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EKOLOGI, KEPELBAGAIAN, RINTANGAN ANTIBIOTIK BAKTERIA 

ASID LAKTIK (LAB) YANG DIPENCILKAN DARIPADA SUMBER 

TUMBUH-TUMBUHAN DAN PERANAN MEREKA DALAM PENAPAIAN 

SEMULA JADI TEMPOYAK 

 

ABSTRAK 

 

 Beberapa tahun kebelakangan ini, bioprospek bakteria asid laktik (LAB) 

daripada sumber tumbuh-tumbuhan telah menyumbang kepada kepelbagaian LAB dan 

penemuan aplikasi LAB yang novel dalam industri makanan. Disebabkan LAB 

memainkan peranan yang penting dalam penapaian makanan, terdapat kebimbangan 

bahawa unsur genetik yang menyebabkan rintangan yang dikandungi oleh microbiota 

yang asalnya hadir dalam buah-buahan segar dan makanan tertapai akan disebarkan 

melalui rantai makanan. Objektif kajian ini adalah untuk mengkaji kepelbagaian dan 

rintangan antibiotik LAB yang dipencilkan daripada buah-buahan dan bunga-bungaan 

tropika yang segar, dan juga tempoyak yang dihasilkan melalui penapaian semulajadi; 

untuk mencirikan “bacteriocin-like substances” (BLIS) yang dihasilkan oleh LAB 

yang dipencilkan, dan ciri-ciri teknologi yang lain. Kajian ini juga dijalankan untuk 

menentukan dinamik pelbagai spesies LAB semasa penapaian semulajadi tempoyak. 

Berdasarkan analisis filogenetik, pencirian fenotip dan perbandingan purata identiti 

nukleotida (ANI), satu genus novel dengan dua spesies, yang dipunyai oleh keluarga 

Streptococcaceae, telah dikenal pasti. Nama genus baru dan dua spesies telah 

dicadangkan sebagai Anthococcus rusulii (dipencilkan daripada bunga durian dan 

bunga raya) dan Anthococcus penangensis (dipencilkan daripada bunga raya). Ahli 

LAB dalam genus-genus Lactobacillus, Weissella, Lactococcus, Leuconostoc dan 

Enterococcus juga dipencilkan daripada buah-buahan and bunga-bungaan tropika 

yang segar. Genotyping mempamerkan kepelbagaian genetik yang tinggi dalam 
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Lactobacillus plantarum dan Weissella spp. yang merupakan species dominan yang 

dipencilkan daripada buah-buahan and bunga-bungaan. Kajian ini juga menonjolkan 

kebimbangan bahawa unsur genetik yang menyebabkan rintangan yang dikandungi 

oleh microbiota yang aslinya hadir dalam buah-buahan segar akan disebar melalui 

rantai makanan. LAB yang mempunyai rintangan terhadap pelbagai antibiotik telah 

dipencilkan daripada buah-buahan segar. Serupanya, LAB yang mempunyai rintangan 

terhadap pelbagai antibiotik juga dipencilkan daripada tempoyak. Dalam kajian ini, 

kajian bioprospek telah dilakukan untuk penemuan metabolit LAB yang dapat 

digunakan dalam industri. Enam Lactococcus lactis subsp. lactis menghasilkan BLIS 

yang mempamerkan kesan antagonistik terhadap Listeria spp., Staphylococcus aureus, 

Pseudomonas fluorescens, Streptococcus agalactiae dan Streptococcus pyogenes. 

Analisis PCR menunjukkan bahawa gen untuk nisin F dan Z wujud. Ciri-ciri teknologi 

yang dikehendaki (acidolytic and caseinolytic dan toleransi hempedu) telah 

menunjukkan potensi mereka sebagai probiotik dan dalam penghasilan makanan 

berfungsi. Semasa penapaian semulajadi tempoyak, ahli-ahli LAB yang berlainan 

mendominasi pada peringkat penapaian yang berlainan. Susulan dari heterofermentors 

(Leuconostoc mesenteroides dan Fructobacillus durionis) ke homofermentor (Lb. 

plantarum) telah diperhatikan. Penapaian tempoyak secara semulajadi tidak 

menyokong pertumbuhan Salmonella spp., Listeria monocytogenes dan 

Staphylococcus aureus disebabkan oleh penghasilan asid organik seperti asid laktik, 

asetik dan propionik, dan pengurangan pH secara mendadak semasa penapaian. 
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ECOLOGY, DIVERSITY, ANTIBIOTIC RESISTANCE OF LACTIC ACID 

BACTERIA (LAB) ISOLATED FROM PLANT SOURCES AND THEIR 

ROLE IN NATURAL FERMENTATION OF TEMPOYAK 

 

ABSTRACT 

 

 In recent years, bioprospecting of lactic acid bacteria (LAB) from plant sources 

contributes to the diversity of LAB and the discovery of novel application of LAB in 

food industries. As LAB play an important role in food fermentation, there are concern 

of dissemination of antibiotic resistance determinants harboured by the indigenous 

microbiota present in fresh fruits and fermented food through the food chain. The 

objectives of this study were to investigate the diversity and antibiotic resistance of 

