 2011). These 

advantages include the size reduction of the transmission line due to the freedom of 

dielectric materials selection while it is also flexible in layout since a transmission 

line can be arranged on different layers. It is able to contribute to a higher coupling 

effect due to the transmission lines being arranged in dual-direction; vertically and 

horizontally. However, some of the materials could not be simply attached together. 

Hence, the selection of substrate materials in a multilayer structure is one of the 

challenges that need to be considered if the circuit is going to be fabricated.  

 

Most of the works reported in the literature have focused on tunable bandpass 

filters through insertion loss which are determined by the quality factor (Q).  Due to 

the superior characteristic of high Q and miniaturization and the dielectric resonator 

(DR), filters are preferred in designing a microwave circuit. The demands on high 

quality filters are increased especially on low loss and compact tablet of DR which is  

capable of being manufactured in a large quantity at a reasonable low cost 

(Novgorodov et al., 2009).  

 

Future wireless technologies need a solution to replace the low Q-factor of 

microstrip and coaxial filters by a new approach of using low cost DR filters that 
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offer higher value of Q. This thesis will also describe the realization of the DR 

bandpass filter with the combination of simple microstrip lines.  

 

 

1.2 Problem Statement 

A microwave bandpass filter with a compact size, high quality in terms of 

performance together with a low cost is a necessity. A parallel-coupled bandpass 

filter has advantages in term of ease of synthesis (Scott, 1993), low cost, and high 

realizable of manufacturing (Young and Jones, 1980). However, a low order filter 

can only contribute to a compact size but could not solve the problem of wide 

transition bands. Cascading the filters will reduce the problem in the bands but would 

simultaneously increase the overall circuit size and high level of harmonic in 

stopband after the cutoff frequency. Incorporation microstrip lines with DGS on a 

ground plane has been proven to exhibit wide stopband filtering characteristics which 

result from a slow wave effect. However, the sharp cut-off between the passband and 

stopband characteristics in the conventional parallel-coupled or DGS remain 

unsolved and therefore, need to be investigated in order to obtain a better 

performance (Tahanian et al., 2010).  

 

Basically, the amount of coupling in end-coupled filter is very low (Bin and 

Uysal, 1998). However, this can be increased by the presence of a long overlapped 

region between any other resonators (Pal, 2006). Conventionally, doing this will 

cause a drawback of increasing the overall circuit size with a large value of 

capacitance being obtained from the structure (Bin and Uysal, 1998). 
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A lot of efforts were put into deep investigations on various innovative designs 

of the ring resonator structure due to the advantage of open-ended angle of 360 (Yu-

Zhen et al., 2008; Woo-Chul et al., 1999) even when the typical bandwidth of the 

resonator is less than 5% (Chul-Soo et al., 2005). The structure of the ring resonator 

can be modified in order to obtain a compact size which will increase the coupling 

effect by introducing gaps into the shape. Since the overall perimeter of the ring is 

controlled by the radius, it becomes a new challenge to obtain a high coupling effect 

and a compact circuit simultaneously, 

 

A tight couple between the resonators can be very complicated to be realized 

from a fabricated circuit (Pozar, 1990). A multilayer structure is able to overcome 

that restriction (Lee S-J, 2004; Jia-Sheng and Lancaster, 1999). The structure was 

proposed to reduce the size of microwave devices (Courreges et al., 2010; 

Bairavasubramanian and Papapolymerou, 2007) where a well known method of 

realizing the miniature filters is by fabricating the multilayer structures on a high 

dielectric substrate (Jia-Sheng and Lancaster, 1999). In this context, a filter is 

constructed from a combination of inductors and capacitors. It must be noted that the 

contradiction features between both the components could not be resolved by simply 

selecting a high dielectric constant material because in order to obtain high value of 

capacitances and inductances simultaneously, the substrates must be chosen from a 

different type of dielectric constants or thicknesses.  

 

Dielectric resonator (DR) is widely used to enhance the performance of 

microwave communication devices such as filters and resonators as provides a low 

design profile and wide bandwidth (Petosa, 2007). A variety of geometrical 
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resonators such as rectangular, circular and rings have been reported (Virdee and 

Trinogga, 1988). The combination of DR and strip line has derived substantial 

research interests due to their ease in circuit realization for both series and shunt, and 

it requires no via holes (Young and Jones, 1980; Edwards, 1992; Street et al., 1997). 

