
Folia Biologica (Praha) 62, 181-187 (2016)

Review Article 

The Potential Role of Melatonin on Memory Function: 
Lessons from Rodent Studies
(pineal gland / melatonin / learning / memory / rodents)

R. ZAKARIA1, A. H. AHMAD1, Z. OTHMAN2

1Department of Physiology, 2Department of Psychiatry, School of Medical Sciences, Universiti Sains 
Malaysia, Kubang Kerian, Kelantan, Malaysia 

Abstract. Pineal melatonin biosynthesis is regulated 
by the circadian clock located in the suprachiasmatic 
nucleus of the hypothalamus. Melatonin has been 
found to modulate the learning and memory process 
in human as well as in animals. Endogenous mela-
tonin modulates the process of newly acquired infor-
mation into long-term memory, while melatonin 
treatment has been found to reduce memory deficits 
in elderly people and in various animal models. 
However, the mechanisms mediating the enhancing 
effect of melatonin on memory remain elusive. This 
review intends to explore the possible mechanisms 
by looking at previous data on the effects of mela-
tonin treatment on memory performance in rodents.
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Abbreviations: Aβ – β-amyloid, AβPP – Aβ precursor protein, 
AD – Alzheimer’s disease, AFMK – N1-acetyl-N2-5-methoxy
kynuramine, BDNF – brain-derived neurotrophic factor, CaMKII 
– Ca2+/calmodulin-dependent protein kinase II, ChAT – choline 
acetyltransferase, CREB – cyclic AMP-responsive element-bind­
ing protein, DEX – dexamethasone, DS – Down syndrome, 
GCLC – glutamate cysteine ligase catalytic, GPCR – G protein-
coupled receptor, GPx – glutathione peroxidase, GSH – oxidized 
glutathione, HO-1 – haem oxygenase-1, i.p. – intraperitoneally, 
LPO – lipid peroxide, LPS – lipopolysaccharide, LTP – long-term 
potentiation, MDA – malondialdehyde, NF-κB – nuclear factor 
κB, NCAM – neural cell adhesion molecules, NO – nitric oxide, 
NR2B – N-methyl-D-aspartate receptor subtype 2B, Nrf2 – nu­
clear factor erythroid 2-related factor 2 (Nrf2), OKA – okadaic 
acid, ROS/RNS – reactive oxygen/nitrogen species, SCN – supra­
chiasmatic nucleus, SD – sleep deprivation, SOD – superoxide 
dismutase, STZ – streptozotocin, Tg – transgenic.

Introduction

Endogenous melatonin secretion is regulated by the 
circadian clock and by light/dark cycles. LeGates et al. 
(2014) propose indirect and direct influence of light on 
mood and learning. Through an indirect pathway, light 
influences sleep and secondarily influences mood and 
hippocampal-dependent learning. Light can also influ­
ence the mood and learning directly, independent of cir­
cadian arrhythmicity or sleep disruption. Inhibition of 
melatonin synthesis by the circadian clock or light di­
rectly facilitates long-term memory formation. Alterna­
tively, the night-time peak in melatonin levels imposes 
an inhibitory effect on memory consolidation (Rawash­
deh and Maronde, 2012).

However, exogenous melatonin has been found to be 
beneficial in improving certain aspects of cognitive 
function in elderly people (Peck et al., 2004), in various 
animal models such as Alzheimer’s disease (AD) (Xian 
et al., 2002; Feng et al., 2004; Olcese et al., 2009; Eltab­
lawy and Tork, 2014; Rudnitskaya et al., 2014; O’Neal-
Moffitt et al., 2015), Down syndrome (DS) (Corrales et 
al., 2013), sleep deprivation (SD) (Zhang et al., 2013; 
Alzoubi et al., 2015; Kwon et al., 2015), and in various 
chemically induced memory impairments (Baydas et 
al., 2005a, b; Gönenç et al., 2005). In addition, the phys­
iological melatonin levels were found to be significantly 
reduced in patients with AD (Skene et al., 1990; Mishi
ma et al., 1999; Swaab, 2003; Wu et al., 2003). A recent 
publication revealed significant association between 
higher physiological melatonin levels with lower preva­
lence of cognitive impairment and depressed mood in a 
prospective community-based cohort study. The study 
subjects were 1127 community dwelling elderly sub­
jects (age ≥ 60 years) voluntarily enrolled in the Housing 
Environments and Health Investigation among Japane­
se Older People in Nara, Kansai Region/HEIJO-KYO 
(Obayashi et al., 2015).