LAB presence in fresh tropical fruits and flowers, as well as tempoyak produced by 

natural fermentation; to characterise the bacteriocin-like substances (BLIS) produced 

by these LAB isolates, and other technological properties. This study was also 

undertaken to determine the dynamics of different LAB species during natural 

fermentation of tempoyak. Based on phylogenetic analysis, phenotypic 

characterisation and comparison of average nucleotide identity (ANI), a novel genus 

with two species belonging to the family Streptococcaceae, were identified. The name 

of the new genus and two species were proposed as Anthococcus rusulii (isolated from 

durian flowers and hibiscus) and Anthococcus penangensis (isolated from hibiscus 

flowers). Members of the genera Lactobacillus, Weissella, Lactococcus, Leuconostoc, 

and Enterococcus were also isolated from fresh tropical fruits and flowers. Genotyping 

using PFGE demonstrated a high polymorphism among the predominant Lactobacillus 

plantarum and Weissella spp. isolated from flowers and fruits. The present study also 

highlighted the concern of dissemination of antibiotic determinants harboured by 

indigenous microbiota present in fresh fruits through the food chain. Multidrug-



xx 

 

resistant LAB isolates harbouring determinants responsible for multiple antibiotics 

resistance were isolated from fresh fruits. Similarly, multidrug-resistant LAB isolates 

were also isolated from tempoyak. In this study, bioprospecting studies was performed 

in search of LAB metabolites relevant to industry. Six Lactococcus lactis subsp. lactis 

isolates produced BLIS which were antagonistic against Listeria spp., Staphylococcus 

aureus, Pseudomonas fluorescens, Streptococcus agalactiae and Streptococcus 

pyogenes. PCR analysis showed the presence of nisin F and Z genes. Desired 

technological properties (acidifying, caseinolytic activities and bile tolerance) were 

also observed, suggesting their potential as a probiotic and production of functional 

foods. During natural fermentation of tempoyak, different members of LAB were 

predominant at different stages of fermentation. A succession from heterofermentors 

(Leuconostoc mesenteroides and Fructobacillus durionis) to homofermentor (Lb. 

plantarum) was observed. Naturally fermented tempoyak did not support the growth 

of Salmonella spp., Listeria monocytogenes and Staphylococcus aureus due to the 

production of organic acids such as lactic, acetic and propionic acids and drastic 

reduction in pH during the fermentation.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

 Lactic acid bacteria (LAB) are a heterogenous group of strictly fermentative, 

fastidious and acid-tolerant organisms inhabiting nutrient-rich niches. Traditionally, 

LAB are isolated from dairy products and fermented foods, or alternative sources such 

as faecal samples and plant sources (Holzapfel and Wood, 2014). Indigenous LAB 

present both on the external surface and internal tissues of fruits, flowers, leaves and 

wood, and maybe part of epiphytic microflora present in plants (Martins et al., 2013; 

Postmaster et al., 1997; Zhang et al., 2010), or introduced by insect vectors 

(McFrederick et al., 2012). LAB genera commonly isolated from plant sources 

includes Lactobacillus, Leuconostoc, Weissella and Enterococcus (Tyler et al., 2016, 

Williams et al., 2013, Müller et al., 2001). Prevalence and enumeration of LAB 

populations in flowers have not been extensively studied (Endo et al., 2009; Endo et 

al., 2010; Endo et al., 2011b; Kawasaki et al., 2011a; Kawasaki et al., 2011b; Neveling 

et al., 2012; Vásquez et al., 2012). In raw fruits, LAB constitutes small percentage of 

the indigenous microbiota and LAB population usually ranged from 2-5 log CFU/g of 

fruits (Di Cagno et al., 2010; 2011; Nyanga et al., 2007). Despite their presence in low 

numbers on plant tissues (Dias et al., 2015), numerous studies have reported on 

isolation of LAB with probiotic or desired biotechnological properties from natural 

plant sources (Tyler et al., 2016, Hwanhlem et al., 2014, Teneva-Angelova and 

Beshkova, 2015). Isolation of LAB from novel sources is hence, of crucial importance 
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as this approach helps to explore the natural biodiversity and valuable strains with 

potential technological properties. 

 Various researchers have reported that the association of certain LAB genera 

with specific niches is most likely due to adaptation to their ecological niches. 

Adaptation of LAB to ecological niches may be attributed to the utilisation of relevant 

carbohydrate sources. For instance, fructophilic LAB (FLAB) adapt to fructose-rich 

niches via reductive evolution and conservation of genes aid in the fructose 

metabolism (Kim et al., 2013, Endo et al., 2015). In addition, acquisition or presence 

of genes conferring bacterial fitness, such as biofilm synthesis, adhesion, bacteriocin 

and lysozyme, antibiotic resistance, transmembrane protein and phage-related proteins, 

may also aid in LAB adaptation to various ecological niches (Vásquez et al., 2012, 

Asenjo et al., 2016b, Butler et al., 2013). Reasearchers are of opinion that interference-

based or resource-based competitions with other microorganisms might be key to 

production of bacteriocin and other antagonistic coumpounds as predation tools, as 

observed in many LAB (Hibbing et al., 2010, Leisner and Haaber, 2012, Cornforth 

and Foster, 2013).  

 Over the past decades, LAB have been extensively utilised in food products for 

both human and animal nutrition. LAB have traditionally been used for preservation, 

to enhance nutritional values, flavours and texture of fermented foods (Gerez et al., 

2009, Zhang et al., 2008, Steinkraus, 1997). The ability of LAB to prevent the growth 

of foodborne pathogens and spoilage microorganisms in a multitude of foods may be 

atributed to the antagonistic properties of LAB metabolites or their end-products such 

as bacteriocins, organic acids, ethanol, carbon dioxide, hydrogen peroxide, acetoin and 

diacetyl (Stoianova et al., 2012, Piard and Desmazeaud, 1991, Piard and Desmazeaud, 