The addition of DR on strip line was introduced in antenna in order to obtain high 

return loss in passband (Ain et al., 2008). However, the DR on microstrip line is still 

open for further investigation especially in obtaining a wideband using the array 

approach. 

 

 

1.3 Objectives 

 Generally a bandpass filter is designed to allow certain frequencies called 

passband while rejecting others. Therefore, a wide stopband and a sharp cutoff 

response are important in designing a bandpass filter. The main objective of this 

project is to design new structures of bandpass filter that can be fabricated and 

measured for confirmation. In achieving this, several methods proposed by other 

researchers were reviewed and investigated. An in-depth investigation on the effect 

of material thickness using the electromagnetic simulation software was carried out. 

All the objectives of this project can be summarized as follows: 

 

1) To design a parallel-coupled DGS bandpass filter for a high magnetic 

coupling. The same structure is used to design a few frequency bands for 

comparison. The design must be unique and its can contribute to small 

transition bands.  
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2) To develop a multilayer bandpass filter with a unique structure in order to 

obtain a high electromagnetic coupling from both vertical and horizontal 

directions. The circuit will be fabricated and measured to confirm for the 

desired aim. The results from this filter were compared to DGS design in 

order to identify the optimum design structure. 

3) To identify through investigation, a new simple structure of dielectric 

bandpass filter using few tablets of high dielectric permittivity to improve the 

bandwidth of the circuit. Some parameters including the dielectric size and 

the distance to locate the tablets will be investigated using an electromagnetic 

simulator in order to obtain the optimum response. This circuit was 

intensively used to investigate the dielectric effect on the filter due to the 

simple structure and it shows a clear relationship between DR and microstrip 

line.   

 

 

1.4 Scope of Works 

The overall project will focus on three different structures of bandpass filter. 

The first is a combination of parallel-coupled and DGS, the second is the 

combination of a modified split ring and end-coupled in a multilayer structure and 

the third is the dielectric resonator bandpass filter based on quarter wavelength 

matching approach. 

 

The first structure is a combination of a parallel-coupled microstrip 

transmission lines together with a rectangular DGS etched on the ground plane for 

the miniature of the filter. A unique open circuit stub is introduced to both input and 
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output ports to ensure the impedance matching. The design covers simulation, 

measurement and comparison between both results in order to confirm the design 

objectives. Apart from that, a few other working frequencies were also designed, 

fabricated and measured to prove that the new structure can operate at any 

application. A study on introducing DR into the circuit was also carried out to 

improve the filter performance.     

 

The second design is a new modified split ring resonator that has not been 

explored by other researchers hitherto. The ring resonator’s shape consists of several 

folded transmission lines, creating few additional sub-resonators vertically from the 

end-coupled resonator on the top layer. This structure allows the magnetic field to 

cross polarize along the ring axis. Then, the induced current loops pass through the 

distributed capacitance along the split-ring perimeter in the middle layer. The 

performance of this filter was then compared to the DGS structure. Several  

parameters such as gap size and radius of the ring that influence the filter response 

were investigated in order to gain the relationship of the filter response. 

 

The third structure is a design of a bandpass filter using few high permittivity 

ceramic tablets on a transmission line which involves the impedance matching 

between the microstrip and DRs. The design consists of three dielectric resonators in 

an array topology. The purpose of the array dielectric resonators is to generate 

additional frequencies that can be merged together to produce a wideband device. 

Study on the placement of the first, second and third dielectric resonators were done 

in order to identify the location for optimum impedance matching.  

 



8 
 

All designs were calculated and simulated with the help of CST Microwave 

Studio, while the measurement of the S-parameters done using  the E8364B Network 

Analyzer. 

 

 

1.5 Thesis Organization 

 Following Chapter 1, Chapter 2 provides an intensive literature review of 

various latest planar microstrip filters with DGS including slot configurations which 

have been studied by previous researchers. A series of filters introduced by the 

researchers will be taken into consideration in order to highlight the advantages and 

disadvantages of the designs before taking some of the approaches to build up 

several new structures. This chapter will ensure that the design of this project will not 

be involve the same designs that have been explored by the other researchers. The 

novelty of the design will become one of the most important criteria in this research. 

It includes the theory of filters, quarter wavelength, air gap and the most important 

elements such as capacitors and inductors. Other factors such as the benefit of 

dielectric resonators including the coupling and mutual effect in obtaining a good 

filter response will also be explained.    

