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fluid (n = 0.95) and Casson fluid for (a) flow in a circular 

pipe and (b) flow in a channel. 
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ANALISIS MATEMATIK BAGI MODEL BENDALIR  

HERSCHEL-BULKLEY UNTUK PENYEBARAN BAHAN LARUT 

DALAM ALIRAN DARAH MELALUI KONDUIT SEMPIT 

 

ABSTRAK 

Penyebaran bahan larut memainkan peranan penting dalam pelbagai aplikasi 

kejuruteraan kimia, kejuruteraan bioperubatan dan sains alam sekitar. Kepentingan 

utama kajian ini adalah penyebaran bahan larut (ubat) dalam aliran darah (pelarut). 

Model matematik yang sesuai diperlukan bagi mengkaji penyebaran bahan larut 

dalam aliran darah. Dalam kajian ini, penyebaran bahan larut dalam aliran darah 

dianalisis secara matematik, dengan menyifatkan darah sebagai model bendalir 

Herschel-Bulkley (H-B) yang melalui konduit sempit iaitu paip bulat dan saluran 

antara dua plat rata yang selari. Penyebaran bahan larut yang mantap tanpa/dengan 

kehadiran tindak balas kimia antara bahan larut dan darah telah dipertimbangkan. 

Kemudiannya, kajian dikembangkan kepada penyebaran bahan larut tak mantap 

dengan tindak balas kimia. Akhir sekali, penyebaran bahan larut tak mantap dengan 

penyerapan bahan larut tak berbolak-balik ke tisu-tisu dinding dan pertukaran fasa 

yang berbolak-balik antara bendalir dan dinding dikaji dengan menggunakan model 

penyebaran teritlak. Sistem persamaan pembezaan tak linear yang terhasil 

diselesaikan secara analitik bagi memperoleh tegasan ricih, tegasan alas dan halaju 

normal darah. Ungkapan-ungkapan bagi kepekatan bahan larut, kemeresapan paksi 

efektif, kemeresapan paksi relatif, fungsi penyebaran, pekali-pekali pertukaran fasa,  

perolakan dan penyebaran diperoleh. Kepentingan kesan tegasan alah, indeks hukum 

kuasa, parameter kadar tindak balas kimia, parameter penyerapan dinding, nombor 

Péclet, nombor Damköhler dan pekali pembahagi fasa dibincangkan melalui graf-

graf dan jadual-jadual yang bersesuaian. Didapati bahawa halaju normal darah dan 
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kemeresapan paksi efektif menurun apabila tegasan alah dan indeks hukum kuasa 

meningkat. Kelakuan berbeza ditunjukkan oleh purata kepekatan bahan larut. 

Keputusan menunjukkan tindak balas kimia, pekali pertukaran fasa dan pekali 

perolakan mengurangkan keberkesanan penyebaran bahan larut. Didapati bahawa 

halaju normal darah dan kemeresapan paksi efektif lebih tinggi apabila darah 

dimodelkan sebagai bendalir H-B berbanding bendalir Casson dan boleh 

dibandingkan dengan bendalir-bendalir tak Newtonan yang lain. Halaju normal 

darah, kemeresapan paksi efektif, pekali pertukaran fasa dan purata kepekatan lebih 

tinggi apabila darah mengalir melalui paip bulat berbanding dengan darah yang 

mengalir melalui saluran antara dua plat rata yang selari. Beberapa keputusan yang 

diperoleh dalam tesis ini menunjukkan hasil perbandingan yang baik dengan 

keputusan yang diterbitkan oleh kajian lepas. 
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MATHEMATICAL ANALYSIS OF HERSCHEL-BULKLEY FLUID MODEL 

FOR SOLUTE DISPERSION IN BLOOD FLOW THROUGH NARROW 

CONDUITS 

 

ABSTRACT 

The dispersion of solute play an important role in many chemical engineering, 

biomedical engineering and environmental sciences applications. The main interest 

of this study is the dispersion of solute (medicine) in blood (solvent) flow. An 

appropriate mathematical model is required to investigate the dispersion of solute in 

blood flow. In this study, the dispersion of solute in a blood flow is analyzed 

mathematically by treating the blood as a Herschel-Bulkley (H-B) fluid model 

through narrow conduits, namely, a circular pipe and a channel between two parallel 

flat plates. The steady dispersion of solute in blood flow without/with the presence of 

a chemical reaction between the solute and blood are considered. Then, the study is 

extended to investigate the unsteady dispersion of solute with chemical reaction. 