1992). 
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 In food fermentation, LAB are either added as starter cultures, or, by back-

slopping or relying on natural fermentation under conditions favouring the growth of 

desired microbiota, in more traditional or artisanal productions. Natural fermentation 

might contribute to the diversity of microflora present in the fermented food products, 

however, the indigenous microflora is not consistent due to the uncontrolled 

fermentation process. Researchers have observed an increase in LAB population from 

the ripe fruit to the fermented fruit pulp during natural fermentation (Nyanga et al., 

2007). They are of the opinion that indigenous LAB present in fruits are responsible 

in natural fermentation. As LAB are present in abundance in many fermented foods, 

researchers are concern that indigenous LAB in fermented foods may act as reservoir 

of antibiotic resistant deterrminants which can be potentially transferred through food 

chain to human gut pathogens (Nawaz et al., 2010, Patel et al., 2012, Gueimonde et 

al., 2013). In addition, the emergence of antibiotic-resistant LAB strains used as starter 

culture and probiotics in food industry has highlighted the importance of 

characterisation of antibiotic resistant profiles and transferable genetic determinants 

harboured by food-associated LAB (Patel et al., 2012, Hummel et al., 2007). 

 

1.2 Problem statements 

 

LAB inhabit various ecological niches and the ability of LAB to adapt in 

various ecological niches may contribute to differences in taxonomic attributes and 

characteristics that confer fitness and their potential application in industries.  

Bioprospecting of LAB isolates from exotic ecological niches (in this case, tropical 

flowers, durian and soursop fruits) have not been previously reported. Thus, tropical 

flowers and fruits could be potential sources for the discovery of novel strains with 
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taxonomic and industrial importance. In addition to highlighting the importance of 

bioprospecting, this study also highlights the concerns for dissemination of antibiotic 

resistance determinants harboured by indigenous microbiota present in fresh fruits and 

fermented food throughout the food chain, especially when fruits and fermented foods 

are usually consumed raw or without lethal heat treatment. Moreover, microbial safety 

of tempoyak which is mainly produced using fallen fruits, is of great concern. Previous 

studies on tempoyak mainly focused on the physicochemical properties of tempoyak 

(Neti et al., 2011, Wasnin et al., 2014) and they have concluded that Lb. plantarum 

was predominant in tempoyak (Leisner et al., 2005, Yuliani and Dixon, 2011). The 

changes in LAB population during tempoyak fermentation and the safety aspects of 

tempoyak, however, have not been considered in previous studies. 

 

1.3 Objectives 

 

In order to study the biodiversity of LAB present in plant sources and their role 

in natural fermentation, reliable methods for the identification of LAB to species and 

strains levels and dynamics of microbial populations occurring during natural 

fermentation, are of crucial importance. In this study, identification of LAB species 

was performed by using polyphasic approaches consisting of both phenotypic and 

genotypic methods for the precise identification of LAB to species and strain levels.  

 The objectives of this study are: 

a) To determine the diversity of LAB isolated from fresh tropical fruits and 

flowers, and their antibiotic resistance profile.  

b) To identify and characterise the novel LAB species isolated from fresh flowers.  
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c) To characterise the antimicrobial properties of bacteriocin-like substances 

(BLIS) and technological properties of Lactococcus lactis isolated from fresh 

tropical flowers and fruits. 

d) To examine the biodiversity of LAB present in naturally fermented tempoyak 

and to determine the presence of multidrug-resistant LAB isolates isolated at 

different stages of tempoyak fermentation.  

e) To elucidate the microbial changes occurring during natural fermentation of 

tempoyak and the microbial safety of the naturally fermented tempoyak. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Lactic acid bacteria (LAB) 

 

 LAB are described as Gram-positive, acid tolerant, of non-aerobic habit, 

nonsporing, nonrespiring cocci or rods that produce lactic acid as the major end 

product during the fermentation of carbohydrates. Typically, they are non-motile and 

do not reduce nitrate (Hammes and Hertel, 2006). LAB are fastidious organisms since 

they require complex nutrients as their growth factors, such as carbohydrates, amino 

acids, peptides, fatty acid esters, salts, nucleic acid derivatives and vitamins. They are 

strictly fermentative since they have no respiratory system and rely mostly on substrate 

level phosphorylation during sugar(s) fermentation to generate and provide energy 

(Saier et al., 1996, Stiles and Holzapfel, 1997). LAB carry out lactic acid fermentation 

and were among the first microorganisms to be used in food manufacturing (Konings 

et al., 2000). The most common LAB genera in food fermentations are Lactobacillus, 

Lactococcus, Leuconostoc, Bifidobacterium, Enterococcus, Oenococcus, Pediococcus, 

Streptococcus, Tetragenococcus, Weissella and Carnobacterium. It is assumed that 

most representatives of this group do not pose any health risk to man, and hence they 

were granted as "Generally Recognized as Safe (GRAS)” organisms (Dekker et al., 

2009, Chouraqui et al., 2008, Zhou et al., 2000). 
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2.1.1 Ecology and biodiversity of LAB 

 

 LAB is a highly diverse group which diversity is contributed by variable 

characteristics such as morphology, carbohydrate metabolism, tolerance to oxygen. 

The genus Lactobacillus is by far (September 2016) the largest genus in LAB. Consists 

of 221 species of valid standing nomenclature in the genus, Lactobacillus spp. greatly 

contributes to the biodiversity of LAB. LAB inhabit various nutrient-rich 

environments such as fermented foods, plant materials, dairy products, and 

gastrointestinal tract of animals (Hammes and Hertel, 2006). Similarly, members of 

Pediococcus inhabit a variety of ecological niches. Owing to the inability to utilise 

lactose in some members of the genus Pediococcus, their presence, however, in dairy 

sources is restricted (Holzapfel et al., 2009). As for Lactococcus, they are best known 

as dairy-associated LAB species, though Lactococcus spp. has been previously 

isolated from plant sources. However, isolation of Lactococcus spp. from faecal or soil 

samples is rare (Tuber, 2009). Association of certain LAB genera with specific niches 

is most likely due to adaptation to their ecological niches (Section 2.2). The various 

species of LAB used as starter cultures in a variety of foods in presented in Table 2.1. 