The therapeutic roles of melatonin in insomnia, mood 
disorders and AD have been extensively studied (Srini
vasan et al., 2012a, b; 2014). However, the mechanisms 
mediating the enhancing effect of melatonin on memory 
formation are still elusive. This review intends to ex­
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Table 1. Effects of melatonin treatment on memory and learning performance in rodents 
Model Animal used Dose of melatonin Effect on memory and learning Reference
DS model 5- to 6-month-old 

Ts65Dn mice
0.5 mg/day (orally) 
for 5 months

Melatonin improved spatial learning 
and memory (Morris water maze) of 
both DS and control mice.

Corrales et al., 2013

AD model 4-month-old APP 695 
transgenic (Tg) mice

10 mg/kg/day 
(orally) for 4 months

Melatonin alleviated learning and 
memory deficits (passive avoidance 
tests) of APP 695 Tg mice.

Feng et al., 2004

2–2.5-month-old APP 
+ PS1 double Tg mice

100 mg/l drinking 
water/day for 
5 months

Melatonin protected from cognitive 
impairment in a variety of tasks of 
working memory, spatial reference 
learning/memory, and basic mnemonic 
function in double Tg mice.

Olcese et al., 2009

1.5-month-old male 
senescence-accelerated 
OXYS rats

0.04 mg/kg/day 
(orally) for 
2.5 months

Melatonin treatment of OXYS rats 
slowed down deterioration of referen­
ce memory (8-arm radial maze test).

Rudnitskaya et al., 
2014

4-month-old AβPPswe/
PSEN1dE9 double 
mutant Tg mice

0.5 mg/day in 
drinking water for 
8–11 months

Melatonin significantly reduced 
cognitive deficits in a variety of tasks 
of spatial (Barnes maze and Morris 
water maze) and non-spatial (novel 
object recognition) learning of double 
mutant Tg mice.

O’Neal-Moffitt et al., 
2015

TG2576 mice 10 mg/kg/day (i.p.) 
for 8–12 months

Melatonin improved the memory 
deficit (Morris water maze, passive 
avoidance test) of TG 2576 mice.

Peng, 2015

Adult rats
AD was induced by 
injection of Aβ 25 ~ 35 
into the hippocampus

0 1, 1, and 10 mg/
kg/day (intragastric) 
for 10 days

Melatonin improved the cognitive 
function (Morris water maze) of Aβ 
25 ~ 35 treated rats.

Xian et al., 2002

Adult rats
AD was induced by 
i.p. injection of LPS

10 mg/kg (i.p.) 
given 5 days/week 
for 6 weeks

Melatonin improved working memory 
(T maze) of LPS-induced AD rats.

Eltablawy et al., 2014

Adult rats
AD was induced by 
bilateral injection of 
Aβ peptides into the 
frontal cortices

30 mg/kg/day (i.p.) 
for 10 days

Melatonin did not prevent memory 
decline (passive avoidance test) in AD 
rats.

Eslamizade et al., 
2016

SD model Adult rats 15 mg/kg/day (i.p.) 
between 7:00 and 
8:00

Melatonin reversed cognitive 
impairment (open field test and Morris 
water maze) in SD rats.

Zhang et al., 2013 

Adult rats 100 mg/kg/day 
(orally) for 4 weeks

Melatonin prevented memory 
impairment (radial arm water maze) in 
SD rats.

Alzoubi et al., 2015

Adult rats 10 mg/kg/day. (i.p.) 
for 1 week

Melatonin treatment normalized 
memory impairment (Morris water 
maze) in SD rats to control levels.

Kwon et al., 2015

Chemically induced 
memory deficit 
model

Adult rats 
Ethanol 2.5 g/kg was 
diluted to 15 % in saline 
(i.p) 30 min before the 
first training session

10 mg/kg/day (i.p.) 
15 min before the 
ethanol injections

Melatonin alone had a positive effect 
on cognition (Morris water maze 
performances) in ethanol-treated rats.

Gönenç et al., 2005

Adult rats 
Ethanol 2 g/kg/day, 
(i.p.) for 45 days

10 mg/kg/day (i.p.) 
for 45 days

Melatonin improved learning and 
memory deficits (Morris water maze, 
passive avoidance and probe trial) in 
ethanol-treated rats. The impact of 
melatonin in preventing learning and 
memory deficits was higher in aged 
than young animals.

Baydas et al., 2005a

Adult rats 
Thinner (3000 ppm 
1 h/day) for 45 days

10 mg/kg/day (i.p.) 
for 45 days

Melatonin prevented learning and 
memory deficits (Morris water maze, 
passive avoidance and probe trial) 
caused by thinner inhalation.

Baydas et al., 2005b

Adult rats 
Thinner inhalation 
(1 h per day) for 
45 days

10 mg/kg/day (i.p.) 
for 45 days

Melatonin prevented learning and 
memory deficits (Morris water maze 
and probe trial) caused by thinner 
inhalation.