 

 Chapter 3 is a detail explanation on the project that encompasses the design 

methodology and circuit modelling. The explanations started from the main circuit 

which is a new structure of parallel-coupled DGS, followed by the multilayer and 

lastly a dielectric resonator. There are circuit layouts from simulation software 

together with detail dimensions as well as the fabricated devices that are used in 

testing and measuring.  
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 In Chapter 4, results from the three proposal structures throughout the period of 

the study were presented to relate the theory of electronics and microwave 

respectively. The width, length and strip line thickness influence the responses of the 

filter were investigated and analyzed to present signal transformation patterns and 

their relationships. Comparisons between the filter responses were also carried out in 

order to show the advantages and disadvantages of each design. 

 

 Lastly, a summary of contributions including the advantages from all designs 

were highlighted in Chapter 5. There were still rooms for further exploration in some 

of the investigations before more conclusions could be derived. The expected areas 

for future investigation were suggested in order to provide more opportunities for 

future researchers.  
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CHAPTER TWO 

2.0 LITERATURE REVIEW 
 

 

2.1 Introduction 

 Microstrip transmission line together with various perforation approaches on 

the ground plane has attracted attention due to their amenability to standard 

fabrication processes of microwave integrated circuit (MIC). Several method 

attempts to control the effectiveness of electromagnetic wave propagation through 

DGSs have been described in the literature (Rui et al., 2001; Yongxi and Itoh, 1999) 

that include various shapes and sizes. Structures such as Uniplanar Compact 

Electromagnetic Bandgap (UC-EBG) (Yang et al., 1999; Woonphil and Bomson, 

2002) and DGSs have been successfully applied in the microstrip construction of 

microwave devices such as filters and antennas (Ahn et al., 2001; Park et al., 2002). 

 

Microstrip together with Electromagnetic Bandgap (EBG) structures on ground 

plane in a filter exhibits an acceptable passband and wide stopband simultaneously 

due to slow-wave characteristic in the circuit (Yongxi and Itoh, 1999; Rumsey et al., 

1998). These features can be used in bandpass, bandstop or lowpass filter 

applications to eliminate unwanted frequencies as well as to reduce the physical size 

of microstrip circuits. The concept and application of microstrip EBG structures have 

been reported (Hu et al., 2000; Karmakar et al., 2002; Lee et al., 2002). Despite 

offering various advantages and wide applications gain from the microstrip EBG 

structures, there are still problems in utilizing such structures.   
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2.2 Review on the Concept of Aperture Slot 

An aperture slot is also known as a Defected Ground Structure (DGS) if the slot 

is realized by etching a defect on ground plane of planar circuits. This defect disturbs 

the shield current distribution in the ground plane and changes the characteristics of 

transmission line such as line capacitances and inductances. Consequently, using one 

or a small number of unit cells, DGS is able to provide wide bandstop characteristic 

in certain frequency bands. 

 

Photonic Band Gap (PBG) structure is a periodic structure which is very similar 

to DGS in modifying guided wave characteristics which exhibits a wide stopband 

property. Using a microstrip line as an example, a periodic structure will be etched in 

ground plane where the PBG will modify the properties of the microstrip line such as 

its characteristic impedance and propagation constant (Dahmardeh et al., 2009). 

 

DGS is very much motivated by a study of PBG to change guided wave 

properties where it makes one or few of the PBG etched on ground plane. The shape 

of the slot can also be modified from a simple hole to a more complicated shape. 

Table 2.1 compares the features between PBG and DGS where in PBG, the geometry 

is a periodic structure while in DGS, it normally contains one or few structures 

etched on the ground plane. However, both of the PBG and DGS are similar in terms 

of microwave properties such as propagation constant and characteristic impedance. 

The main difference between the two is in terms of the equivalent circuit extractions. 

There is a more complex equivalent circuit in PBG due to its periodic structures 

compared to the single DGS which depend on the number of the repeated shapes. If 
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the circuit involves the PBG, the analysis becomes more complicated due to the 

interaction of mutual couple between each slot (Weng et al., 2008). 

 

Table 2.1: Comparison between PBG and DGS(Weng et al., 2008).  

Features 
Photonic Band Gap 

Structure (PBG) 
Defected Ground 
Structure (DGS) 

Geometry Periodic etched structure 
One or few etched 

structure 
Microwave properties Similar Similar 

Equivalent circuit 
exaction 

Complex circuit  Simple RLC circuit 

 

 

2.3 Basic Properties of DGS  

The simplest DGS has only one perforated slot on ground plane. Figure 2.1 

demonstrates a signal passing through a parallel-coupled transmission line from the 

source. When the DGS is applied in the middle of the microwave circuit, then E-field 

is discontinued along the middle line of coupler and acts as an open circuit for the 

even mode. Signal flows in even mode transmission line will pass through a series 

stub and will be slowed down by the DGS (Sen-Kuei et al., 2010). 