Finally, the unsteady dispersion of solute with irreversible absorption of solute to the 

wall tissues and reversible phase exchange between fluid and wall is studied using 

the generalized dispersion model. The resulting system of nonlinear differential 

equations is solved analytically to get the shear stress, yield stress and normalized 

velocity of the blood. The expressions for the concentration of solute, effective axial 

diffusivity, relative axial diffusivity, dispersion function, phase exchange, 

longitudinal convection and dispersion coefficients are obtained. The effects of yield 

stress, power-law index, chemical reaction rate parameter, wall absorption parameter, 

Péclet number, Damköhler number and phase partition coefficient are discussed 

through appropriate graphs and tables. It is seen that the normalized velocity of blood 

and the effective axial diffusivity decrease as the yield stress and power-law index 
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increase. The reversed behavior is shown by a mean concentration of solute. Results 

indicate that the chemical reaction, phase exchange and convection coefficients 

reduce the effectiveness of solute dispersion. It is noted that the normalized velocity 

of blood and effective axial diffusivity are higher when blood is treated as a H-B 

fluid rather than a Casson fluid and are comparable to other non-Newtonian fluids 

such as Bingham and power-law fluids. The normalized velocity of blood, effective 

axial diffusivity, phase exchange coefficient and mean concentration are higher when 

blood flows through a circular pipe than when it flows in a channel between two 

parallel flat plates. Some of the results obtained in this thesis are found to be in a 

good agreement with other published results from the literature. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of Study 

The dispersion of solute in a solvent flowing through a pipe or channel is broadly 

investigated by many researchers because it has numerous applications in various 

fields of science and engineering. Some of the potential fields are chemical 

engineering (Marrero & Mason, 1972; Kuehn & Goldstein, 1976; Carli & Byers, 

1990), biomedical engineering (Gentile et al., 2008; Vikhansky & Wang, 2011), 

physiological fluid dynamics (Agrawal & Jayaraman, 1994) and environmental 

sciences (Mercer & Roberts, 1990, 1994). Some specific applications of this research 

area are the mixing and transport of drugs or toxins in physiological systems, the 

transport of pollutants in the environment, the dispersion of gaseous tracer in 

chemical engineering and also the chromatographic separations in chemical 

engineering. 

 

One of the main applications that attracted the interest among the researchers is 

the dispersion of solute (medicine) in blood flow through conduits in the 

cardiovascular system (Ananthakrishnan et al., 1965; Ghoshal et al., 1971; Booras & 

Krantz, 1976; Chandra & Agarwal, 1983; Patel & Sirs, 1983; Sharp, 1993; 

Bandyopadhyay & Mazumder, 1999; Azer, 2005; Gentile et al., 2007, 2008; Gentile 

& Decuzzi, 2010). There are many cardiovascular diseases that affect the blood flow 

such as emphysema (the alveoli of the lungs lose their elasticity and may finally 

tear), anemia (loss of red blood cell and hemoglobin in blood) and pulmonary 

hypertension (Scott & Fong, 2009). Therefore, patients with cardiovascular diseases 
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need to take medicine to treat the diseases. Absorption of medicine into the body 

depends on several factors such as the route of administration uptake, the dosage 

form, the amount of medicine, the pH of blood and the solubility of medicine 

(Ritschel & Kearns, 2009). For example, taking capsules or liquids orally is 

recommended when the medicine must be given slowly but frequently. Enzymes in 

the stomach may break down certain slight medicine and it will reduce the 

concentration of the medicine. The medicine becomes less effective and therefore, 

the patients must take the medicine frequently. All these factors are involved in 

determining whether the medicine administered will produce a therapeutic effect, 

yield only subtherapeutic effect or even show toxic effects (Ritschel & Kearns, 

2009). In emergencies such as heart attack or stroke, the patients must receive 

medicine immediately. Thus, the medicine needs to be given directly into the 

bloodstream via intravenous medication. Intravenous is a term that means ―into the 

vein‖. Intravenous medication is given by injection into the vein. The intravenous 

medication is necessary for certain diseases because it has many advantages such as 

an effective dose can be determined and it has faster absorption than the oral 

administration. Since many intravenous medications are therapeutic at low 

concentration, but toxic at high concentration, the study on the shear-augmented 

dispersion of solute at low concentration in blood flow plays an important role in the 

treatment of many cardiovascular diseases (Sharp, 1993).  

 

The main interest of this study is the dispersion of solute in blood flow, 

especially in narrow arteries. The study may help in understanding several 

physiological processes that includes injecting an amount of medicine into the 

bloodstream and to compute the concentration of medicine at some points. To study 
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the solute dispersion in blood flow, the field of fluid mechanics is required to analyze 

the changes of the blood properties when the solute is injected into the bloodstream. 