Information provided in Table 2.1 emphasises the significance of LAB in the food 

industry and also on the diversity of LAB.  
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Table 2.1 Diversity of LAB in different traditional fermented foods  

Food sources LAB species isolated   

Dairy products    

Yogurt  Strep. thermophiles, Lactobacillus (Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus, 

Lb. casei, Lb. rhamnosus, Lb. gasseri, Lb. johnsonii), Bifidobacterium spp.  

(Angelakis et al., 2011, 

Tamime, 2007) 

 

Cheese Lactococcus (Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris), Lactobacillus (Lb. delbrueckii 

subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. helveticus, Lb. casei, Lb. salivarius, Lb. 

plantarum), Strep. thermophiles, Enterococcus (Ent. faecium, Ent. durans), Leuconostoc spp.  

 

(Parente and Cogan, 2004, 

Quigley et al., 2011) 

Kefir Leuconostoc (Leu. mesenteroides, Leu. lactis), Lactobacillus (Lb. helveticus, Lb. 

kefiranofaciens, Lb. kefiri, Lb. casei, Lb. plantarum), Lc. lactis  

(Zhou et al., 2009, Gao et al., 

2012) 

 

Vegetables and fruits   

Sauerkraut Leuconostoc (Leu. mesenteroides, Leu. citreum, Leu. argentinum), Lactobacillus (Lb. 

plantarum, Lb. curvatus, Lb. brevis, Lb. paraplantarum, Lb. coryniformis), Pediococcus 

pentasaceus, Weissella sp.  

 

(Plengvidhya et al., 2007) 

Kimchi Leuconostoc (Leu. mesenteroides, Leu. citreum, Leu. carnosum, Leu. gasicomitatum, 

Leu. inhae, Leu. gelidum, Leu. kimchii, Leu. lactis, Leu. hozapfelii), Lactobacillus (Lb. 

sakei, Lb. plantarum, Lb. curvatus), Weissella (W. koreensis, W. cibaria, W. soli, and W. 

confusa)  

(Cho et al., 2006, Jeong et al., 

2013) 

   

Tempoyak  Lactobacillus (Lb. plantarum, Lb. brevis, Lb. mali, Lb. fermentum, Lb. durianis, Lb. 

corynebacterium, Lb. fersantum, Lb. casei), Fructobacillus durionis, Weissella 

paramesenteroides, P. acidilactici, Leu. mesenteroides  

(Endo and Okada, 2008, 

Leisner et al., 2002, Leisner et 

al., 2001, Leisner et al., 2005, 

Wirawati, 2002, Mohd Adnan 

and Tan, 2007, Ekowati, 1998) 
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Table 2.1 (continue)  

Food sources LAB species isolated   

Cereal foods   

Sourdough  Lactobacillus (Lb. plantarum, Lb. fermentum, Lb. paralimentarius, Lb. sanfranciscensis, Lb. 

amylovorus, Lb. frumenti, Lb. casei, Lb. helveticus, Lb. pontis, Lb. reuteri, Lb. panis, Lb. zymae)  

 

(De Vuyst et al., 2009, 

Viiard et al., 2016) 

Masa Agria  

(fermented maize 

dough) 

Lactobacillus (Lb. plantarum, Lb. fermentum, Lb. gallinarum, Lb. helveticus, Lb. delbrueckii, 

Lb. siliginis, Lb. curvatus, Lb. vaccinostercus), Leu. citreum, Weissella (W. confusa, W. 

beninensis, W. fabaria, W. fabalis), Lc. lactis  

 

(Chaves-Lopez et al., 

2016) 

Cassava and legumes  

Sour cassava 

starch  

Leu. citreum, Leu. mesenteroides, Lb. plantarum, Lc. lactis  

 

(Lacerda et al., 2011) 

Miso Pediococcus acidilactici, Tetragenococcus halophilus, W. confusa, Lb. fructivorans  

 

(Takumi et al., 2003) 

Chinese soy sauce Weissella (W. cibaria, W. kimchi, W. salipiscis), Lactobacillus (Lb. fermentum, Lb. plantarum, 

Lb. iners), Streptococcus thermophilus, Tetragenococcus halophilus, Lactococcus, 

Enterococcus, Pediococcus. Leuconostoc spp.  

(Sulaiman et al., 2014, 

Tanaka et al., 2012) 

   

Meat and seafood   

Alheira Lactobacillus (Lb. plantarum, Lb. paraplantarum, Lb. brevis, Lb. rhamnosus, Lb. sakei, Lb. zeae, 

Lb. paracasei), Enterococcus (Ent. faecalis, Ent. faecium), Pediococcus (P. pentosaceus, P. 

acidilactici), Weissella (W. cibaria, W. viridescens), Leu. mesenteroides  

 

(Albano et al., 2009) 

Budu Lb. plantarum, Lb. delbrueckii), P. pentosaceus, P. acidilactici, Lc. lactis  (Sim et al., 2015) 

   

Adopted from (Tamang et al., 2016) 
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2.1.2 Phylogenetics and systematics of LAB 

 

 In general, LAB are constituted of a genetically diverse or heterogeneous group 

of bacteria (Temmerman et al., 2004) with low guanine plus cytosine (G+C) contents 

varying from 34 to 53 mol %, encompassing rod- and coccoid-shaped bacteria. Albeit 

LAB are not a strictly defined taxonomic grouping, the term LAB includes a number 

of phylogenetically-related genera with several biochemical and ecological features in 

common. Phylogenetically, LAB consist of member belongs to the Aerococcaceae, 

Carnobacteriaceae, Enterococcaceae, Lactobacillaceae, Leuconostocaceae and 

Streptococcaceae (Holzapfel and Wood, 2014). The genus Bifidobacterium is 

unrelated to LAB phylogenetically and genetically in the context of its high G+C 

content in deoxyribonucleic acid (DNA), using a unique metabolic pathway for sugar 

metabolism. However, Bifidobacterium species are often considered to be LAB on 

account of the probiotic features they play by living in the gastrointestinal tract of 

human and animals (Holzapfel and Wood, 2014).  