 

 

 

 

 

 

 

 Figure 2.1: Signal passing through a parallel-coupled transmission line (Sen-
Kuei et al., 2010). 
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The relationship between the phase velocity and effective dielectric constant 

can be presented in Equation 2.1 where the effective dielectric constant, eff is 

inversely proportional to the phase velocity, vp since c is a constant value equal to the 

speed of light. From this equation, the DGS acts as a delay line to slow down the 

signal flows through the transmission line. 

 

     (2.1) 

 

This concept of delay line is applicable only when the transmission line is in even 

mode. This means that when the signal passing through the circuit in an even mode 

the phase velocity of the wave will be decreased due to the eff being increased from 

the above relationship. For example, in a device with three DGS using the concept of 

delay line, the delay of signal in the even mode with three DGS is longer than the 

circuit with only one DGS. So the implication from the concept of the delay line on 

the eff can be enhanced if the number of DGS increases, hence the coupling 

coefficient will be subsequently improved. In other words, the DGS can control the 

coupling coefficient by modifying the transmission line properties. However, in an 

odd mode the signal does not slow down due to the phase velocity and where eff are 

independent to the DGS (El-Hang, 2010; Mu et al., 1985).  

 

 

2.4 Electromagnetic Band Gap (EBG) 

This is relatively similar to the aperture slot but with a periodic structure either 

on the substrate or on the ground plane. Implementing EBG structures by etching a 

number of periodic patterns on the ground plane as shown in Figure 2.2 contribute to 
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several advantages such as low cost and easy in fabrication process as compared to 

multilayer structures (Radisic et al., 1998a). Apart from that, they are compatible 

with the standard planar circuit technology for microwave applications. 

 

 

Several variations of microstrip transmission lines incorporating EBG 

structures provide an effective method to reject unwanted frequencies and to reduce 

the physical size of the microstrip circuits (Hu et al., 2000; Lee et al., 2002; 

Karmakar et al., 2002). Mostly the circuits consisted of two-dimensional periodic 

holes etched on the ground plane. The EBG shapes vary from simple rectangular or 

circular shapes to more complicated profiles while the arrangement of the EBG holes 

vary from square or triangle lattices to others. The shape and size of the lattices have 

a considerable impact on the passband and stopband characteristics (Bao and 

Ammann, 2007). 

(a)                                           (b)  

Figure 2.2: EBG structure from a periodic ground plane etching (a) Circuit configuration 
and (b) Responses (Radisic et al., 1998a). 
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2.5 Uniplanar-Compact EBG Structures 

The development and upgrading of compact EBG such as the Uniplanar–

Compact (UC)-EBG structures (Yang et al., 1999) that consist of a two-dimensional 

square pattern; metal pad and four connecting narrow branches to form a distributed 

LC network is illustrated in Figure 2.3. This structure is able to introduce a slow 

wave effect generated by the unique shape (Yang et al., 1999). The size of 

periodicity in the EBG lattice is only 0.1λo at the stopband frequency and hence can 

be considered as a compact structure. This structure can be build by implementing a 

standard planar fabrication technique without any modifications. The virtues of low 

loss and uniplanar features make the UC-EBG structure a very promising candidate 

as a slow-wave transmission line. 

 

 

 

 

 

 

 

 

The slow-wave transmission line is able to reduce the spurious content in 

conventional microstrip filters where high level of spurious in passband will 

deteriorate the performance of the overall RF system. In normal circumstances, extra 

cascaded or higher filter orders are required to suppress the spurious modes but this 

approach will cause a draw back to the increment of insertion loss in the passband as 

well as increasing the size of the overall circuit. Compact microstrip filters with 

Figure 2.3: UC- EBG element (Yang et al., 1999). 
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intrinsic spurious rejection can be constructed by employing the UC-EBG structure 

that has been introduced as shown in Figure 2.3. With this structure, the device is 

able to derive a wide and deep stopband concurrently that suppresses the spurious in 

passband especially the high level of harmonics. Furthermore, extra filters are not 

required as the stopband is an intrinsic feature of the device.  The slow-wave feature 

is also able to reduce the physical length of the filter, consequently reducing the 

overall circuit area.  