Nedzvetskii et al., 
2012
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Chemically induced 
memory deficit 
model

Adult rats 
Okadaic acid 200 ng 
(ICV)

Melatonin (20 mg/
kg/day) and Bacopa 
monnieri (40 and 
80 mg/kg/day) 
administered orally 
for 13 days

Treatment with Bacopa monnieri and 
melatonin significantly improved 
okadaic acid-induced memory 
dysfunction (Morris water maze).

Dwivedi et al., 2013

Adult mice 0.3 ml of 
1% D-galactose/mouse 
from days 7 to 56

10 mg/kg/day 
(orally) for 88 days

Ergothioneine and melatonin 
effectively protected against learning 
and memory deficits (active avoidance 
task and Morris water maze) in 
D-galactose-treated mice.

Song et al., 2014

Adult rats 
D-galactose 100 mg/
kg (i.p.) for 60 days

10 mg/kg/day (i.p.) 
for 30 days

Melatonin attenuated memory impair­
ment (Morris water maze and Y-maze 
test) in D-galactose-treated rats.

Ali et al., 2015

2-month-old mice 
Long-term anaesthesia 
using 1% isoflurane 
from circadian time 
14 to 20

10 mg/kg/day 
(intragastrically) for 
7 days

Melatonin pre-treatment improved 
isoflurane-induced spatial memory 
impairment.

Xia et al., 2016

Adult rats 
0.2% lead acetate 
solution from their 
birth day

3 mg/kg (gastric 
lavage) for 60 days

Melatonin exacerbated LTP 
impairment, learning and memory 
deficit (Morris water maze) in  
lead-exposed rats.

Cao et al., 2009

Adult rats 
STZ at 3 mg/kg (icv)

10 mg/kg/day (i.p.) 
+ dietary restriction

Melatonin and luzindole could not 
restore STZ-induced memory 
impairment (Morris water maze).

Mehdipour et al., 
2015

Adult mice 
Chronic administration 
of high doses (60 mg/
kg) of dexamethasone 
(DEX) for 21 days

10 mg/kg/day (i.p.) 
30 min before 0.9% 
normal saline or 
DEX treatment

Melatonin pre-treatment prevented 
DEX-induced cognitive impairment 
(Morris water maze).

Tongjaroenbuangam 
et al., 2013

Adult rats
10 mg/kg DEX (i.p.)

40 mg/kg/day + Vit 
C 100 mg/kg/day for 
9 days

Melatonin and Vit C failed to reverse 
DEX-induced learning and memory 
losses (radial arm maze test).

Yilmaz et al., 2015

plore the possible mechanisms by looking at previous 
data on the effects of melatonin treatment on memory 
performance in rodents (Table 1).

Melatonin
Melatonin is synthesized mainly in the pineal gland 

of all mammals including man. Tryptophan, which is 
taken up from the blood, serves as the precursor for me­
latonin biosynthesis. Melatonin in the plasma, blood 
and circulating fluids exhibits a characteristic circadian 
rhythm with very high nocturnal and low diurnal levels 
(Arendt, 2000). Pineal melatonin biosynthesis is regulat­
ed by the circadian clock located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus and is entrained to 
the light-dark cycle through the retina-hypothalamic 
tract (Moore, 1996). Once formed in the pineal gland, 
melatonin is released immediately into the blood and its 
half-life is less than 30 min. 

Melatonin is metabolized mainly in the liver via hy­
droxylation in the C6 position by cytochrome P450 mo­
nooxygenases (CYP1A2 and CYP1A1). It is then conju­
gated with sulphate to form 6-sulphatoxymelatonin. In 
the central nervous system, melatonin is metabolized to 
form kynuramine derivative N1-acetyl-N2-5-methoxy
kynuramine (AFMK) (Hirata et al., 1974). Melatonin 
can readily pass through all cell membranes, including 
the blood-brain barrier (Reiter et al., 1993). Its binding 

sites exist in various brain structures such as the hip­
pocampus and prefrontal cortex (Weaver et al., 1989; 
Pandiperumal et al., 2008), known to play important roles 
in memory function (Mazzuchelli et al., 1996; Brzezins
ki, 1997; Savaskan et al., 2001, 2005; Ekmekçioğlu, 2006).

Physiological and pharmacological effects of mela­
tonin are mostly manifested via its effects on membrane-
bound melatonin receptors (MT1 and MT2) that occur 
in almost all tissues in the body. These melatonin recep­
tors belong to the superfamily of G protein-coupled re­
ceptors (GPCrs) (Reppert et al., 1994, 1995). Another 
melatonin receptor known as MT3 is identified as an 
analogue of quinine reductase type-2 (Nosjean et al., 
2000). Melatonin also binds to cytosolic proteins such 
as the calcium-binding protein, calmodulin or tubulin 
(Benitez-King, 2006). The nuclear receptors for mela­
tonin, i.e. RORα1, RORα2 and RZRβ, all belong to the 
retinoic acid superfamily (Wiesenberg et al., 1998).