The development of the mathematical models using the properties of fluid mechanics 

could play an essential role in better understanding the complex phenomena related 

to the dynamics of blood flow. To investigate the dispersion of medicine in the 

bloodstream, mathematical models of blood are required. These mathematical 

models are currently being used for diagnosis and development of arterial diseases, 

surgical planning and therapy, and training system for new treatment procedure 

(Quarteroni & Formaggia, 2004). In this study, the knowledge of fluid mechanics has 

been applied to understand the blood properties in the cardiovascular system, to 

measure the velocity profile, the concentration of solute, the rate of dispersion 

process, the dispersion function and the transport coefficients. The presented results 

of this study may help physiologists in recommending appropriate amount of 

medicine to patients depending on the situation. In addition, the presented results are 

also very useful to pharmaceutical researchers to design more medicines that are 

effective. 

 

In previous studies, many researchers treated the blood as Newtonian fluid and 

certain non-Newtonian fluids such as Casson, power-law and Bingham fluids when 

solving the solute dispersion. However, one of the most important mathematical 

models of blood known as Herschel-Bulkley (H-B) fluid model does not received 

attention of many researchers. Therefore, H-B fluid model will be used in this study 

to improve the description of the results as well as to get a realistic illustration of the 

real flow field. In addition, the previous researchers only investigated certain cases of 

the solute dispersion in blood flow by ignoring the chemical reactions that occurs  
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Figure 1.1: The Wyss Institute’s human breathing lung-on-a-chip. It is a microdevice 

the size of memory stick used for testing drug and toxin (Larkin, 2015). 

 

between the solute and blood or arterial walls. Thus, the effects of the chemical 

reaction between the solute and blood, and the wall reactions to the blood flow will 

be considered in this study. 

 

Hence, in the present study, the H-B fluid model has been used in four problems, 

namely, the steady dispersion of solute, steady dispersion of solute with chemical 

reaction, unsteady dispersion of solute with chemical reaction, and unsteady 

dispersion of solute with the effect of the solute absorption to the wall tissue and 

phase exchange between the blood and the wall. Since some clinical devices such as 

blood oxygenator (Dash et al., 2000) and lung-on-a-chip (Larkin, 2015) (shown in 

Figure 1.1) require the blood to flow through a channel between two parallel flat 

plates or membranes rather than in a circular pipe, we also investigate a solute 

dispersion through a channel between two parallel flat plates. 

 

In order to investigate the dispersion of solute in blood flow, it is important to 

know four contexts of the study, namely the basics of the cardiovascular system, the 
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fluid models, the concepts of fluid mechanics and convective-diffusion equation. 

These four contexts will be discussed in the next sections. 

1.2 Cardiovascular System 

Figure 1.2 shows a diagram representation of the cardiovascular system (The 

human circulatory system, n.d.). The cardiovascular system or also known as 

circulatory system consists of blood vessels, heart and blood. The function of the 

cardiovascular system is to transport the blood throughout the body. The blood as a 

medium will transport the oxygen, nutrients and hormones to all parts of the body 

tissues, and the carbon dioxide and other waste products to be removed from the 

body. Besides, the function of the cardiovascular system is to protect the body 

against infections and diseases. The cardiovascular system is also important to 

regulate body pH and temperature (Mai, 2010) and to help maintain the fluid balance 

within the body (The cardiovascular system – more than a blood pump, n.d.).  

 

The cardiovascular system can be divided into two types of circulatory paths 

which are the pulmonary circulation and the systemic circulation. The pulmonary 

circulation is a short loop which brings the deoxygenated blood from the heart to the 

lungs and back again with the oxygenated blood from the lungs to the heart. 

Meanwhile, the systemic circulation is a system that transmits the oxygenated blood 

from the heart to all parts of our body (organs and body tissues) and returns 

deoxygenated blood back to the heart (Boundless, 2015a). 
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Figure 1.2: A diagram representation of the human cardiovascular system (The 

human circulatory system, n.d.). 

 

1.2.1 The blood vessels 

The blood vessels are the delivery paths (Elad & Einav, 2004). They carry the 

oxygenated blood from the lungs to all parts of the body and bring the deoxygenated 

blood again to the lungs. Blood is pumped through the blood vessels by heart. There 

are three major types of blood vessels named artery, vein and capillary and two sub-

types known as arteriole and venule. Structures of the artery, vein, capillary, venule 

and arteriole are shown in Figure 1.3 (Arteries and veins, n.d.). 

 

The arteries are the blood vessels with the largest diameter that carry the 

oxygenated blood away from the heart to all parts of the body. The largest artery is 

the aorta. Each artery is a muscular tube (consists of muscle) lined with smooth 

tissues. The arteries consist of three layers, namely the intima (the inner layer lined 
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with a smooth tissue called the endothelium), the media (the middle layer consists of 

a smooth muscle) and the adventitia (the outer layer consists of the connective tissues 

with elastic and collagen fibers). The media forces the blood along and helps the 

arteries handle the high pressures from the heart. The thick wall of artery contains a 

strong outer layer to support the pressure during blood circulation. The function of 

the connective tissue is to attach the artery to the adjacent tissues (Arteries and veins, 

n.d.). 