 

Figure 2.4 (a) shows the schematic of a compact parallel-coupled microstrip 

filter on a top side and UC-EBG structure on the ground plane. The measured results 

of the compact parallel coupled bandpass filter on the UC-EBG are shown in Figure 

2.4 (b) together with a conventional microstrip bandpass filter for comparison. This 

clearly shows that the isolations of the conventional filter are -10 dB and -5 dB at 12 

GHz and 17 GHz, respectively. It must be noted here that  the filter on the UC-EBG 

ground exhibits a 30-40 dB suppression of the spurious transmissions (Yang et al., 

1999). 
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Figure 2.4  Schematic and results (a) Compact parallel-coupled BPF on the UC-EBG 
substrate and (b) Comparison Results (Yang et al., 1999). 
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2.6 Multilayer EBG Structures 

A good example of a multilayer EBG structure is a uniplanar compact 

electromagnetic bandgap (UC-EBG) (Caloz et al., 2001). The EBG patterns are 

etched on two different ground plane substrates with height, h1 and h2 of a single 

layer uniplanar circuit and stacked. This structure is claimed to be able to derive 

much wider stopbands than those of the single layer UC-EBG. Figure 2.5 shows the 

two layers bi-periodic microstrip structure of a stacked UC-EBG plates with different 

periodicities (Caloz et al., 2001). The two layers structure configuration with an 

effective periodicity of 2a, leading to the realization of a compact EBG structure 

which means that the EBG from both layers will only repeat the same alignment 

simultaneously for every 2a. 

 

 

 

 

Figure 2.5: Two layer of EBG structure (Caloz et al., 2001). 
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2.7 Defected Ground Structure (DGS) 

DGS is a simple method that provides high rejection band. The DGS series will 

group either the periodic patterns known as EBG or non-periodic patterns which are 

able to offer a wide rejection band due to the increment of the effective inductance of 

a transmission line. These advantages have been employed in many circuits such as 

planar antennas, filters, power amplifiers and power dividers (Ahn et al., 2001; Park 

et al., 1999; Radisic et al., 1998b). DGS integrated with a microstrip line shown in 

Figure 2.6 was claimed to have  superior stopband quality (Kim et al., 2000). 

 

 

 

 

The changing in the shape size of the DGS includes narrow and wide etched 

areas on the metallic ground plane which have the capability of increasing the 

effective capacitance and inductance in a transmission line. The example of applying 

this structure in designing a lowpass filter is able to produce high impedance 

Figure 2.6: The view of DGS unit section (Kim et al., 2000). 
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inductance with a relatively large conductor width which consequently helps to 

improve the power handling capability of the lowpass filter (Ahn et al., 2001). 

 

Another example of DGS was applied in multi-pole bandpass filter shown in 

Figure 2.7. The researchers exploited a DGS by etching rectangular apertures on the 

ground plane of a parallel-coupled microstrip line (PCML) for the effective 

enhancement of a tight frequency dependent coupling (Zhu and Wu, 2002). This 

concept has been proven where it was applied in the designing of a compact 

wideband microstrip bandpass filter. 

 

 

 

 

2.8 Perforation in Transmission Lines 

In conventional EBG, the microstrip line must be carefully oriented on a 

substrate. However, in the perforated transmission lines, the dependence of the 

location and orientation of the microstrip line on the propagation constant is 

Figure 2.7: Schematic of proposed multi-pole bandpass filter (Zhu and Wu, 2002). 
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completely eliminated. Where this is concerned, the perforated transmission line 

structures have a lot of potential applications in microstrip circuits such as filters, 

antennas and amplifiers (Boutejdar et al., 2008a). 

 

 According to the transmission line theory (Awang, 2006), the propagation 

constant of a lossless line is 

 

ߚ  ൌ ߱௢√(2.2)          ܥܮ 
 

where ߱௢  is the angular frequency, while L and C are the distributed series 

inductance and shunt capacitance per unit length respectively. A slow-wave can be 

achieved if a large ߚ  is obtained from high values of L and C due to the wave 

velocity is inversely proportional to the propagation constant such as shown in the 

relationship below (Nghiem and Williams, 1990); 

 

௣ݒ ൌ
ఠ೚

ఉ
ൌ ଵ

√௅஼
        (2.3) 

 

Consequently, it is possible to form an EBG structure on the transmission line if the 

values of L and C are increased periodically and not continuously (Xue et al., 2000). 

