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KERADIOAKTIFAN TABII DAN KEPEKATAN RADON DALAM 

TANIH DAN AIR DARIPADA KAWASAN PENANAMAN DAN BUKAN 

PENANAMAN DI SEBERANG PERAI, MALAYSIA 

6        

7 ABSTRAK 

Kesejahteraan manusia dikompromi dan terjejas apabila lebih terdedah kepada 

radionuklid tabii (226Ra, 232Th, 40K) dalam tanih dan air dan gas radon (222Rn) dalam 

tanih. Tesis ini berusaha untuk memperoleh data asas kepekatan radionuklid yang 

terdapat secara tabii (226Ra, 232Th, 40K), dos radiologi dan indeks bahaya radionuklid 

ini. Empat puluh sampel tanih penanaman dan tiga puluh sampel tanih bukan 

penanaman, dan tiga puluh dua sampel air yang digunakan untuk pengairan dan air 

paip diperoleh dari Seberang Perai, Malaysia. Sampel tersebut dinilai menggunakan 

pengesan Germanium ketulenan tinggi (HPGe); pengesan (nombor model GEM-

M7040P4, Canberra, Inc.) memperoleh kecekapan relatif 40% dan resolusi tenaga 1.9 

keV pada 1.3322 MeV daripada 60Co. Selain itu, kepekatan gas radon (222Rn) dan 

kadar ekshalasi radon dinilai bagi sampel tanih penanaman dan bukan penanaman 

dengan menggunakan Monitor Pengesan Radon (CRM) dan Pengesan Trek Nuklear 

(CR-39 NTDs). Pertamanya, purata aktiviti kepekatan 226Ra, 232Th dan 40K dalam 

tanih penanaman dinilai sebanyak 85.01 ± 42.14, 59.09 ± 22.75 dan 384.86 ± 216.28 

Bq kg-1. Manakala, dalam tanih bukan penanaman  didapati sebanyak 54.21 ± 34.15, 

55.19 ± 47.22 dan 276.87 ± 203.43 Bq kg-1, masing-masing. Oleh itu, purata 

kepekatan radionuklid (226Ra, 232Th, 40K) didapati lebih tinggi dalam tanih penanaman 

berbanding tanih bukan penanaman. Walau bagaimanapun, beberapa tanih yang bukan 

penanaman telah menunjukkan bacaan yang tinggi di Kampung Mengkuang, Kubang 
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Semang di Seberang Perai Tengah sepadan dengan julat bacaan yang dilaporkan untuk 

negara-negara lain di seluruh dunia. Selain itu, indeks bahaya luaran (Hex) 

dianggarkan melebehi satu untuk tanih bukan penanaman di Kampung Mengkuang, 

Kubang Semang; sebaliknya, bacaan adalah kurang daripada satu. Keduanya, 

kepekatan radon berubah dari 18 Bq m-3 hingga 1381.48 Bq m-3, setanding dengan 

nilai di seluruh dunia. Tambahan pula, kadar ekshalasi radon dari kedua-dua tanih 

penanaman dan bukan penanaman dianalisis dengan menggunakan CRM dan CR-39 

NTD dan didapati berada di bawah had keselamatan 57.6 Bq m-2 j-1. Secara 

perbandingan, purata aktiviti kepekatan 226Ra, 232Th dan 40K di perairan (sungai, 

saliran, tasik, air paip) dinilai sebanyak 1.12 ± 0.46, 3.14 ± 1.13 dan 136.56 ± 19.07 

Bq l-1 serta kepekatan radionuklid (226Ra, 232Th, 40K) dalam semua jenis air didapati 

lebih rendah berbanding nilai yang sama di seluruh dunia. Walau bagaimanapun, nilai 

dos berkesan tahunan untuk pengingesan (AEDingest.) dalam air paip didapati lebih 

tinggi berbanding  dos berkesan tahunan yang dicadangkan bagi konsumsi air 

minuman sebanyak 0.1 mSv y-1 seperti yang disyorkan oleh IAEA dan WHO. 

Akhirnya, penemuan ini memberikan tinjauan komprehensif tentang kesan radionuklid 

yang terdapat secara tabii di dalam tanih dan air dan kesan kepekatan radon di udara 

terhadap kesihatan penduduk di kawasan Seberang Perai. Dapatan ini membantu 

mengelakkan risiko kesihatan daripada sinaran dengan memilih perumahan yang 

sesuai, tanah pertanian dan bahan binaan yang sesuai. Oleh itu, adalah disyorkan 

bahawa beberapa tanih yang digunakan dalam aktiviti pertanian dan bahan binaan 

harus dipilih apabila indeks bahaya luaran (Hex) adalah kurang daripada satu. Juga, air 

adalah selamat selepas pemprosesan dan penurasan, dan sesuai untuk kegunaan rumah 

dan keperluan industri. 
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NATURAL RADIOACTIVITY AND RADON CONCENTRATION IN 

SOIL AND WATER FROM NON-CULTIVATED AND CULTIVATED AREA 

OF SEBERANG PERAI, MALAYSIA 

 

8 ABSTRACT 

Human well-being is compromised and jeopardized when over exposed to 

natural radionuclides (226Ra, 232Th, 40K) in soil and water and radon gas (222Rn) in soil. 