 

On the other hand, veins are the blood vessels that carry the deoxygenated blood 

from various parts of the body towards the heart. The structure of a vein is similar to 

that of the structure of an artery which is also consists of three layers known as the 

intima, media and adventitia. However, the wall of a vein is thinner, less elastic and 

its lumens have a greater diameter than the artery because the blood pressure in vein 

is relatively lower than artery. The veins also have the valves in the lumen to prevent 

the back flow of the blood (Arteries and veins, n.d.).  

 

Capillaries are the blood vessels with the smallest diameter and consist of a 

single wall layer known as endothelium. This one-cell-thick wall carries the blood 

from arteriole to venule. Venules are small blood vessels that connect the capillaries 

to veins, which carry deoxygenated blood back to the atria. Arterioles are small 

blood vessels that connect the capillaries to the arteries, which carry the blood to all 

parts of the body. Figure 1.4 shows the differences between an artery, a vein and a 

capillary (The human circulatory system, n.d.). 
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Figure 1.3: Structures of the artery, vein, capillary, venule and arteriole (Arteries and 

veins, n.d.). 

 

 

Figure 1.4: The differences between an artery, a vein and a capillary (The human 

circulatory system, n.d.). 
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Figure 1.5: The structure of the heart (Boundless, 2015b). 

 

1.2.2 The heart 

The heart is a muscular organ that is located on the left side of the midline of the 

thoracic cavity. It is made out of cardiac muscle and a thin membrane surrounds it 

with two layers called pericardium. The heart acts as a pump that yields the pressure 

gradients. The pressure gradients are required to deliver the blood to all parts of the 

body tissues. The structure of the heart is shown in Figure 1.5 (Boundless, 2015b). 

The heart is divided into four chambers; the upper two chambers (left and right atria) 

and the lower two chambers (left and right ventricles). The atria and ventricles are 

separated by valves. The right valve is called the tricuspid, whereas the left valve is 

called the bicuspid (mitral). These valves control the filling of the heart ventricles 

(Boundless, 2015b). 

 

The vena cava brings the deoxygenated blood into the right atrium. Then, the 

blood flows into the right ventricle. After the right ventricle is full with blood, the 
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blood is pumped out into the right and left pulmonary arteries. Then, the blood 

moves to the lungs for oxygenation. The oxygenated blood from the pulmonary 

circulation enters the left atrium from the pulmonary veins and then the blood is 

pumped into the left ventricle. The blood flows from the left ventricle into the aorta 

to all the body parts (systemic circulation) (Boundless, 2015b).  

 

1.2.3 The blood 

1.2.3(a) The constituents of blood 

Blood is the suspension of mainly three types of corpuscles (particles) in 

continuous medium called plasma. The plasma consists of approximately 91% water 

by weight, 7% plasma protein, and 2% inorganic and organic substances. The 

particles in plasma consist of approximately 96% of erythrocytes or red blood cells, 

3% of leukocytes or white blood cells and 1% of platelets. Erythrocytes contain 

hemoglobin to carry the oxygen around the body. The structure of erythrocytes is 

very simple which the size is approximately 8 m in diameter (Identification of red 

& white blood cells, n.d., para. 2). Leukocytes are the largest particle compared to 

other cells, which are approximately 6-20 m in diameter. The function of 

leukocytes is to defend the body against infections and injuries (Scott & Fong, 2009). 

They attack and produce the antibodies to destroy the bacteria. They also play a 

crucial role in blood transport around the body. In addition, platelets are the smallest 

particle compared to the leukocytes and erythrocytes. They are approximately 2-4 

m in diameter. Although small, they are extremely important in the process of 

blood clotting both in the healing of wounds and formation of thrombi (a fibrinous 

clot formed by an insoluble protein known as fibrinogen) (Identification of red & 

white blood cells, n.d., para. 9).  
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1.2.3(b) Blood rheology 

To describe the blood, we have to understand the blood rheology. Rheology is a 

branch of physics that studies the deformation and flow of object which the fluid 

exhibits as non-Hookean (viscoelastic) and non-Newtonian behavior (Bird et al., 

1960; Merrill, 1969).  

