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KESAN JURANG UDARA TERHADAP MEMBRAN GENTIAN BERONGGA 

POLIETERSULFONA / POLIVINIL ALKOHOL - ZnO UNTUK 

PENGURANGAN KOTORAN 

 

ABSTRAK 

 Proses pemisahan membran untuk aplikasi air sentiasa dicabar oleh 

kecenderungannya untuk kotor. Kotoran, terutamanya pada skala industri adalah satu 

fenomena yang perlu ditangani yang kerap berlaku, meningkatkan kos, dan 

menurunkan prestasi. Pembersihan berkala, walaupun sedikit sebanyak berkesan 

untuk mengurangkan kesan dari kotoran, adalah merupakan ancaman kepada integriti 

mekanikal dan kimia membran. Ia juga didapati tidak berkesan dalam melawan 

pembentukan selaput bio; produk sampingan kotoran bio. Oleh itu, menerusi kajian 

ini, rumusan ‘dope’ baru telah disintesis sebagai usaha untuk menghasilkan membran 

gentian berongga (HF) yang anti-kotoran dengan menggunakan campuran PES/PVA. 

Membran tersebut telah diuji dengan asid humik sebagai model kotoran. Campuran ini 

dibantu oleh LiCl sebagai pembentuk liang membran dan untuk meningkatkan 

kebolehlarutan PVA menerusi pembentukan ‘transition state’ bersama dengan sistem 

pelarut N,N-dimetilasetamida (DMAc). Dengan menggunakan rumusan ini, membran 

HF telah dihasilkan menggunakan teknik ‘dry jet-wet spinning’ pada jarak jurang 

udara yang berbeza untuk mengkaji kesannya di bawah regangan graviti. Empat jarak 

jurang udara yang berbeza (5, 10, 15 & 20 sm, masing-masing bersamaan dengan 

sampel A.1, A.2, A.3 & A.4) telah dikaji dan dicirikan melalui pelbagai cara. 

Morfologi dan topografi yang unik telah diperolehi menerusi penggunaan rumusan 

baru ini, disamping dipengaruhi oleh ruang udara/regangan graviti. Selepas 30 minit 

pemadatan hidraulik dan 1 jam penyerapan air ternyahion, fluks air maksimum telah 

didapati pada nilai 42.32 ± 0.12 kg/m2.j bagi sampel A.3 dengan jarak jurang udara 

sebanyak 15 sm. Corak variasi yang sama juga didapati selepas 1 jam penyerapan 



 

xvi 

 

kotoran, dengan fluks asid humik maksimum didapati pada nilai 42.86 ± 0.09 kg/m2.j 

bagi sampel membran A.3 yang sama. Namun begitu, penolakan didapati tertinggi bagi 

sampel A.1, dihasilkan pada jarak jurang udara sebanyak 5 sm dengan nilai penolakan 

asid humik sebanyak 94.63 ± 2.13 %. Selepas mengambil kira hubungan penyerapan-

penolakan dan faktor-faktor lain seperti kekasaran permukaan, kekuatan mekanikal & 

kehidrofilikan, 10 sm telah dipilih sebagai jarak jurang udara yang sesuai untuk 

pembentukan membran gentian berongga PES/PVA dan derivatif dari rumusan yang 

sama pada masa hadapan. Kajian berikutnya dilakukan dengan mencirikan dan 

membandingkan prestasi membran PES-PVA (sampel B.3) dengan membran PES 

kosong (sampel B.1), PES dicampur dengan partikel nano zink oksida (ZnO) (sampel 

B.2), dan PES dicampur dengan PVA-ZnO (sampel B.4). Penambahan PVA di dalam 

sampel B.3 & B.4 menyekat pembentukan liang makro dan meningkatkan sifat anti-

kotoran membran dengan rekod terendah nilai fluks asid humik (HAF) relatif tidak 

kurang daripada 0.95, berbanding dengan membran HF tanpa PVA (sampel B.1 & B.2) 

yang mempunyai nilai HAF relatif sekitar 0.75-0.85 selepas berakhirnya tempoh fluks 

selama 2 jam. Walau bagaimanapun, penambahan PVA mengurangkan fluks air 

sampel B.3 kepada 33.04 ± 0.09 kg/m2.j berbanding membran PES kosong (sampel 

B.1) pada nilai 91.42 ± 0.05 kg/m2.j. Penambahan ZnO pula dapat meningkatkan fluks 