This thesis endeavors to acquire fundamental data of naturally occurring radionuclides 

concentrations (226Ra, 232Th, 40K), radiological doses and hazard indexes of these 

radionuclides. Forty samples of cultivated soil and thirty samples of non-cultivated 

soil, and thirty-two samples of water utilized for irrigation and tap water were 

acquired from Seberang Perai, Malaysia. The samples were evaluated using High 

Purity Germanium detector (HPGe); the detector (model no. GEM-M7040P4, 

Canberra, Inc.) obtained 40% relative efficiency and 1.9 keV energy resolution at 

1.3322 MeV of 60Co. Additionally, radon gas (222Rn) concentrations and radon 

exhalation rates were evaluated for both non-cultivated and cultivated soils samples by 

employing a Continuous Radon Monitor (CRM) and Nuclear Track Detectors (CR-39 

NTDs). Firstly, the average concentrations activity of 226Ra, 232Th and 40K in 

cultivated soils were evaluated to be 85.01  ± 42.14, 59.09 ± 22.75 and 384.86 ± 

216.28 Bq kg-1, while in non-cultivated soil were found to be 54.21 ± 34.15, 55.19 ± 

47.22 and 276.87 ± 203.43 Bq kg-1, respectively. Thus, the average concentrations of 

radionuclides (226Ra, 232Th, 40K) were exhibited higher in cultivated soils than non-

cultivated soils. However, some non-cultivated soils have been manifested high in 

Kampung Mengkuang, Kubang Semang in Seberang Perai Tengah corresponding with 
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the range of those reported for other countries across the world. Moreover, the external 

hazard index (Hex) is estimated above unity from non-cultivated soils in Kampung 

Mengkuang, Kubang Semang; otherwise, it is registered below unity. Secondly, radon 

concentrations varied from 18 Bq m-3 to 1381.48 Bq m-3, which were comparable to 

the values worldwide. Furthermore, radon exhalation rates from both cultivated and 

non-cultivated soils were analyzed by using CRM and CR-39 NTDs and found to be 

below the safety limit of  57.6 Bq m-2 h-1. Comparatively, the average concentrations 

activity of 226Ra, 232Th and 40K in waters (river, stream, lake, tap) were evaluated to be 

1.12 ± 0.46, 3.14 ± 1.13 and 136.56 ± 19.07 Bq l-1 as well as the concentrations of 

radionuclides (226Ra, 232Th, 40K) in all types of water were found lower compared to 

the corresponding values worldwide. However, the values of annual effective doses 

for ingestion (AEDingest.) in tap water were found higher than the recommendation 

annual effective dose for ingestion of drinking water of  0.1 mSv y-1 as recommended 

by the IAEA and WHO. Finally, the findings gave a comprehensive survey of the 

effect of naturally occurring radionuclides in soil and water and the impact of radon 

concentrations in the air on people’s health in Seberang Perai region. This finding 

helps to avoid the health risks from radiations by selecting suitable housing, arable 

land and suitable building materials. Thus, it is recommended that some soils used in 

agriculture activities and building materials should be opted when the external hazard 

index (Hex) is less than unity. Also, water is safe after processing and filtration, and 

appropriate for household use and industrial purposes.  
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1 CHAPTER 1: INTRODUCTION  

1.1 Background  

Knowledge of radioactivity contents in various types of soils and water forms 

an integral part of Health Physics. According to a report by Healthy Environments 

and Consumer Safety, radionuclides are found in the environment as naturally 

occurring radionuclides and as byproducts of artificial radionuclides                

(Health Canada, 1995). Both soils and water act as the primary sources of the 

Naturally Occurring Radioactive Materials (NORM). These radioactive materials can 

be categorized into three groups, which comprise of primordial or terrestrial, 

cosmogenic and anthropogenic nature (UNSCEAR, 1988). There is a high potential 

of these materials to contribute appreciably to the dose received by humans. This 

dose could occur through internal exposure as a result of their ingestion or inhalation, 

or external exposures (Eisenbud & Gesell, 1997). Thus, it is important to incorporate 

appropriate methods in minimizing the hazardous effects of these high quantities of 

these radionuclides (Herranz, Abelairas, & Legarda, 1999; Sorg, 1990).   

Natural radionuclides particularly those found in decay chains of 238U and 

232Th are highly radiotoxic. Notable among these is 226Ra and 228Ra.  Comparatively, 

several human activities have introduced artificial radionuclides. These activities 

include nuclear power plants, nuclear weapons testing and manufacture and use of 

radioactive isotopes in medicine and industry (Al-Qasmi et al., 2016). In addition to 

these activities such as mining, milling and processing of uranium ores and mineral 

sand, manufacture and using of fertilizer, burning of fossils fuels and metal refining 
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have increased the amounts of NORM in the environment to levels that pose a threat 

to human health (Pujol & Sanchez-Cabeza, 2000). 

Fertilizer industry relies on materials such as phosphates. There are high 

quantities of natural radionuclides, such as uranium and thorium, originate from 

phosphate rocks. Thus, most of commercial fertilizers include large concentrations of 

natural radionuclides. These fertilizers are used in the soils to raise the level of 

fertility in plants, leading to an increase in the abundance of plants and their 

productivity (Ghosh et al., 2008). Therefore, plants take up a significant amount of 

the radioactive substance that ends up being consumed by man. Regarding external 

and internal exposure to phosphate rocks and fertilizers, human is exposed externally 

to gamma rays from phosphate rocks and fertilizers. Comparatively, internal 

exposure involves the ingestion of food contaminated with radioactive materials and 

inhalation of radon gas and fertilizer dust, can affect human by alpha particles and 

gamma rays. For instant, farmers are exposed to the dust of phosphate fertilizers in 

agricultural land by direct inhalation (Ahmed & El-Arabi, 2005; Scholte & 

Timmermans, 1996). 

People inhaling radioactive gasses are at high risk in respect to their health. 

These gasses headed by radon gas which originates in soils and rocks beneath the 

houses, building materials, underground and surface water and natural gas. The 

radon (222Rn) produced in the uranium (238U) series can decay into short-lived 

daughters (218Po and 214Po) by half-life (T1/2 = 3.82 days). Radon emits alpha 

particles during its decay and is considered as a notable source of lung cancer for 

non-smokers in the world. Most of the radon gas is out of the human body before it 

decays during inhalation and exhalation processes and that under a very short period. 
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The problem lies in the products of radon and their depositions in the lung, 

discharging energy in the form of alpha particles. Alpha particles could cause 

double-stranded DNA breaks or generate free radicals that can also destruct the DNA 

and thus cause lung cancer (Brüske-Hohlfeld, 2009; Steck, 2005). 