 

Blood shows the anomalous behaviors when it flows through the arteries of 

different diameters (Sankar & Lee, 2008). Two types of anomaly are due to low and 

high shear effects. The blood shows Newtonian fluid’s character when it flows in 

larger arteries (diameter > 3 mm) at a high shear rate (strain rate) or velocity 

gradient. However, when it flows in narrow arteries (diameter < 3 mm) at a low shear 

rate, it exhibits noticeable non-Newtonian fluid behavior (Dash et al., 1996; Tu & 

Deville, 1996; Lee & Smith, 2012; Sankar & Yatim, 2012). The velocity of blood 

can be significantly different when it flows in narrow arteries because of the 

accumulation of the red blood cells at the central region of the arteries (known as the 

plug core region or plug flow region).  

 

The non-Newtonian fluid may exhibit a yield stress. The yield stress is a starting 

point for a new state and it exists when the blood flows from a normal flow to 

abnormal flow. The yield stress arises from the accumulation of red blood cells in the 

flow due to the presence of fibrinogen and globulin at a low shear rate to form three-

dimensional micro-structures called a rouleaux (Sochi, 2014). The rouleaux will 

increase in particle size which causes distortion of the blood flow and higher 

frictional resistance between them, thereby increase in blood viscosity (Mandal, 

2016). Merrill (1969) and Lou and Yang (1993) discovered that the yield stress is 
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positively related to the concentration of fibrinogen protein and the hematocrit level 

(volume percentage of red blood cells in whole blood). Cokelet et al. (1963) 

presented that as the shear rate increases, the rouleaux decreases until the red blood 

cells exist only as individuals and it behaves as a Newtonian fluid.  

 

Since the effect of non-Newtonian fluid on the blood rheology is highly 

dependent on the geometry (either pipe or channel) and the size of the vessels, the 

different non-Newtonian rheological behaviors and hence, the different flow 

modeling approaches should be applied to different parts of the cardiovascular 

system (Sochi, 2014). Some non-Newtonian fluid models have been used to describe 

the blood rheology including Casson fluid (Morris et al., 1987; Fisher & Rossmann, 

2009), Bingham fluid (Lou & Yang, 1993), Oldroyd-B (Perktold et al., 1999), 

Carreau-Yasuda fluid (Gijsen et al., 1999; Fisher & Rossmann, 2009), Ree-Eyring 

fluid (Marcinkowska-Gapińska et al., 2007), Cross fluid (Kim et al., 2008), Quemada 

fluid (Kim et al., 2008), Yeleswarapu fluid (Yilmaz & Gundogdu, 2008), power-law 

fluid (Fisher & Rossmann, 2009; Revellin et al., 2009), H-B fluid (Sankar & Ismail, 

2009), Eyring-Powell fluid (Zueco & Bég, 2009), Kuang-Luo (K-L) fluid (Sriyab, 

2014) and Walburn-Schneck fluid (Malek et al., 2015).  

1.3 The Fluid Models 

Much of the modeling in non-Newtonian fluids concentrates on finding a 

constitutive. The constitutive equation is the relationship which allows stress to be 

calculated as a function of the kinematic variables and ultimately as a function of the 

possibly time-dependent velocity field (Astarita & Marrucci, 1974). The fluid flows 

continuously and always deforms under different shear stress. Shear stress is the 

force per unit area created when a tangential force acts on a surface. Figure 1.6 
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summarizes the relationship between the shear stress and shear rate (velocity 

gradient) for Newtonian and certain non-Newtonian fluids such as dilatant power-

law, pseudoplastic power-law, H-B and Casson fluid models, where   is the shear 

stress, y  is the yield stress,   is the shear rate and n is the power-law index. The 

slope of the shear stress and shear rate is known as a fluid viscosity. Note that the 

viscosity of Newtonian fluid is dependent on the pressure and temperature but 

independent of the shear rate, as presented by the linear relation between shear stress 

and shear rate (Bird et al., 1960; Papaioannou & Stefanadis, 2005). Meanwhile, for 

non-Newtonian fluids, the viscosity depends on the pressure, temperature and shear 

rate (Bird et al., 1960; Papaioannou & Stefanadis, 2005). In addition, this figure 

shows a critical value of the shear stress known as the yield stress y . Casson, H-B 

and Bingham plastic fluids are the fluid models exhibit the yield stress y . The 

aforesaid fluids act as elastic solids (no flow occurs) below a critically applied stress 

( y  ) before the fluids begin to flow (Bird et al., 1960; Callahan, 2011). Moreover, 

H-B and power-law fluids exhibit the power-law index n. The behavior when 1n   is 

called shear thinning (fluid’s viscosity decreases with increasing shear stress) and 

when 1n   is called the shear thickening (fluid’s viscosity increases with increasing 

shear stress). When 1n  , H-B fluid model will reduce to Bingham plastic fluid 

model and power-law model will reduce to Newtonian fluid model. 
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Figure 1.6: The relationship between the shear stress and shear rate for Newtonian 

and certain non-Newtonian fluids. 