air sampel B.2 kepada 123.20 ± 0.14 kg/m2.j berbanding membran PES kosong, tetapi 

membuatkan HF tersebut lebih terdedah kepada kotoran. Penambahan PVA-ZnO di 

dalam sampel B.4 tidak meningkatkan prestasi fluks, tetapi meningkatkan penolakan 

asid humik dari 91.27 ± 2.28 % bagi PES kosong (sampel B.1) kepada 96.03 ± 1.07 

%. Dengan mengoptimumkan rumusan membran tersebut (terutamanya untuk nisbah 

PVA/ZnO), ia dijangka bahawa membran tersebut mampu untuk meningkatkan sifat 

anti-kotoran dan penolakan tanpa perlu mengorbankan prestasi fluksnya.  
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EFFECT OF AIR GAP ON POLYETHERSULFONE / POLYVINYL 

ALCOHOL – ZnO HOLLOW FIBER MEMBRANE FOR FOULING 

MITIGATION 

 

ABSTRACT 

 Membrane separation process for water application has always been 

challenges by its tendency to foul. Fouling, especially at industrial scale is a 

ubiquitous, cost deterring, and performance degrading phenomenon which needs to be 

nullified. Periodic cleaning, while being effective to mitigate fouling consequences to 

some extent, impose a threat to the membrane’s mechanical and chemical integrity. It 

has also been found to be ineffective in battling biofilm formation; a side product of 

biofouling. Hence, in the current work, new dope formulation was synthesized as an 

effort to fabricate an antifouling hollow fiber (HF) membrane using PES/PVA blend. 

The membrane was tested against humic acid as model foulant. The blend was 

mediated by LiCl as membrane pore former and to improve the solubility of PVA 

through the formation of transition state with N,N-dimethylacetamide (DMAc) solvent 

system. Using the formulation, HF membranes were spun (dry jet-wet spinning) at 

different air gap distances to study the effect under gravitational stretching. Four 

different air gap distances (5, 10, 15 & 20 cm, corresponds to sample A.1, A.2, A.3 & 

A.4 respectively) were investigated and characterized through various means. Peculiar 

morphology and topography was found through the use of this new formulation, on 

top of being idiosyncratically affected by the air gap/gravitational stretching. After 30 

minutes of hydraulic compaction and 1 hour of deionized water permeation, maximum 

water flux was noted at 42.32 ± 0.12 kg/m2.h for sample A.3 with air gap distance of 

15 cm. Similar trend was noted after another 1 hour of foulant permeation, with 

maximum humic acid flux was found at 42.86 ± 0.09 kg/m2.h for the same membrane 

sample A.3. Nevertheless, rejection was found to be highest for sample A.1, spun at 5 
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cm air gap distance with 94.63 ± 2.13 % humic acid rejection. After considering the 

permeation-rejection relationship and other factors such as surface roughness, 

mechanical strength & hydrophilicity, 10 cm was noted to be the suitable air gap 

distance for the fabricated PES/PVA hollow fiber membrane and its future derivative 

with similar formulation. Subsequent study was done in characterizing and comparing 

the performance of the PES-PVA membrane (sample B.3) with neat PES (sample B.1), 

PES blended with zinc oxide (ZnO) nanoparticle (sample B.2), and PES blended with 

PVA-ZnO (sample B.4). The addition of PVA in sample B.3 & B.4 suppressed the 

macrovoid formation and improved the antifouling properties of the membrane with 

the lowest recorded relative humic acid flux (HAF) of not less than 0.95, as compared 

to HF membranes without PVA (sample B.1 & B.2) which has relative HAF of around 

0.75 – 0.85 by the end of the 2 hours flux duration. Nevertheless, incorporation of PVA 

reduced the water flux of sample B.3 down to 33.04 ± 0.09 kg/m2.h as compared to 

neat PES membrane (sample B.1) at 91.42 ± 0.05 kg/m2.h. ZnO on the other hand was 

able to improve the water flux of sample B.2 to 123.20 ± 0.14 kg/m2.h as compared to 

the neat membrane, but made the HF much more susceptible to fouling. PVA-ZnO 

incorporation in sample B.4 didn’t improved the flux performance, but improved the 

humic acid rejection from 91.27 ± 2.28 % in neat PES (sample B.1) to 96.03 ± 1.07 

%. With further optimization of the formulation (especially PVA/ZnO ratio), it is 

expected that the fabricated membranes would have improved anti-fouling properties 

and rejection without severing its flux performance. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Membrane Fouling and Its Consequences 