The interaction of the human body with radiation from external and internal 

sources leads to biological and health effects. The external and internal exposures 

cause two kinds of health effects resulting from changes in atoms and molecules of 

body tissues. One of the effects occurs in which the severity of the tissue damage is 

proportional to the dose and the other, which a threshold dose exists below which 

they do not occur. These later show up as clinical symptoms. The nature and severity 

of these symptoms and the rate at which they appear depends on the amount of 

radiation absorbed and the rate at which it is received. Injuries resulting from 

radiation can be divided into two classes, somatic and genetic effects. In somatic 

effects, damages appear in the irradiated person while genetic effects arise only in 

the offspring of the irradiated person. This occurs as a result of radiation damaging 

germ cells in the reproductive organs (the gonads)(Dalci, Dorter, & Guclu, 2004). 

Recently, reports highlight on high-level exposure arising from natural 

radionuclides particularly 238U, 232Th, and 40K. This level is based on an observation 

of their annual contributions to the accumulated radiological dose (Chambers, 2015). 

Investigations on terrestrial natural radiation in soils, water, and radon gas impacts, 

have received significant reasons interest globally (Ahmad, Jaafar & Khan, 2014;  

Al-Ghamdi, 2014; Almayahi, Tajuddin & Jaafar, 2012b; Bleise, Danesi & Burkart, 

2003; Dusane, Mishra, Sahu & Pandit, 2014; Saleh, Ramli, Alajerami & Aliyu, 

2013). However, limited reports have been supported in Seberang Perai in Penang to 
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track the source and nature of minerals causing enhanced levels of natural radiation 

in both soils and water. Alsaffar et al. (2015) found natural radioactivity in soils used 

for rice plant in Seberang Perai with the maximum values of 208.51 Bq kg-1 for 

226Ra, 194.13 Bq kg-1 for 232Th and 943.11 Bq kg-1 for 40K and minimum values of 

49.4 Bq kg-1 for 226Ra, 68.22 Bq kg-1 for 232Th and 138.31 Bq kg-1 for 40K    

(Alsaffar, Jaafar, Kabir & Ahmad, 2015). 

1.2 Problem Statement 

The external exposure from gamma rays from soil and internal exposure from 

alpha particles from food, water and inhaling radon gas in air are two factors to cause 

cancer like skin and lung cancer. Lung cancer is the common killer in Malaysia 

because of radon gas (Almayahi et al., 2012a). Study about radioactivity of soil and 

radon concentrations has been conducted in Pulau Pinang, however the study is 

restricted to the part of Penang in the territory. The results of the study were high in 

concentrations of the radionuclides and radon concentration in Penang Island. Also, 

the geological nature of Seberang Perai contain the rocks which might have 

radioactivity similar to other studies in Malaysia (Sanusi et al., 2014). These reasons 

drew the attention of the analyst to concentrate on other part of Penang state, which 

is Seberang Perai. The research novelty is based on the study of concentrations of 

radionuclides in non-cultivated soil and cultivated soil and their association with the 

concentration of radon in Seberang Perai to bridge the gap of radiological data in this 

region and protect people’s health. 

 Natural radionuclides concentrations were observed to be higher in both 

cultivated and non-cultivated soils collected from northern parts of Malaysian 
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Peninsula especially in Penang and Cameron Highlands (Almayahi, Tajuddin & 

Jaafar, 2012a; Murtadha Sh Aswood, Jaafar & Bauk, 2013). These areas had some 

common factors such as practicing agricultural activities using different types of 

fertilizers to improve the qualities of the crops. Extensive use of fertilizer leads to 

water pollution, which ends up affecting people’s health in the case that they 

consume the polluted water. Additionally, the accumulation of radionuclides in both 

soils and water act as a potential source of environmental pollution. Therefore, it is 

essential to measure concentrations of these radionuclides with the aim of protecting 

individuals’ health (Murtadha Sh Aswood et al., 2013).      

It is an essential to think of the contributions of the earth crust and geological 

areas regarding radionuclides. Water sources are contaminated directly through the 

earth’s crust containing radionuclides like 238U and 232Th, and their daughters like 

226Ra and 228Ra, respectively. The natural non-series radionuclide 40K is also found. 

Artificial pollution of these water sources occurs through radioactive wastes. 

Therefore, natural radionuclides are highly toxic and contribute to the doses received 

by humans through both internal and external exposure (Eisenbud & Gesell, 1997). 

Thus, this research, through investigation addresses the following problems: 

a. What is the level of NORM in both non-cultivated and cultivated soils, and      

water? 

b. By using active (CRM) and passive (CR-39) techniques, what is the level 

of radon concentrations in both non-cultivated and cultivated soils? 
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1.3 Objectives of Research  

This study involves the following objectives: 

1. To measure concentrations of natural radionuclides 226Ra, 232Th and 40K in 

soils (non-cultivated soil and cultivated soil) and water (rivers, streams, 

lakes, taps) in Seberang Perai, Penang. 

2. To measure concentrations and exhalation rates of radon gas 222Rn in soils 

(non-cultivated soil and cultivated soil). 

3. To compare the data obtained to the international world averages and other 

countries. 