 

1.3.1 Newtonian fluid model 

A Newtonian fluid model is a fluid for which the shear stress is linearly 

proportional to the shear rate (Cengel & Cimbala, 2006). The constitutive equation 

for this fluid is described by the Newton’s law of viscosity, which is represented as 

(Papaioannou & Stefanadis, 2005) 

 ,





   (1.1) 

where   is the shear stress,   is the shear rate and   is the dynamic viscosity with 

dimension 1 1,ML T   where M is the dimension of mass, L is the dimension of length 

and T is the dimension of time.  
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Shear stress   

Casson fluid 

Herschel-Bulkley fluid   

Bingham plastic fluid 

Herschel-Bulkley fluid   
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1.3.2 Non-Newtonian fluid models 

In Eq. (1.1), the relationship between the shear stress and the shear rate is 

assumed to be linear. However, not all shear stress and shear rate obey this 

relationship for certain cases. The non-Newtonian fluid models show the non-linear 

relationship between the shear rate and shear stress as stated in Sochi (2014) which 

do not obey Newton’s law of viscosity. The general form of the constitutive equation 

for non-Newtonian fluid model is given by (Astarita & Marrucci, 1974) 

   ,f     (1.2) 

where  f   denotes the flow curve illustrating the nature of a certain fluid. Some of 

the most generally used non-Newtonian fluid models are the power-law, Bingham, 

Casson and H-B fluid models (Scott, 2005). The viscosity of non-Newtonian fluid 

models depends strongly on the shear rate and known as shear viscosity (Owens & 

Philips, 2002). These fluid models will be discussed in the next section. 

 

1.3.2(a) Power-law fluid model 

The fluid model most generally used to describe the flow behavior of non-

Newtonian fluid is a power-law fluid (Kucaba-Piętal, 2005). This fluid model is the 

generalization of Newtonian fluid model that introduces the power-law index n. The 

constitutive equation of power-law fluid model is (given by Sankar and Hemalatha 

(2006) when the yield stress of H-B is equal to zero) 

 ,
n

P





   (1.3) 

where   1n n

P      is the viscosity of power-law fluid with dimension 

 1 2 .
n

ML T T   Note that the viscosity of this fluid P  is a function of the shear rate 

(Bird et al., 1960). A derivation of viscosity of power-law fluid is given in    
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Appendix A. Eq. (1.3) can be reduced to the constitutive equations of Newtonian 

fluid when n = 1 (Bird et al., 1960).   

 

1.3.2(b) Bingham plastic fluid model 

A simple generalization of Newtonian fluid model that introduces the yield stress 

y  is the Bingham plastic fluid model. The viscosity of Bingham plastic fluid 

exhibits a linear relationship between shear stress and shear rate as Newtonian fluid. 

The constitutive equation of Bingham plastic fluid model is (given by Sankar and 

Hemalatha (2006) when the power-law index of H-B is equal to one) 

 
 

1
  if ,

0 if ,

y y

B

y

   


 


 

 
 

   (1.4) 

where  B y       is the viscosity of Bingham fluid with dimension 1 1ML T   

(Bird et al., 1960). A derivation of viscosity of Bingham fluid is given in     

Appendix A. Eq. (1.4) indicates that the normal shear flow (outer flow) occurs in the 

region when ,y   while the unshear flow (solid-like fluid or plug flow) occurs in 

the region when y  . Eq. (1.4) can be reduced to the constitutive equations of 

Newtonian fluid when 0y   (Bird et al., 1960). 

 

1.3.2(c) Casson fluid model 

The Casson fluid model extends the power-law and Bingham fluid models. The 

Casson fluid consists of the yield stress similar to that of the Bingham fluid model. 

The constitutive equations of the Casson fluid model are (Sankar & Lee, 2011) 
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 

21
if ,

0 if ,

y y

C

y

   


 


 

 
 

 (1.5) 

where 2C y y       
 
is the viscosity of Casson fluid with dimension 

1 1.ML T   A derivation of viscosity of Casson fluid is given in Appendix A. The 

Casson fluid model reduces to the Newtonian fluid model when 0.y   Similar to 

Eq. (1.4), Eq. (1.5) can be reduced to the constitutive equations of Newtonian fluid 

when 0y   (Bird et al., 1960). 

 

1.3.2(d) Herschel-Bulkley (H-B) fluid model 

A simple generalization of Bingham plastic fluid model that introduces the 

power-law index n  is the H-B fluid model. The constitutive equation of H-B fluid 

model is given as follows (Sankar & Hemalatha, 2006): 

 
 

1
  if ,

0   if  ,

n

y y

H

y

   


  


 

 
  

  (1.6) 

where    1 1
n

n n

H y        is the viscosity of H-B fluid with dimension 

 1 2 .
n

ML T T   A derivation of viscosity of H-B fluid is given in Appendix A. Eq. 