 The heterogeneity of genera recognised as members of LAB leads to the need 

of accurate identification and characterisation of LAB. Although conventional 

phenotypical identification has been proven to be useful for certain LAB, it is limited 

in terms of its discriminating ability, accuracy and ambiguity of some techniques 

(Stackebrandt et al., 2002, Tindall et al., 2010). As the number of LAB are ever 

increasing and the realization that phenotypic identification is not reliable, 

microbiologists have resorted molecular techniques for accurate and rapid 

identification of LAB (Tindall et al., 2010, Chun and Rainey, 2014). Genotypic 

approaches eliminate or reduce variations due to complex growth conditions of LAB 

and also allow for increase degree of discriminatory power from species to strain level, 
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and thus giving rise to a much higher taxonomic resolution for LAB (Chun and Rainey, 

2014, Temmerman et al., 2004). However, by employing only genotypic approaches, 

it is unlikely or impossible to know the general growth characteristics of the identified 

LAB, especially novel species leading to incomplete description profile of the novel 

LAB. By using polyphasic approach in LAB systematics, predominant features of one 

method can compensate the shortcomings of another method. 

  

2.1.3 Phenotypic characterisation of LAB  

 

 Traditionally, LAB have been classified on the basis of phenotypic properties 

such as morphology, mode of glucose fermentation, growth at different temperatures, 

lactic acid configuration, and fermentation of various carbohydrates (Holzapfel et al., 

2001). Based on their hexose catabolism, LAB can be divided into two major groups, 

the homofermentative and heterofermentative LAB. Homofermentative LAB 

produces lactic acid from glucose in almost stoichiometric quantities, but in the 

presence of limited nutrient availability, formic and acetic acids, and ethanol are also 

being produced. Heterofermentative LAB ferments glucose into lactic acid, ethanol, 

CO2, and in some cases, acetic acid (Piard and Desmazeaud, 1991). In 

heterofermentative LAB, lactic acid comprises about 70% of the catabolic end-

products. Recently, the term “fructophilic” has been assigned to describe a specific 

group of LAB which has preference towards fructose, and also possess unique 

characteristics which are different from commonly described LAB (section 2.2). These 

unique characteristics are most likely attributed to the habitat of these fructose-loving 

LAB species. As these organisms inhabitat fructose-rich environments, they have 

evolved and adapted in fructose-rich environment (Endo et al., 2015).  
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2.1.4 Genotypic identification and characterisation of LAB  

 

 Current advances in molecular biology provides a bewildering range of 

nucleic-acid-based assays for rapid and accurate identification and characterisation. 

Sequencing of the 16S rRNA gene is integral in microbial taxonomy and identification 

to genus/species level (Janda and Abbott, 2007, Armougom, 2009).  DNA-DNA 

hybridisation (DDH) developed by McCarthy and Bolton (1963) has been the 

cornerstone for differenting closely-related species. Both methods are particularly 

useful in detection of misclassification among named species and establishment of 

phylogenetic associations (Kostinek et al., 2005, Dellaglio et al., 2006, Endo and 

Okada, 2008). Organisms with a low character match to any described species are not 

classifiable and thus its phylogenetic position should be re-evaluated to obtain taxon-

specific characters (Stackebrandt and Goebel, 1994). The phylogenetic definition of a 

species generally would include strains with approximately 70% or greater DNA-DNA 

relatedness and with 5°C or less ∆Tm (Tindall et al., 2010, Wayne et al., 1987). 

Stackebrandt and Goebel (1994) asserted that 97% 16S rDNA sequence similarity [or 

more recently, 98.7 to 99% was recommended (Stackebrandt and Ebers, 2006)] as a 

cut-off value, which corresponded to DNA reassociation value of 70%, for species 

delineation. In addition, Stackebrandt et al. (2002) recommended that sequencing of 

housekeeping genes offers great promise to genomically differentiate closely-related 

species. It has been proposed that RecA gene could be used as a phylogenetic marker 

(Eisen, 1995), and satisfactory results had been obtained in various bacterial genera, 

including lactobacilli (Torriani et al., 2001).  

 Probiotic ability or technological properties of LAB are often strain-specific.  

Genotypic techniques have been extensively employed to determine the genetic 
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relatedness of food-associated LAB, most prevalently in studying microbial diversity 

or monitoring starter culture dynamics during fermentation (Di Cagno et al., 2014, 

Blana et al., 2014). Various molecular typing methods have been developed based on 

DNA hybridisation, restriction enzyme analysis, PCR or direct sequencing of DNA, 

with the latter possessing the highest accuracy. Molecular typing methods such as 

random amplified polymorphic DNA (RAPD)-PCR and pulse-field gel electrophoresis 

(PFGE), multi-locus sequence typing (MLST) and whole genome sequencing (WGS) 

are extensively used (Moisan and Moineau, 2012, Agaliya and Jeevaratnam, 2013, 

Blana et al., 2014, Bull et al., 2014), in determining genetic diversity or variability. 