1.4 Scope of Research 

The research will focus on measuring concentrations and distributions of 

natural radionuclides 226Ra, 232Th, and 40K in soils and water from different locations 

in Seberang Perai, Penang. Emphasis is to assess the level of background radiation 

arising from these radionuclides and fill the gap of studies in Seberang Perai and 

provide the data for protecting people’s health. Also, the comparison between non-

cultivated and cultivated soils was employed to study the impact of fertilizer to 

increase the radioactivity in non-cultivated soil. A hyper pure Ge-detector will be 

used to measure concentrations and distributions of the natural radionuclides. The 

study is important as it provides 222Rn concentration in different soils samples and 

the exhalation rate using a Continuous Radon Monitor (CRM) and CR-39 detectors.  
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1.5 Outline of Thesis 

This thesis comprises of five chapters covering different sections. Chapter 1 

focuses on the general introduction of natural radionuclides, problem statement and 

objectives. At the end of Chapter 1 is the scope of research and an outline of the 

thesis. Chapter 2 is a summary of sources of background radiations, radon emanation 

and exhalation and exposure pathways as well as literature review in natural 

radionuclides in soils and water, and radon in soils. A description of the study area, 

locations and preparation of samples, measurement of natural radionuclides using 

HPGe in soils and water and measurement of radon concentration in soils using 

CRM and CR-39 detectors are comprehensively discussed in Chapter 3. Chapter 4 

provides a summary of the results and discussion. Lastly, Chapter 5 covers the 

conclusion and future work relating to the research. 
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2 CHAPTER 2 : THEORETICAL BACKGROUND AND 
LITERATURE REVIEW 

 

2.1 Sources of Natural Radionuclides Radiations 

Natural radionuclides radiations can be classified into three categories 

according to their behavior on the environment. This includes radiations resulting 

from the natural radionuclides on the earth's surface (the terrestrial radiation), 

radioactivity in water and airborne radioactivity. 

2.1.1 Terrestrial Radiation 

Terrestrial radiation occurs naturally through the presence of NORM within 

the earth’s crust. Terrestrial radiation includes primordial radionuclides of two types; 

the series primordial and non-series radionuclides (Haber, 2015). The series 

primordial radionuclides contain mainly 238U series, 232Th series and Actinium (235U) 

series. The 238U series starts with 238U and transferring to 226Ra and then ends with 

stable element 206Pb. The process is facilitated by the decaying activity of alpha, and 

beta particles alongside gamma radiations as illustrated in Figure 2.1.  The relative 

abundance of 238U is found to be  99.3 % in terrestrial sources. Similarly, 232Th series 

starts with 232Th, proceeding to 228Ra and ends with a stable element 208Pb through 

alpha and beta decays alongside gamma radiations. A clear presentation of the events 

that covers this process is presented in Figure 2.2. Relative abundance of 232Th is 

almost 100% in terrestrial sources compared to that of 228Th, which is 1.35×10-8 %. 

The 235U series starts with 235U and ends with stable element 207Pb through alpha and 

beta decays alongside gamma radiations as in Figure 2.3. The relative abundance of 

235U is 0.7 % in terrestrial sources (IAEA, 1990). The concentration of uranium and 
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thorium varies considerably depending on the type of rock formation. These 

elements are present in water and soils of the earth’s strata in small quantities. A high 

level of uranium in phosphate rocks corresponds to its high concentrations in 

commercial phosphate fertilizer. On a similar account, shales containing organic 

matter are found to be highly radioactive (Boyle, 2013; Hamilton, 1989). 

The most abundant groups of 40K and 87Rb comprise the non-series 

primordial radionuclides. Other members included in this group are 50V, 142Ce, 209Bi, 

190Pt, and 115In. These members contain no dosimetric significance. Additionally, 

several of these elements decay directly into a stable nuclide. The radionuclide 40K 

occurs only to the extent of 0.0118% isotopic abundance in natural potassium. Its 

character in being ubiquitous in living systems influences its contribution to as much 

as one-third of the external terrestrial and internal dose from natural background. 

Comparatively, the isotopic abundance of 87Rb is found to be higher than that for 

40K, although its contribution to dose is limited by its relative scarcity within the 

earth’s crust (Alpen, 1997).  

     Other terrestrial radionuclides are found to exist in low levels; therefore, 

limiting their contribution to dose in humans is minimal. These radionuclides include 

the examples of; 235U series, 138La, I47Sm, and 176Lu. 
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Figure 2.1: Uranium-238 decay series. 
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Figure 2.2: Thorium-232 decay series. 
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Fig 2.3: Thorium-232 decay series (Malain, 2011) 

𝑇ℎ90
232  (1.4×1010 y) 

α Decay 

𝑅𝑎88
228  (5.75 y) 

𝐴𝑐89
228  (6.15 h) 

𝑇ℎ90
228  (1.9131 y) 

𝑅𝑎88
224  (3.66 d) 

𝑅𝑛86
220  (55.6 s) 

𝑃𝑏82
212  (10.64 h) 

𝐵𝑖83
212  (60.55 m) 

𝑇𝑙81
208  (3.053 m) 𝑃𝑜84

212  (0.298 µs) 

𝑃𝑏82
208  (Stable) 

𝑃𝑜84
216  (0.145 s) 

β- Decay 

β- Decay 

α Decay 

α Decay 

α Decay 

α Decay 

35.94% α Decay 

α Decay 

β- Decay 

β- Decay 

64.06% β- Decay 



 12 

Figure 2.3: Uranium-235 decay series. 
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Fig 2.2: Uranium-235 decay series (Malain, 2011) 
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2.1.2 Radioactivity in Water 

Abundance and properties of radionuclides and their behavior in the 

environment appear as influential factors on the ecosystem. Physical, chemical and 

biological mechanisms of radionuclides in the environment affect their abundance 

and behavior. The influence of these factors is more pronounced in aquatic 

environments (Buesseler et al., 2012). Most of the radionuclides released in an 

aquatic system are readily adsorbed on the outer surface suspended particulates. The 

fast rate of absorption is a result of their low water solubility that also facilitates their 

extraction from the water column through sedimentation process. A good example of 

these radionuclides is isotopes of 131Ce, 54Mn, 55Fe, 57Co and the actinides including 

thorium and uranium. Other elements in this category are observed to remain in 

solution form in water. These elements include 85Sr, 51Cr and 125Sb. Thus, depending 

on the chemical properties of contaminants, these radionuclides may accumulate in 

water sources to levels of great concern especially in threatening human health 

(Health Canada, 1995). Radioactivity in natural waters is usually low, although 

contaminated sediments can serve as sources of radionuclides contamination. This 

pollution could occur even after a long period after an effective removal of dissolved 

radionuclides (Coetzee, Winde, & Wade, 2006). 