In Figure 2.8, two cells containing of one-dimensional (1-D) was proposed where the 

cells of microstrip line with some metals have been removed. By comparing the EBG 

cell 1 and cell 2 from Figure 2.8(a) and (b), , the two narrow lines act as series 

inductance in Figure 2.8(a) become one line in Figure 2.8(b). These narrow lines are 

able to increase the value of the series inductance. On the other hand, the gaps across 

the width of transmission line result in the increment of the shunt capacitance. 
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Cascading these cells as an EBG on a microstrip line will present a slow-wave that 

produces a superior stopband in a filter such as other EBG with ground perforations. 

With the width of gaps and lines of the perforation maintaining the same, the cell in 

Figure 2.8(b) provides a more effective slow-wave and bandgap than that obtained 

from Figure 2.8(a). Figure 2.9 shows the simulated and measured S-parameters from 

the EBG transmission lines using combination of six EBG cells from Figure 2.8 (b). 

 

 

 

 

Figure 2.8: Microstrip EBG cells (a) EBG cell 1 and (b) EBG cell 2 (Xue et al., 
2000). 
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2.9 Problems of Conventional Microstrip EBG Structures 

 In ideal filter situations, losses caused by conductor or dielectric substrate are 

ignored. However in reality, when an electromagnetic wave propagates through a 

periodic structure, there are certain frequency bands separated between passband and 

stopband. The band that allow wave to propagate is known as passband which is 

separated by two cutoff frequencies. In practical, there will be another band called 

transition band which exists due to the imperfection of material or due to the 

existence of material loss.    

 

Figure 2.9: Simulated and measured S-parameters of the proposed EBG transmission 
line using the cell shown in Figure 2.8 (b) (Xue et al., 2000). 
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  The performance of a microstrip EBG is derived according to the bandwidth 

of the passband, stopband, the rejection level and the insertion loss ripples in the 

passband. In order to obtain a high performance from a microstrip EBG; small 

transition bands, a deep rejection level and small passband ripples are necessary. 

However, in the conventional microstrip EBG, there will always be a conflict 

between the stopband and the passband characteristics (Yang et al., 1999; Radisic et 

al., 1998a). 

 

 Previous researchers found that varying the size of the etched hole or the 

number of holes produces better insertion loss in passband and a better stopband 

rejection at the expense of the passband. In this context, reducing the size of the hole 

improves the return loss but degrades the stopband characteristics. In order to 

achieve the optimum performance, a tradeoff is required between the number and 

size of the etched holes (Yang et al., 1999). 

 

 A simple one dimensional transmission line periodic structure analysis 

demonstrates the problem that has been carried out (Collin, 1966). An equivalent 

network of a single unit cell is a shunt normalized susceptance ܤത  with transmission 

lines length, lൌ ݀/2, where d represents the periodicity of the structure on both sides 

as depicted in Figure 2.10. The values of Vn and In represent the total amount of 

incident and reflected Transverse Electromagnetic (TEM) voltage and current 

amplitudes, respectively. The figure shows a relationship of voltage and current at 

the input and output of the nth section in the cascaded periodic structure. 
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 Characteristics of a periodic structure in transmission line can be evaluated by 

determining the complex propagation constant ߛ ൌ 	ߙ ൅  for the overall size of the ߚ݆

circuit area. The propagation constant can be obtained by solving the following 

characteristic equations (Collin, 1966). 

 

ቘܣ ܤ
ܥ ܦ

ቃ	 െ ൤݁
ఊௗ 0
0 ݁ఊௗ

൸ ൤ ௡ܸାଵ
௡ାଵܫ

൨ ൌ 0      (2.4) 

 

where A, B, C and D are the elements of the ABCD matrix of the unit section from 

Figure 2.10. For the initial condition, the equation of determinant circuit without 

input and output voltage as well as current is zero; 

 

ฬܣ െ ݁ఊௗ ܤ
ܥ ܦ െ ݁ఊௗ

ฬ ൌ ܦܣ െ ܥܤ ൅ ݁ଶఊௗ െ	݁ఊௗሺܣ ൅ ሻܦ ൌ 	0   (2.5) 

  

 If the periodic structure is supporting a propagation wave, the voltage and 

current at the (n = 1)th terminal should be exactly the same as the voltage and current 

at the nth terminal which is a phase delay due to finite propagation time. 

 

Figure 2.10: Equivalent circuit for a single unit cell of the microstrip EBG 
structure (Collin, 1966).