Even though RAPD lacks reproducibility, it is appreciated because it is simple, cheap, 

rapid, and considerably accurate for the typing of LAB strains (Sabat et al., 2013). 

MLST allows for unambiguous typing and superior taxonomic resolution due to the 

availability of an internationally standardized nomenclature. PFGE is regarded as the 

gold standard for molecular typing owing to its excellent discriminatory index 

(Michael et al., 2006, Jensen et al., 2009, Picozzi et al., 2010). In addition, WGS is 

priced for its high accuracy as shown by excellent correlation between clusters 

delineated based on WGS and DNA-DNA hybridisation studies (Goris et al., 2007). 

 The factors most important for achieving the desired results must be considered 

before choosing a molecular technique. Methods that are accurate in reflecting genetic 

variation, and are rapid and inexpensive are necessary. Identification of LAB by 

sequencing of the 16S rRNA and housekeeping genes are necessary for accurate 

identification. As the costs of WGS continue to decline (Service, 2006), WGS should 

be widely used in species delineation and typing of LAB strains for better 

understanding of key aspects of LAB.  
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2.2 Niche-specific adaptations of LAB  

 

 LAB are highly adaptable bacteria (van Reenen and Dicks, 2011). During 

adaptation and evolution of LAB, reduction of genome sizes are known to occur 

(Pfeiler and Klaenhammer, 2007). The relatively small size of commonly described 

LAB genomes, 1.7-3.3 megabase pairs (Mbp), consisting of numerous genes ranging 

from 1,600 to 3,000 (van Reenen and Dicks, 2011), is usually attributed to genes loss 

(Makarova et al., 2006) caused by their continuous adaptation to nutrient-rich 

environments. One example of such adaptation is fructophilic LAB (FLAB), which 

underwent reductive evolution during adaptation to fructose-rich niches. According to 

Chelo et al. (2010), the estimated genome sizes in Fructobacillus spp. (F. fructosus, F. 

ficulneus and F. pseudoficulneus) are in the range of 1.41-1.55 Mbp, which are smaller 

compared to other LAB. Genomic analysis conducted by Tamarit et al. (2015) on Lb. 

kunkeei revealed an extreme reduction in genomic size due to loss of 509 genes 

encoding various proteins compared to its common ancestor and closely-related Lb. 

sanfrancisensis during evolution. 

 Conserved genes present in LAB may also aid in the adaptation of these 

organisms to less complex environment containing abundance of specific simple 

sugars. Genes encoding the phosphotransferase (PTS) proteins are highly conserved 

in many LAB species such as Lactococcus lactis (Aleksandrzak-Piekarczyk et al., 

2011), Oenococcus oeni (Jamal et al., 2013) and Lactobacillus bulgaricus (Leong-

Morgenthaler et al., 1991). PTS is regarded as a predominant pathway for carbohydrate 

uptake in LAB, and is also best known for its efficiency in the transportation of lactose 

(Aleksandrzak-Piekarczyk et al., 2011). Analysis of a draft genome of fructophilic Lb. 

florum revealed that the genes encoding enzymes essential for fructose metabolism are 
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highly conserved when compared to the closely-related Lactobacillus sanfranciscensis 

(Kim et al., 2013). In addition, adaptation of LAB to ecological niches may also be 

attributed to the acquisition of plasmids which enhanced the utilisation of relevant 

carbohydrates. For instance, Flórez and Mayo (2015) revealed that the adaptation of 

Lactococcus garvieae in a dairy environment was due to the presence of plasmid which 

complements lactose assimilation. They also reported that similar plasmid with 

complete nucleotide identity was present in Lactococcus lactis.  

 It is important to note that adaptation by LAB to various ecological niches 

might include a variety of other parameters rather than the mere ability to utilise 

relevant carbohydrates. Acquisition or presence of genes conferring bacterial fitness, 

such as biofilm synthesis, adhesion, bacteriocin and lysozyme, antibiotic resistance, 

transmembrane protein and phage-related proteins, has been reported in Lb. kunkeei 

(Asenjo et al., 2016a, Butler et al., 2013, Vásquez et al., 2012). It is also important to 

consider that interference-based or resource-based competitions with other 

microorganisms might be parameters to consider (Hibbing et al., 2010). Flowers and 

fruits as well as fermented foods can also be considered as rich sources of nutrients 

which might limit the relevance of such competitions. Another hypothesis is the 

production of antagonistic compounds as predation tools to obtain nutrients from lysed 

target cells as observed in many lactic acid bacteria (Leisner and Haaber, 2012). 

 

2.2.1 Fructophilic LAB (FLAB) 

 

 The term “fructophilic LAB” (FLAB) designate a group of LAB with a 

preference for fructose as carbohydrate substrate. FLAB consist of all members of the 

genus Fructobacillus within the family of Leuconostoceae (F. fructosus, F. ficulneus, 
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F. durionis, F. pseudoficulneus and F. tropaeoli) (Endo et al., 2012) and six members 

of Lactobacillus within the order of Lactobacillales (Lb. kunkeei, Lb. florum, Lb. 

plantarum, Lb. fabifermentans, Lb. cacaonum and Lb. brevis) (Endo et al., 2012, 

Edwards et al., 1998, Neveling et al., 2012, Lefeber et al., 2011b, Endo et al., 2009, 

Endo et al., 2010). Metabolically, FLAB are obligately heterofermentative LAB that 

are grouped as either “obligately” or facultatively fructophilic, based on their ability 

to grow in the presence of glucose and their ability for ethanol production (Endo et al., 

2009). Fructobacillus spp. and Lb. kunkeei have been classified as “obligately” FLAB 

(Endo et al., 2012, Endo et al., 2011a, Endo and Okada, 2008) while, Lb. florum and 

one strain of Lb. brevis as facultatively FLAB (Neveling et al., 2012, Endo et al., 2010). 