Parent and daughter radionuclides have varying patterns of behavior, thus it 

will be the difference in their events in water sources. Taking an example of ground 

water with high levels of radium, this water tends to have low concentration levels of 

uranium as known that 238U is the parent of 226Ra. Higher levels of 226Ra in water can 

be expected in areas containing uranium mining and milling operations. Similarly, 

high concentrations of the natural radionuclides are in the case of direct water contact 
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with rocks or soils. Generally, surface water will always register lower levels of 

radionuclides than underground water (Bem et al., 2014). 

In studying the relationship between radon gas and water, the gas is found to 

emerge from rocks containing uranium and radium found in the water. Through 

activities such as tapping this water into houses, man introduces the gas to the 

environment. The gas is released through the use of the tapped water. It is estimated 

about 50% of the gas is released during showering and a total of 100% during the 

performance of cooking and washing activities. Short-lived daughters such as 218Po, 

214Pb, and 214Bi are also generated following these activities. Inhalation of the gas 

contributes to the exposure of the population to respiratory problems, which is far 

much a contributing factor than the act of drinking the contaminated water      

(Health Canada, 1995). 

2.1.3 Airborne Radioactivity 

The background radiation can originate from radioactivity carried by the 

ambient air, as trace amounts of radioactive gases or dust particles. The noble gas 

222Rn can become airborne before decaying. Research shows that soil and rocks 

beneath the houses contribute to the presence of the gas, which is about four to five 

times more concentrated than outdoor levels. Outdoor levels are less concentrated 

due to the frequent air dilution following the free flow of air. Building materials, 

outside air, use of water and natural gas contribute to the high concentration of 

indoor Radon. Exceptions to generalization are frequent since circumstances are 

found to vary with different places and time.  

The 222Rn decay process involves a series of short-lived daughters, two of 

which are 218Po and 214Po and are found to be alpha emitters. Different radioactive 
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isotopes are also generated from other series of naturally occurring radionuclides. 

However, these isotopes are of less radiological importance. Thorium series 

generates 220Rn, also referred to as thoron. The parent nuclide, 232Th, more abundant 

compared to 238U, but with a longer half-life. As a result of this longer half-life, the 

average rate of production of 220Rn in the ground is close to being similar to 222Rn. 

However, the shorter half-life of 220Rn, (T1/2 = 56 second), as compared with           

(T1/2 = 3.82 days) for 222Rn, gives it a much greater chance of its decaying before 

being airborne. Actinium series produces 219Rn, also called action after several 

transformations from the relatively rare origin nuclide 235U. Its half-life last about     

4 seconds, thus its contribution to airborne radon is insignificant. Comparatively, 

radioactive dust consists of either natural radionuclides or atmospheric fallout. These 

can easily be eliminated through filtration of the air supply system (Godish, 1989; 

Knoll, 2010). 

2.1.3(a)    Radon Emanation Phenomenon 

Radon emanation refers to the process of releasing of radon atoms, emerging 

through alpha decay of radium-grained into pore spaces of grain. Emanation 

coefficient or fraction is defined as the ratio of escaped radon atoms to originating 

radon atoms numbers. Emanation occurs as a result of two factors; alpha recoil and 

diffusion. The emanation of radon as a result of recoil and diffusion in grains is 

influenced by factors such as the temperature of the grains, surrounding pore spaces, 

radiation damage, density and composition of the materials and radium distribution 

in grains. It is noted that the highest percentage in alpha recoil as a result of very low 

diffusion coefficients of radon in the solid grains (10-31–10-69 m2 s-1) is directly 

influenced by the outlined factors (W. W. Nazaroff, 1992; W. W. Nazaroff & Nero, 
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1988). Other factors such as moisture content, atmospheric pressure, grain size, and 

pore size influence the emanation of radon from surrounding pore space.  

Figure 2.4 illustrates the mechanism of radon emanation. Radon atoms can be 

released into pore spaces without the occurrence of any obstacle as shown in case A. 

Liquids such as water can also be existed in the way of radon atoms, which depend 

on their residual energies in striking a nearby grain as illustrated in case B. In 

addition to this, transition of radon atoms from pocket generated through their recoil 

path into pore spaces can also occur as in case E. The same process could occur 

through the escape of the gas into inner pore followed by diffusion to outer pores as 

presented in case F. All these previous cases can lead to presence of radon emanation 

phenomenon. Despite the many ways of generating radon atoms, some atoms cannot 

find to be released and become embedded within the grain as in case C or be 

transformed to outer pores as in case G. Others can be absorbed in the inner surfaces 

of grains as illustrated in case D. Radon emanation phenomenon disappears in 

pervious three cases (Sakoda & Ishimori, 2014). 

Figure 2.4: Scheme of radon emanation phenomenon.  

 

Analytical models have been developed and improved to
predict the flux of radon from the earth’s surface into the atmo-
sphere and building (UNSCEAR, 2000). All model expressions need
several parameters, one of which is the radon emanation fraction.
Many researchers have experimentally measured the radon
emanation fraction for various natural samples, and demon-
strated the influences of environmental factors. Over twenty
years ago, Nazaroff et al. (1988, 1992) summarized emanation
data from fifteen references, indicating an approximate range of
0.05–0.7 for soil. UNSCEAR (2000) reported a radon emanation
fraction of 0.2 as a representative value for soil. Much data have
been steadily accumulated since the last review by Nazaroff et al.
(1988, 1992). Thus, updating this review should be now
attempted to newly provide representative emanation fractions
of radon from natural sources. In addition, it would be useful to
organize the measurement results from the standpoint of experi-
mental (environmental) conditions.