(1.6) can be reduced to the constitutive equations of Newtonian fluid when 1n   and 

0y  , of power-law fluid when 1n   and 0y   and of Bingham fluid when 1n   

and 0.y    
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1.3.2(e) The advantages of Herschel-Bulkley (H-B) fluid 

H-B and Casson fluid models are the non-Newtonian fluid models with yield 

stress. They are generally used in the studies of blood flow through narrow arteries 

(Siddiqui et al., 2009; Sankar & Lee, 2011). This section presents some reviews 

regarding the H-B and Casson fluid models. Scott Blair (1966) propounded that the 

H-B fluid model is easier to explain in most of blood flow cases. Scott Blair and 

Spanner (1974) and Tu and Deville (1996) reported that the blood behaves like 

Casson fluid only at moderate shear rate in smaller diameter arteries, whereas H-B 

fluid model can still be used at low shear rate of flow in very narrow arteries when 

the yield stress is high. Chaturani and Samy (1985) pointed out that when blood 

flows in arteries of diameter 0.095 mm, blood behaves like H-B fluid rather than 

power-law or Bingham fluids.  

 

 Iida (1978) reported that the velocity profile in the arterioles having diameter 

less than 0.1 mm can be generally explained by Casson and H-B fluid models when 

the yield stress is high. However, the velocity profile in the arterioles whose 

diameters are less than 0.065 mm does not conform to the Casson fluid model, but 

the blood could still be explained by H-B model. Iida (1978) reported that the 

residual variation which is the sum of the squares of the deviations of the observed 

values of stress from the estimated values of the stress is lower for H-B fluid model 

compared to Casson fluid model. In addition, Casson fluid’s constitutive equation 

has only one parameter, namely the yield stress, whereas the H-B fluid’s constitutive 

equation has one more parameter, namely the power-law index n. Thus, detailed 

information about blood flow properties would be retrieved using the H-B fluid 
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model rather than Casson fluid model (Sankar & Lee, 2009). H-B fluid model is also 

valid in arteries of diameter up to 1.3 mm.  

 

It is more appropriate to represent blood flow as H–B fluid model rather than 

Casson fluid model when it flows through smaller diameter arteries. Since H-B fluid 

model has several advantages over Casson fluid model through narrow arteries, it 

will be very useful to study the dispersion of solute in blood flow by treating the 

blood as H-B fluid model in this study through narrow arteries. The presented results 

of H-B fluid model can be reduced to Newtonian, power-law and Bingham fluid 

models. Thus, in this study, some of the results of H-B fluid are compared with 

Newtonian, power-law, Bingham and Casson fluid models from the previous 

literature. The study of H-B fluid in the solute dispersion can present better results. 

Comparing all the fluid models can be useful to verify which model is better when 

the solute disperses in blood flow through narrow arteries at low shear rate. 

1.4 Basic Concepts of Fluid Mechanics 

In order to study the solute dispersion in blood flow, it is important to know the 

basic concepts of fluid mechanics in the blood rheology. Hence, this section presents 

the Cartesian and cylindrical coordinate systems, type of flows, governing equations 

and dimensional analysis that are applicable to the study of blood rheology.  
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(a) 

 

 

 

(b) 

Figure 1.7: Coordinate of the point P for (a) Cartesian and (b) cylindrical coordinate 

systems (modified from Kay, 1964). 
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1.4.1 Cartesian and cylindrical coordinate systems 

In this section, the two main systems of coordinates used in this study, namely 

Cartesian and cylindrical coordinate systems are presented. Figures 1.7(a) and (b) 

depict the coordinate of the point P for Cartesian and cylindrical coordinates, 

respectively. The coordinates in Cartesian coordinate system in Figure 1.7(a) are 

denoted by  , ,x y z  and the unit vectors along the ,x y  and z directions are ˆ ˆ,x ye e  

and ˆ
ze , respectively. Meanwhile, for the cylindrical coordinate system in Figure 

1.7(b), the position of a point P is given by the radius of the cylinder r  with respect 

to the axis z  and the angle   to position the radius with respect to a reference 

direction and the height z . Thus, the coordinates in cylindrical coordinate system 

are given by  , ,r z  and the unit vectors along the ,r   and z directions are 

ˆ ˆ,re e  and ˆ
ze , respectively. Note that, in this coordinate system, the unit vectors ˆ

re  

and ê  change with the point in space. The Cartesian and cylindrical coordinate 

systems are related by (Kay, 1964)  

 cos ,x r     (1.7) 

 sin ,y r     (1.8) 

 ,z z    (1.9) 

whereas the inverse transformations are 

 
2 2 ,r x y     (1.10) 

 1tan ,
y

x
     (1.11) 

and z  as in Eq. (1.9).  