 

2.2.2 Habitats of FLAB  

 

 Figure 2.1 gives an overview on the various habitats from which FLAB have 

been isolated. Recently, fructophilic Lb. florum was isolated from Valencia orange 

leaves (Kim et al., 2013) and this finding is unique as aerial surface of orange leaves 

is not generally regarded as a fructose-rich niche. 
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Figure 2.1 Ecological niches of FLAB 
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2.2.3 Unique characteristics of FLAB  

 

 FLAB grow well on fructose or on glucose in the presence of external electron 

acceptor (e.g. pyruvate, fructose or oxygen) but poorly on glucose in the absence of 

external electron acceptors. They prefer aerobic conditions rather than anaerobic 

conditions for growth, and generally only metabolise a limited number of 

carbohydrates (Endo et al., 2009). These characteristics are unusual in LAB, which are 

obligately or facultatively anaerobic and grow well on glucose, and thus these 

phenotypic characteristics are regarded as unique characteristics of FLAB. 

 

2.2.3 (a) Poor carbohydrates fermentation abilities and the preference of fructose 

 

 Generally speaking, all FLAB utilise only a limited number of carbohydrates 

including both fructose and glucose. Fructose is utilised preferentially and metabolized 

at a faster rate compared to glucose (Endo et al., 2012). Lb. florum utilises only fructose 

and glucose while potassium gluconate is weakly utilised (Endo et al., 2010). F. 

fructosus, F. pseudoficulneus and F. tropaeoli utilises only fructose, glucose and 

mannitol (Antunes et al., 2002, Chambel et al., 2006, Endo & Okada, 2008, Endo et 

al., 2009, 2011). However, De Bruyne et al. (2009) reported that Lb. fabifermentans 

isolated from Ghanian cocoa fermentations were able to utilise up to 18 different 

carbohydrates. Similarly, Neveling et al. (2012) reported that the fructophilic Lb. 

brevis and certain strains of Lb. kunkeei were able to utilise up to 14 and 15 

carbohydrates, respectively. This suggests that there are FLAB species that may 

represent intermediaries on the evolutionary path during adaptation to fructose-rich 

niches.  
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2.2.3 (b) Require external electron acceptors (pyruvate, fructose or oxygen) for 

 glucose metabolism 

 

 “Obligately” FLAB need an external electron acceptor for better metabolism 

or utilisation of glucose. On the other hand, facultatively FLAB grow on fructose or 

glucose in the presence or absence of pyruvate or O2 as an electron acceptor but growth 

will be enhanced by the presence of electron acceptors (Endo et al., 2009). Absence of 

the bifuntional acetaldehyde/alcohol dehydrogenase gene (adhE) in the “obligately” 

FLAB prevents the conversion of acetyl-CoA, and subsequent conversion of 

acetyldehyde to ethanol, thus inhibiting reoxidation or recycling of NAD(P)H, 

resulting in the lack of NAD+ required for glucose metabolism (Endo et al., 2015, 

Maicas et al., 2002, Richter et al., 2003b, Richter et al., 2003a, Richter et al., 2001, 

Veiga-da-Cunha et al., 1993, Zaunmuller et al., 2006). The presence of external 

electron acceptors such as pyruvate (leading to formation of lactate), fructose (leading 

to formation of mannitol) and O2 enhances glucose metabolism in “obligately” FLAB. 

The carbohydrate metabolism pathway of F. durionis, an “obligately” FLAB is 

presented in Figure 2.2. F. durionis also harbour the genes encoding for the formation 

of erythritol from erythrose-4-P and ultimately fructose-6-P. Thus, erythritol (formed 

from erythose-6-P and ultimately fructose-6-P may serve as an additional pathway in 

this genus for recycling NADP(H).   
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Figure 2.2 Carbohydrate metabolism pathway of F. durionis LMG 22556T 
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2.2.3 (c) Types of fermentative metabolisms and end-products from glucose 

 utilisation 

 

 The other distinguishing feature of FLAB is the production of ethanol from 

glucose. “Obligately” FLAB mainly produce lactic acid and acetic acid, with very little 

or no ethanol (Endo et al., 2009) but facultatively FLAB produce substantial amount 

of ethanol from glucose metabolism (Endo and Okada, 2008). Genomic analysis 

revealed the absence of genes encoding the subunits for pyruvate dehydrogenase 

complex in “obligately” FLAB (Fructobacillus spp. and Lb. kunkeei). This suggests 

that pyruvate generated during glucose metabolism is metabolised to lactate instead of 

being channelled into the TCA cycle. The absence of the bifuntional 

acetaldehyde/alcohol dehydrogenase gene (adhE) and acetaldehyde dehydrogenase 

activity in the fructophilic Fructobacillus spp. (Endo et al., 2015) are consistent with 

findings that no alcohol is produced by “obligately” FLAB, despite they being 

obligately heterofermentative (Endo et al., 2009). Facultative FLAB, however, 

produce predominantly lactic acid and small amounts of acetic acid, as well as a 

substantial quantity of ethanol, which is unique when compared to “obligately” FLAB 

(Neveling et al., 2012).  