The research of synthetic membrane in water based separation processes have 

flourished rapidly over the past 55 years ever since the breakthrough by Sidney Loeb 

& Srinivasa Sourirajan in 1962 (Koltuniewicz, 2005, Korbutowicz and Nowak, 2011, 

Noble and Stern, 1995). This has further been escalated by the increase in world 

population, freshwater scarcity, and stringent water quality regulations, which further 

pushed the frontiers of membrane technology in the 1990s (Fane et al., 2011). Since 

then, membrane technology has found its way to be assimilated industrial-wide due to 

its additional advantages such as high stability & efficiency, low energy requirements 

and ease of operation (Zhao et al., 2015). The attraction of membrane separation also 

lies in its economics whereby it surpasses the conventional method by being low in 

maintenance cost on top of being cost efficient in terms of permeate production (Fane 

et al., 2011).  

While the market would continue to rise, predicted to reach USD 11.95 billion 

by 2021 (MarketsandMarkets, 2017), membrane technology is still far from perfect. 

Despite the commercial success of polymeric membrane particularly in wastewater 

separation processes, major research still needs to be done in improving the long term 

performance of the membrane (Pearce, 2014). Major disadvantages come in terms of 

its low durability, particularly by concentration polarization, chemical damage, and 

fouling (Strathmann, 2011). Fouling for example, has been noted to pose a serious 

drawback for industrial membrane utilization. Deposition of foulant cake on the 

membrane surface reduced the flux performance, rapidly increases the rate of 



 

   2 

    

maintenance for periodical cleaning, and surging the frequency for membrane 

replacement. This significantly translated into the increase in expense, as membrane 

& membrane housings took between 17 to 40 % while cleaning system took between 

10 to 18 % of total cost for large ultrafiltration/microfiltration plants (Perry, 1997). 

Hence, the consequences of membrane fouling is pretty much both performance and 

cost deterring; Huisman et.al. (2004) have reported a real industrial case whereby 

10,000 Euro per year was allocated towards membrane replacement costs due to 

frequent membrane fiber damage and rapid fouling. 

As membranes for water treatments are subjected to various kind of solutions; 

fouling is practically inevitable. But against all hopes and dreams, understanding the 

origin and type of fouling itself may shed light on the race to minimize the effect of 

membrane fouling. In response, various industrial membrane autopsy studies have 

been conducted throughout the globe in order to further elucidate the issues (Huisman 

and Williams, 2004, Gijsbertsen-Abrahamse et al., 2006, Siemens Water 

Technologies, 2011, Chesters et al., 2011). Membrane fouling phenomenon, as a 

whole, is very complex. While reversible fouling is easy to be removed by physical 

means, chemical cleaning is needed to overcome the irreversible fouling (Arnal et al., 

2011). Hence, chemically resistant polymers such as polyethersulfone (PES), 

polysulfone (PSf), and polyvinylidene fluoride (PVDF) were the material of choice for 

membrane fabrication and commercialization purposes. Notwithstanding, these 

membranes are unfortunately hydrophobic; making it prone to fouling (Yuan et al., 

2014, Zhang et al., 2014a, Zhao et al., 2015). To make things more complicated, the 

formation of biofilms during membrane fouling have been noted to limit the efficiency 

of chemical cleaning by shielding the embedded microorganisms (Anand et al., 2014). 

Hence, to synthesize membranes with anti-fouling capability, yet are physically viable 
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for harsh conditions are one of the main research interest in membrane technology. To 

date, the search for antifouling membrane has become one of the most researched area 

in the field with more than 60 % of related Scopus indexed studies published in the 

past 5 years (2013-2017) (Scopus, 2017).   

Increase in hydrophilicity has been noted as one of the methodology in 

mitigating fouling, which could be accomplished through several means. Among all 

of the hydrophilic modification proposed by fellow researchers, blending is the 

simplest yet effective to be done. Modification is done during the dope preparation 

phase through physical mixing of membrane solution with hydrophilic components 

which can be polymers, nanoparticles or mixture of both (Leo et al., 2012, Yuan et al., 

2014, Zhang et al., 2014a, Zhao et al., 2015, Balta et al., 2012). With the current extent 

of nanotechnology, nanoparticles incorporation into membrane matrix dubbed as 

mixed matrix (MM) membrane has been the trend in membrane antifouling research. 