 



22 

 

1.4.2 Types of flow 

1.4.2(a) Steady and unsteady flows 

Steady flow occurs when the conditions and properties associated with the flow 

field do not change with time at various points of the flow field, where the flow field 

represents the characteristics of the fluid such as velocity, density, pressure and so 

on. The example of the steady flow is water being pumped through a fixed system at 

a constant rate. However, the flow is said to be unsteady when the conditions and 

properties at any points change with time. The example of the unsteady flow is water 

being pumped through a fixed system at an increasing rate (Swarup, 2000). 

 

1.4.2(b) Laminar and turbulent flows 

In fluid mechanics, some flows are smooth and orderly while others are rather 

chaotic. The researchers distinguish the highly ordered fluid motion characterized by 

smooth layers of fluid as laminar flow. The word laminar comes from the movement 

of adjacent fluid particles together in ―laminates‖. For example, the flow of high 

viscosity fluids such as oils at low velocities is normally laminar. On the other hand, 

the highly disordered fluid motion is called the turbulent. For instance, the flow of 

low viscosity fluids at high velocities such as air is typically turbulent. In addition, 

the transition from laminar to turbulent flow does not occur suddenly; rather, it 

occurs over some region in which the flow fluctuates between laminar and turbulent 

flows before it becomes fully turbulent. A flow between the laminar and turbulent is 

called the transitional flow. The flow depends mostly on the ratio of inertial forces to 

viscous forces in the fluid. This ratio is called the Reynolds number and the 

expression is given by (Cengel & Cimbala, 2006) 

 
inertial forces

,
viscous forces

mu L
Re




     (1.12) 
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where   is the density, 
mu  is the mean velocity (average velocity), L  is the length 

of conduits and   is the fluid viscosity. The flow is laminar when 2300Re < , 

transitional when 2300 4000Re   and turbulent when 4000.Re >  At a small and 

moderate Re, the flow is laminar as viscous forces are large enough to control the 

fluctuation of fluid and keep the velocity to be constant. While at large Re, the flow 

is turbulent as viscous force cannot control the rapid fluctuation of fluid (Cengel & 

Cimbala, 2006). 

 

1.4.2(c) Incompressible and compressible flows 

A flow is categorized as being compressible or incompressible, depending on the 

level of variation of density during flow. A flow is said to be incompressible if the 

density remains nearly constant throughout. Thus, the volume of every part of fluid 

remains unchanged over the course of its motion when the flow is incompressible 

(Cengel & Cimbala, 2006). Meanwhile, the flow is said to be compressible when the 

fluid changes with the density. In this study, the density of blood is essentially 

constant. Therefore, the incompressible flow will be considered in this present study. 

 

1.4.2(d) Fully-developed flow 

 

Figure 1.8: The development of velocity profile in a circular pipe (modified from 

Cengel & Cimbala, 2006). 
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Consider the steady flow of a fluid through a circular pipe. Figure 1.8 depicts the 

development of velocity profile in a circular pipe using a cylindrical coordinate 

system, where u  is the fluid velocity, 
ep  is the pressure at the entrance region, 

1p  

and 
2p
 
 are the pressures at the fully developed region, eL  is the entrance length, L  

is the fully-developed length and D  is the diameter of a circular pipe. This figure 

shows two profiles, which are developing velocity and fully-developed velocity 

profiles. The flow is two-dimensional in the entrance region of a circular pipe since 

the velocity changes in both the r  and z  directions. Meanwhile, the flow is said to 

be a fully-developed and becomes one-dimensional when the velocity profile 

develops fully and remains unchanged after some distance from the inlet if the 

circular pipe is sufficiently long, where 0 05eL . ReD  for laminar flow and 

1 41 359eL . Re D  for turbulent flow (Cengel & Cimbala, 2006). Since the velocity is 

varies in the radial r  direction but is the same at any axial z  direction and 

symmetric at any azimuthal angle   direction, thus, the velocity is assumed 

negligibly small in the   and z  directions (Cengel & Cimbala, 2006).   

 

1.4.2(e) Plane Poiseuille flow 

A plane Poiseuille flow or known as a channel flow is the flow between two 

stationary parallel flat plates, where the fluid is forced by pressure gradient in the z  

direction. The plane Poiseuille flow occurs when the fluid flows from high pressure 

to low pressure, applying a shear stress on the walls in the direction of flow. The 

pressure gradient dp dz  in plane Poiseuille flow is constant everywhere, where p  is 

the pressure of the fluid. Figure 1.9 shows the velocity profile  u x  of a plane 

Poiseuille flow, where h  is the semi-width of a channel,  dp dz  is the pressure gra- 