 

2.2.4 FLAB in food fermentation 

 

 In fruit fermentations, FLAB maybe one of the predominant bacterial groups 

at the onset or during initial stage of the fermentations. This has been shown during 

natural (spontaneous) fermentation of cocoa bean (Lefeber et al., 2011a, Nielsen et al., 

2007, Papalexandratou et al., 2011a). Almost all of the reported FLAB-associated 



22 

 

fermentations are natural, except for F. pseudoficulneus which has been suggested as 

a starter culture in controlled cocoa bean fermentation, using cocoa pulp simulation 

medium (Lefeber et al., 2011b). F. pseudoficulneus is well-adapted to the cocoa pulp 

ecosystem which contains high levels of fructose, which could serve as an energy 

source as well as external electron acceptor. Indeed, F. pseudoficulneus has been 

previously isolated from naturally fermenting cocoa beans (Lefeber et al., 2011a, 

Nielsen et al., 2007, Papalexandratou et al., 2011a). 

 In addition, FLAB have been isolated from fermented beverages (Figure 2.1). 

Mtshali et al. (2012) reported that Lb. florum strains isolated from grapes and wines 

harbours the genes responsible for the encoding of malolactic enzyme, peptidases, 

phenolic acid decarboxylase and citrate lyase, which associated with proteolysis and 

peptidolysis in wine-making (Juillard et al., 1995) and organoleptic properties in wine-

making (Björkroth and Holzapfel, 2006). Also, a strain of F. fructosus has been 

examined for its ability to produce mannitol from fructose during fermentation of 

wheat bran (Prückler et al., 2015). This species was not, however, among those 

recommended for utilisation in industrial wheat bran fermentation. 

 

2.2.5 FLAB as probiotics in honeybees 

 

 Recent studies reported on symbiosis between LAB and honeybees, and the 

presence of LAB, including Fructobacillus and other FLAB, in fresh honey (Olofsson 

et al., 2014, Olofsson and Vasquez, 2008, Vásquez et al., 2012, Mattila et al., 2012). 

Various researchers have reported on the probiotic effects of Lb. kunkeei in honeybees, 

as observed by their ability to inhibit the bee pathogen Melissococcus plutonius and 

Paenibacillus larvae responsible for the European Foulbrood disease and American 
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Foulbrood (AFB), respectively (Forsgren et al., 2010, Vásquez et al., 2012). Analysis 

of the draft genome of Lb. kunkeei EFB6, isolated from a honeybee larva infected with 

European foulbrood, together with other Lb. kunkeei strains isolated from wine and 

honey, indicated the presence of Lb. kunkeei-specific genes encoding for cell surface 

or secreted proteins which are involve in biofilm formation and cell adhesion (Djukic 

et al., 2015). In addition, genes encoding for lysozyme (Butler et al., 2013) and 

lysozyme-like enzymes (Djukic et al., 2015), which confer antimicrobial properties, 

were also detected in Lb. kunkeei strains isolated from honeybees. These findings 

suggest a symbiotic relationship between Lb. kunkeei and honeybees, whereby Lb. 

kunkeei colonise the bees protecting their niche and also inhibit honeybee pathogens 

and microorganisms present in pollen and nectar. In another study, Olofsson and 

Vasquez (2008) suggested that putative FLAB may also play a role in the fermentation 

of honey. Hence, application of Lb. kunkeei as probiotic additive to improve honey bee 

health might be plausible.  

 Furthermore, researchers have also proposed that paratransgenesis of 

commensal FLAB, F. fructosus and Lb. kunkeei, as a feasible approach to promote 

honeybee health (Rangberg et al., 2012, Maddaloni et al., 2014, Rangberg et al., 2015). 

Their studies showed that both fructophilic F. fructosus and Lb. kunkeei are 

transformable and are able to survive well in the honeybee gut upon reintroduction 

without causing any adverse effect on honeybee health and survival. Transgenesis of 

FLAB isolated from honeybee serve as a molecular toolbox by which genetic 

modification of FLAB to produce desired effector molecules (e.g. bioactive 

metabolites with inhibitory effects against bee pathogens) is achievable. 
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2.3 Metabolites produced by LAB 

 

 LAB metabolites are intermediate and final products of metabolism in LAB. 

Fermentation reduces the amount of available carbohydrates and results in a range of 

small molecular mass organic molecules known as metabolites. LAB produce organic 

acids, acetaldehyde, hydrogen peroxide, diacetyl, carbon dioxide, polysaccharides and 

bacteriocins (Özcelik et al., 2016; Papagianni, 2012; Zacharof and Lovitt, 2012), some 

of which may act as antimicrobials. The metabolites produced by LAB are in high 

demand in the food industry due to the GRAS status.  

 

2.3.1 Oxygen Metabolites and Catabolism End-products 

 

 Oxygen metabolites (hydrogen peroxide) and end-products of carbohydrate 

catabolism such as organic acids, diacetyl, acetaldehyde and D-isomers of amino acids 

are produced by LAB (Piard and Desmazeaud, 1991). Organic acids are major 

metabolites produced by LAB, where lactic acid is the major end-product of 

carbohydrate catabolism. More than 50% of lactic acid is produced from pyruvate by 

lactate dehydrogenase in order to regenerate pyrimidine nucleotides which are 

necessary for sugar break down. Thus, the general name “Lactic Acid Bacteria” has 

been given to this group of bacteria due to the predominance of lactic acid in the 

conversion of the carbohydrate (Orla-Jensen, 1919).  

 The antimicrobial effect of LAB is mainly due to their lactic and organic acid 

production, as these acids disrupts intracellular pH homeostasis (Kuipers et al., 2000; 

Suskovic et al., 2010). The cell membrane is impermeable to ionized hydrophilic acids, 

while the non-ionized hydrophobic acids diffuse passively through the membrane, 
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