Nevertheless, it is important to note that the nanoparticle needs to be well dispersed as 

agglomerated nanoparticles reduced the surface area/weight ratio. Chances are, 

agglomerations are more prone to happen with the increase of incorporated 

nanoparticle percentage (Ng et al., 2011). The possibility for the membrane pores to 

be blocked are also increased with larger nanoparticle sizes, hence by further lowering 

the membrane’s permeability below than pristine membrane. The stability of the 

nanoparticle is also jeopardize by smaller nanoparticles due to the increase of surface 

energy. Hence, mixing of nanoparticles alone would not be highly beneficial towards 

the membrane’s overall performance. MM membrane works would need to 

incorporate a second polymer, which would act as nanoparticle stabilizer, hydrophilic 

additive, and pore former into the dope solution. This work is intended to tackle both 
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antifouling and nanoparticle dispersion through a newly formulated dope solution 

using a mix of PES and polyvinyl alcohol (PVA). 

1.2 Problem Statements 

Typical membrane autopsy requires the elucidation of the common problems 

in membrane processes, which is fouling/scaling, or chemical/mechanical damage 

(American Water Chemicals, 2015). Among them, fouling has been noted to be the 

usual culprit behind membrane performance degradation. Siemens Water 

Technologies (2011) for example has conducted a thorough autopsy on two 7 years 

old membranes which has been suggested to undergo significant fouling. By 

comparing the weight of the received membranes with the weight of a new membrane 

module, both of the membranes were noted to gain 1.8 kg and 3.2 kg respectively of 

presumably foulant/water mixture and decrease in rejection, suggesting the effect of 

fouling on membrane performance degradation. While process parameter optimization 

and pretreatment could reduce membrane breakdown and improve membrane lifetime, 

preventive measures through the use of antifouling membranes would be a better 

solution for a newly commissioned separation system.  

Polyvinyl alcohol (PVA), a highly hydrophilic polymer has been noted by 

fellow researchers as a candidate of polymeric modifiers to improve the hydrophilicity 

and antifouling properties of membranes. Yuan et al. (2014), Zhang et al. (2014), and 

Li et al. (2010) have studied the effect of blending PVA with PES, PVDF-PES, and 

PVDF respectively, with improved antifouling performance in all cases as compared 

to pristine membranes. However, blending of PVA was noted to be sporadic as 

compared to other hydrophilic polymers such as polyethylene glycol (PEG) (Li et al., 

2008, Amirilargani and Mohammadi, 2009, Khorsand-Ghayeni et al., 2016, Idris et 

al., 2007, Baramurali and Preetha, 2014) and polyvinyl pyrrolidone (PVP) (Pellegrin 
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et al., 2013, Vatsha et al., 2014, Hanafi et al., 2016, Hanafi et al., 2014, Pentair, 2016). 

In fact, majority of PVA membrane works were concentrating on crosslinked thin film 

composite (Ahmad et al., 2012, Hu et al., 2016, Du et al., 2009) rather than blending. 

While no visible reasons have been noted, it may possibly due to the insolubility of 

fully hydrolysed PVA in most organic solvents used for membrane fabrication. The 

lack of variation on PVA blended membranes suggested a possible gap in knowledge, 

particularly as all of the referenced PVA works above utilized dimethyl sulfoxide 

(DMSO) as the main solvent. Hence, in the current work, DMAc-LiCl solvent system 

was utilized for the fabrication of PES-PVA blend membranes, which has not yet been 

studied before. 

On the other hand, several types of membrane housings or modules are 

available nowadays, namely flat sheet, spiral wound, tubular, and hollow fiber (Ghosh, 

2009). Hollow fiber for example, came with several advantages as compared to other 

type of housings. Nevertheless, it suffers from its manufacturing complexity and being 

sensitive to fouling due to lower free space between the fibers (Moch, 2004, Kirk-

Othmer, 1998, Ulbricht, 2011). Based on the author’s knowledge, no PES-PVA HF 

membranes have been found in the literatures. The possibility for a newly formulated 

PES-PVA blend membrane to be spun into self-supporting HF membrane would hence 

need to be tested, on top of determining the suitable spinning parameters for the 

formulation. One of the most important parameter not available in flat sheet fabrication 

would be the air gap distances, which will be tackled in the current work. Next, the 

comparison between neat PES, PES-PVA, PES-ZnO, and PES-PVA-ZnO HF 

membranes would need to be conducted to elucidate the effect of each additives on the 

membrane’s morphology and flux/rejection/antifouling performance, while enlighten 

the next step in optimizing the formulation. 