An extensive literature review of radon emanation measure-
ments, especially in the last three decades, was done in the
present paper. First, the current knowledge of the emanation
processes and their affected factors was summarized for discus-
sion. We then attempted to estimate the representative values of
the radon emanation fraction for the following five materials,
which is the main aim of this review. Measured samples were
grouped according to material type: (1) mineral, (2) rock, (3) soil,
(4) mill tailing (mostly uranium mill tailing), and (5) fly ash.
Moreover, we discussed the difference of the radon emanation
fractions among such materials and the influences of some
factors.

2. Radon emanation phenomenon

2.1. Emanation processes

Current information on the radon emanation phenomenon and
its related factors is referred to in this section, which is summar-
ized in ‘‘Emanation process’’ of Table 1 and Fig. 1. The radon
emanation is considered to consist of two components: alpha
recoil and diffusion. Because of the very low diffusion coefficient
(10!31–10!69 m2 s!1) of radon in the solid grain (Nazaroff et al.,
1988; Nazaroff, 1992), which corresponds to the diffusion length
(10!13–10!32 m), the main component is believed to be the alpha
recoil. Radon atoms, generated by the alpha decay of its parent
nuclide (radium), recoil with an initial energy of 86 keV. This
energy can be calculated on the basis of the law of conservation of
linear momentum. The birthplace of radon in a grain, recoil
direction, etc. determine whether the newly formed radon can

escape to pore spaces (emanation: points A, B, E and F in Fig. 1) or
stay in the grain (not emanation: points C, D and G in Fig. 1). The
distance that recoil radon can travel in a grain relies on density
and composition of the material. The range of radon is 34 nm in
quartz (common mineral), 77 nm in water, and 53 mm in air,
which the present authors calculated using a SRIM-2006 code
(Ziegler et al., 1985). Only radium atoms within the recoil range
from the grain surface can produce radon atoms that have any
possibility of being emanated. Even if radon was released from a
radium-bearing grain, it can penetrate the fluid-filled pore space,
depending on its residual energy, to collide with a neighboring
grain. In this case, radon can be embedded with the threshold
energy (Semkow, 1991). After the embedding, one possible fate of
radon is the migration from the pocket created by its recoil
passage into pore (point E in Fig. 1); the other is the radioactive
decay after the molecular diffusion in the grain (points D and G in
Fig. 1). The former contributes to the emanation, but the latter
not. On the other hand, radon completely escaping into inner pore
space in the grain must diffuse to outer pore (point F in Fig. 1). For
the emanation, the radon atoms that cannot diffuse out into the
outer pore or are adsorbed on the inner surface of the grain
should be regarded as being not emanated. Based on a part of the
above considerations, radon emanation models have been devel-
oped to explain the effects of environmental factors on the

Table 1
Radon emanation processes and their affected physical and experimental factors.

Emanation process Physical factor Experimental factor

Direct component
" Alpha recoil from the outer

surfaces of grains
" Alpha recoil from the inner

surfaces of grains
" Diffusion in grains

" Radium distribution in grains
" Grain size and shape
" Moisture content
" Temperature
" Atmospheric pressure
" Outer pore size
" Inner pore size
" Radiation damage
" Solid density (crystal structure and

elements)

" Instrument properties (Calibration, linearity, etc.)
" Instrument environment (temperature, humidity, atmospheric pressure, etc.)
" Sample properties (fracturing, sieving, single- or aggregate-grain structure, etc.)
" Sample environment (moisture, temperature, vacuum, helium atmosphere, acid or

alkaline leaching, etc.)
" Sample packing thickness
" Definition of radon emanationIndirect component

" Diffusion in the inner pores
of grains
" Adsorption on the inner surfaces

of grains
" Embedding into an adjacent grain
" Diffusion-based release after the

embedding

Grain

Inner pore

Start point of recoil
Terminal point of recoil

Pore water
(Outer pore)

Grain Pore air
(Outer pore)

Recoil range

G

F

E

D
C

B
A

Fig. 1. Scheme of radon emanation phenomenon. Emanation: (A), (B), (E) and (F).
Not emanation: (C), (D) and (G). If radon cannot diffuse out from inner pore into
outer, radon in point (F) should not be regarded as being emanated. Arrows
following terminal points of recoil represent diffusion process, which are not
to scale.

A. Sakoda et al. / Applied Radiation and Isotopes 69 (2011) 1422–1435 1423
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2.1.3(b)    Radon Exhalation 

Radon exhalation indicates to the flow of radon from environmental sources 

to indoor enclosures. Environmental sources include building materials, rocks, and 

soils. Based on Sun, Guo & Zhuo (2004), 60.4% of indoor radon arises from the 

ground and soils surrounding the buildings. The depth from which radon atoms are 

discharged from the soil into the air relies on the nature of soil, its moisture content, 

and structural geology. For 222Rn, the depth is regularly about (1-2) m in unsaturated 

soils, deeper for sands and shorter for saturated and compacted soils (Ahmad, Jaafar, 

& Alsaffar, 2015). Therefore, the rate of exhalation is defined as the number of 

atoms emerging from soil surface boundary per unit surface area in unit time. This 

expected exhalation rate of radon is mostly managed by atmospheric pressure, 

humidity, forces of wind and temperature (Sun, Guo, & Zhuo, 2004). 

2.2 Exposure Pathways 

The source of radiation categorizes as exposure to radiation falls into two 

distinct groups; external and internal exposure. External exposure results from 

sources outside the human body, whereas internal exposure is a result of 

radioisotopes deposited into the system of the exposed individual. The possibility of 

measuring the doses of external exposure, either directly or indirectly using available 

detection instruments makes it easier to deal with external exposures than internal. 

The challenge in determining internal doses is attributed to the assumptions made 

while performing calculations of the amount of radioisotope involved and its 

distribution within the body. Thus, the dose equivalent from internal exposure should 

usually be the best choice to evaluate internal doses (Knoll, 2010). 



 18 

2.2.1 External Exposure 

External exposure to radionuclides by humans is majorly a result of uranium-

thorium series. The local concentration of these radionuclides and their decay 

products varies widely depending on the geologic characteristics of the region.  

Similarly, 40K contributes to the human exposures, especially to the dose originating 

from internal exposures. A less significant contribution of 40K occurs through the 

environment and thus contributing to external exposure. The doses resulting from 

external sources of the body are entirely a contribution of gamma rays emitted during 

the decaying process of radionuclides. Based on the low power of penetration of both 

beta and alpha particles, their emissions from the decaying natural radionuclides will 

not significantly contribute to the dose received externally. Consequently, only minor 

contributions of beta rays are received by the skin (Kirby, Downing & Gohary, 

2010). 

The average annual effective dose in worldwide from external terrestrial 

radiation both outdoors and indoors amount to a total of 0.48 mSv y-1           

(UNSCEAR, 2000). A particular circumstance occurs in daughters of the decay of 

222Rn. Radon gas is diffusing into the atmosphere, decays in a non-equilibrium 

fashion, leading to an external exposure originating principally from lead and 

bismuth radionuclides. These elements are produced from the decaying process of 

radon decay. For a typical time-averaged outdoor radon concentration of 7.5 Bq m-3 

(200 pCi m-3), of the two Radon daughters, it is estimated that the absorbed dose rate 

in the air following these radon daughters would be 23.2 mrad y-1 (232 µGy y-1) 

(NCRP, 1988).  
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The history of geological composition and the history of the area determine 

the variation of terrestrial radioactivity doses to human beings. Comparatively, 

indoor exposure from gamma rays resulting from crustal radionuclides is regulated 

depending on the materials used in construction. The position of individuals within 

the building is also a considerable factor regarding the doses received. In the last few 

decades, peculiar sources of human exposure have become noticeable. Some of these 

sources include diagnostic radiology, therapeutic radiology, use of isotopes in 

medicine, using fertilizers, radioactive waste, the fall-out from nuclear weapon tests, 

and occupational exposures from nuclear reactors and accelerators (UNSCEAR, 

2000). 

2.2.2 Internal Exposure 

 Radioactive materials gain access to the body through three main routes 

namely; inhalation, ingestion and through the skin to the bloodstream and lymphatic 

system. Transmission of radionuclides from the environment to man can occur 

through gaseous, food and water intake. Once inside the body, the radionuclides are 

absorbed, metabolized, and distributed to tissues according to their chemical 

properties for elements and compounds. Thus, physical and biological entities 

determine the ultimate biological effects of internal exposure. Physical entities 

include the physical properties of radionuclide (half-life), type and energy of 

radiation emitted; the linear energy transfer (LET), spatial distribution of radiation 

energy absorption and microdosimetric consideration. Comparatively, biological 

factors comprises of chemical properties of radionuclide, transportation of 

radionuclide through body, translocation from one tissue to another, the localization 

in target tissue or organ, transit time in body organs, excretion pathways outside the 

body, biological half-life and effective half-life, radiation response of tissues of 
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disposition and other determinants such as age, sex, pregnancy and disease that 

naturally increases both chance and magnitude of infection. A significant application 

of this is the fact that physical and biological factors can be used to calculate the 

absorbed doses to organs and tissues, thus assist in the construct mathematical 

models in the assessment of internal dose (El-Naggar, 1998).  

Doses by inhalation result from the presence of dust particles in air containing 

radionuclides belonging to the 238U and 232Th decay chains. After inhaling the radon, 

the dominant component of exposure is the short-lived decay products of radon. 

Ingestion doses are mainly as an outcome of 40K and to the 238U and 232Th series 

radionuclides present in foods and drinking water. The dose rate from 40K can be 

determined directly and accurately from external measurements of its concentration 

in the body. To perform an analysis of the content of uranium- and thorium- series 

radionuclides in the body, it requires complicated chemical analyses of tissues 

exposed to these elements. The performance of this analysis faces the challenge of 

the few data available. As an alternative to dose estimation, there is the analysis of 

the radionuclide contents in foods and water, alongside carrying out a bioassay data 

guided by the knowledge of metabolic behavior (UNSCEAR, 2000). 

On an average, the annual effective dose in worldwide from uranium and 

thorium series through inhalation exposure amounts to 6 µSv y-1, compared to values 

acquired through ingestion totaling to 0.12 mSv y-1. The average annual effective 

dose from 40K in ingestion exposure is 0.17 mSv y-1. The average annual contribution 

from all internal sources of natural radionuclides amounts to 1.55 mSv y-1. This 

number means that 1.15 mSv y-1 of the total inhalation exposure results from radon 

gas and its decay products, while an estimated value of 0.1 mSv y-1 results from 
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inhaled thoron alongside its decay products. The remainder of the total estimates is 

attributed to ingestion of other radionuclides found present in food and drinking 

water (UNSCEAR, 2000). 

2.3 Research on Natural Radionuclides in Soil 

Radionuclides arising in soil are distributed widely in earth’s crust. The 

concentration of these materials in soils and depends on geological formulations and 

geographical conditions. This reason is behind different levels of radionuclides in the 

soils from various regions in Malaysia and other countries as shown in Table 2.1.  

Table 2.1: Natural radioactivity in non-cultivated (NC) and cultivated (C) soil in  
Malaysia and other countries. 

Sample 
location 

Sample 
type 

Methods Results Reference 

First: Malaysia 
Kinta 
District, 
Perak 

NC soil HPGe 
detector 

Activity concentration ranges 
were 12–426 Bq kg-1 for 238U, 
19–1377 Bq kg-1 for 232Th and 
<19–2204 Bq kg-1 for 40K. 
The world’s mean values of 
226Ra, 232Th and 40K in soil 
are 32, 45 and 420 Bq kg-1, 
respectively .The gamma dose 
rates varied from 39 to 1039 
nGy h-1 in the District. The 
average of gamma dose rate 
was found to be 222 ± 191 
nGy h-1, which is double the 
value obtained in Malaysia 
and four times the value of the 
world average, of 59 nGy 

(Lee et al., 
2009; 
UNSCEAR, 
2000). 

Penang NC soil HPGe 
detector 

The average activity 
concentrations of 238U, 226Ra, 
232Th, and 40K in soil samples 
were obtained to be 184 ± 11, 
396 ± 22, 165 ± 14, and 835 ± 

(Almayahi et 
al., 2012a) 
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28 Bq kg-1, respectively. The 
average external gamma dose 
rate is  315 ± 44 nGy h-1, 
which is more than quintuple 
of worldwide average     

Northern 
Malaysian 
Peninsula 

NC soil HPGe 
detector 

The average values of activity 
were found to be 57 ± 2, 68 ± 4 
and 427 ± 17 Bq kg-1, 

respectively. The mean value 
of outdoor absorbed dose rate 
gained from soil was                
88 nGy h-1. Both mean external 
and internal hazard values were 
0.50 and 0.65, respectively, 
which they were less than 
unity. The average of radium 
equivalent activity was 186 Bq 
kg-1, which is less than the 
recommended values according 
to the guidelines of OECD 
(1979), whish 370 Bq kg-1. 

(Almayahi et 
al., 2012b).  

 

Segamat 
District, 
Johor 

 

 

 

 

 

 

 

 

NC soil HPGe 
detector 

The activity concentrations of 
226Ra, 232Th and 40K were 
found to be (12 ± 1 – 968 ± 
27), (11 ± 1 - 1210 ± 41) and 
(12 ± 2 – 2450 ± 86) Bq kg-1, 

respectively. The external 
gamma dose rates ranged 
from 25 to 1281 nGy h-1. The 
outdoor average gamma dose 
rate measured 276 nGy h-1. 
The lowest average dose rate 
in Sungai Segamat Mukim 
was found to be 115 nGy h-1, 
while the highest average 
gamma dose rate was 375 
nGy h-1 in Buloh Kasap 
Mukim. This value is six 
times the average worldwide 
dose rate of 59 nGy h-1 

(Saleh et al., 
2013) 

Sepang 
District, 
Selangor 

C soil HPGe 
detector 

The activity concentrations of 
226Ra, 232Th and 40K in soil 
sampled for the assessment 

(Asaduzzama
n et al., 2014) 
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 was valued at 92 – 142, 7.2 – 
102 and 385 -1023 Bq kg-1, 
respectively  

Muar 
District, 
Johor 

NC soil HPGe 
detector 

The activity concentrations of 
226Ra, 232Th and 40K were 
found to be (6 ± 1  – 244 ± 9), 
(11 ± 1 – 583 ± 18) and (13 ± 
6 – 830 ± 13) Bq kg-1 
respectively. The average 
external gamma dose rate was         
151 nGy h-1.  

 

(Saleh et al., 
2014) 

Sungai 
Petani, 
Kedah 

NC soil 
& C soil 

HPGe 
detector 

On average, the radioactivity 
for 226Ra, 232Th, and 40K in 
virgin soils were 51.06±5.83, 
78.44±6.42, and 125.66±7.26 
Bq kg-1, respectively, while 
those in agricultural soils were 
found to be 80.63±5.78, 
116.87±7.87, and 200.66±18.2 
Bqkg-1, respectively. The 
corresponding concentrations 
in agricultural soils were 
higher than those in virgin 
soils. The average values of 
outdoor and indoor absorbed 
dose rates in agricultural soils 
were 116.04 and 218.46 nGy 
h-1, respectively. 

 

(Ahmad et al., 
2015) 

Seberang 
Perai, 
Penang 

C soil HPGe 
detector 

Concentrations of 226Ra, 232Th 
and 40K in agricultural soils 
used for rice plant in 
Seberang Perai in Penang 
ranged 49.4 - 208.51, 68.22 -
194.13 and 138.31 - 943.11 
Bq kg-1, respectively 

(Alsaffar et 
al., 2015) 

Kampung 
Sakan, 
Kedah -
Kampung 
Permatang 

C soil NaI(Tl) 
detector 

The activity concentrations of 
226Ra, 232Th and 40K  in 
agricultural soil in Sungai 
Besar were found to be               
7.5 – 11.3, 17.3 – 25.2 and 

(Asaduzzama
n et al., 2015) 
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Tok Labu, 
Pulau 
Pinang & 
Sungai 
Besar, 
Selangor 

106.0 – 124.8 Bq kg-1 
respectively. Also, The 
activity concentrations of 
226Ra, 232Th and 40K in 
agricultural soil in Kampung 
Permatang Tok Labu were 
found to be 6.5 – 11.6, 12.8 – 
19.6 and 78.5 – 100.5 Bq kg-1, 
respectively. Moreover, the 
concentrations of 226Ra, 232Th 
and 40K in agricultural soil in 
Kampung Sakan were found 
to be 5.1 – 9.2, 9.6 – 13.5 and 
70.5 – 81.7 Bq kg-1, 
respectively. 

Langkawi 
Island, 
Kedah- 
Tumpat 
Kelantan, 
Pasir 
Panjang 
Negeri 
Sembilan, 
Klang 
Selangor & 
Cameron 
Highlands, 
Pahang 

C soil HPGe 
detector 

226Ra, 232Th and 40K 
concentrations ranged 1.33 – 
30.90, 0.48 – 26.80 and          
7.99–136.5 Bq kg-1, 
respectively. 

(Khandaker et 
al., 2016) 

Seberang 
Perai, 
Penang 

 

 

 

 

 

 

NC soil 
& C soil 

HPGe 
detector 

The average concentrations 
activity of 226Ra, 232Th and 
40K in cultivated soils were 
evaluated to be 85.01  ± 
42.14, 59.09 ± 22.75 and 
384.86 ± 216.28 Bq kg-1, 
while in non-cultivated soil 
were found to be 54.21 ± 
34.15, 55.19 ± 47.22 and 
276.87 ± 203.43 Bq kg-1, 
respectively.  

This Study 