Animal Models

Down syndrome model

Melatonin was administered for five months to 5- to 
6-month-old Ts65Dn mice, the most commonly used 
Down syndrome (DS) model. Melatonin treatment im­
proved spatial learning and memory, and increased the 
number of choline acetyltransferase (ChAT)-positive 
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cells in the medial septum of both DS and control mice. 
However, melatonin treatment did not significantly re­
duce β-amyloid (Aβ) precursor protein (AβPP) or Aβ 
levels in the cortex or hippocampus of DS mice. The 
authors concluded that chronic melatonin supplementa­
tion may be an effective treatment for delaying age-re­
lated progression of cognitive deterioration found in DS 
individuals (Corrales et al., 2013).

Alzheimer’s disease model 
The long-term influence of oral melatonin (10 mg/kg) 

on behaviour, biochemical and neuropathological chan­
ges was evaluated in heterozygous transgenic (Tg) mice 
(APP 695 Tg in C57BL/6 background) and non-Tg mice. 
Melatonin was found to alleviate learning and memory 
deficits, increase ChAT activity in the frontal cortex and 
hippocampus, reduce the number of apoptotic neurons 
and decrease Aβ deposits in the frontal cortex of APP 
695 Tg mice. Thus, the neuroprotective effects of mela­
tonin could be related to modulation of apoptosis and 
the cholinergic system (Feng et al., 2004). 

In a later study, Olcese et al. (2009) investigated the 
potential long-term melatonin treatment to protect 
against cognitive impairment and development of Aβ 
neuropathology. Melatonin (100 mg/l) was administer
ed in drinking water to APP + PS1 double transgenic 
(Tg) mice from 2–2.5 months to 7.5 months of age. 
Mice treated with melatonin were protected from cogni­
tive impairment in a variety of tasks such as working 
memory, spatial reference learning/memory, and basic 
mnemonic function. The melatonin cognitive benefits 
possibly involve its anti-Aβ aggregation, anti-inflamma­
tory, and/or antioxidant properties. This lends support 
for long-term melatonin therapy as a primary or comple­
mentary strategy for abating progression of AD.

Similarly, oral melatonin at a dose of 0.04 mg per kg 
body weight per day administered at the age of active pro­
gression of AD-like pathology (i.e. from age 1.5 months 
to 4 months) decreased the amyloid-β1-42 and amy
loid-β1-40 levels in the hippocampus and amyloid-β1-42 
levels in the frontal cortex. Melatonin slowed down de­
generative alterations in hippocampal neurons especially 
in the CA1 region as well as deterioration of reference 
memory of senescence-accelerated OXYS rats. Melatonin 
also prevented decrease in the mitochondria-occupied 
portion of the neuronal volume and improved the ultra­
structure of mitochondria in the neurons of the CA1 re­
gion in the hippocampus (Rudnitskaya et al., 2014).

Recent studies reported the prophylactic role of mela­
tonin in reducing AD neuropathology (O’Neal-Moffitt et 
al., 2015) and in increasing expression of synapse-asso
ciated proteins (synaptophysin). It also increases memory-
associated early response genes (arc and c-fos) as well as 
cyclic AMP-responsive element-binding protein (CREB) 
in hippocampus extracts (Peng, 2015). These findings 
suggest the role of melatonin in synaptic connections and 
molecular pathways leading to memory formation.

Apart from using transgenic animals, an AD model was 
also developed in adult rats by injecting Aβ peptides or 

lipopolysaccharide (LPS). Melatonin was found to im­
prove cognitive functions (Xian et al., 2002; Eltablawy 
and Tork, 2014), increase the number/activity of ChAT 
in the brain (Xian et al., 2002; Eltablawy and Tork, 2014), 
improve function of mitochondria (Eltablawy and Tork, 
2014), and prevent Aβ-induced increase in nuclear 
factor κB (NF-κB) from immunoreaction and shrinkage 
of the CA1 pyramidal neurons (Eslamizade et al., 2016). 

Sleep deprivation model
The SD animal model impairs both short- and long-

term memory. Melatonin plays a significant neuropro­
tective role in repairing the cognitive impairment, re­
versing the levels of oxidative stress markers including 
nitric oxide (NO), malondialdehyde (MDA) and super­
oxide dismutase (SOD), reducing catalase and glu­
tathione peroxidase (GPx) activities, and improving the 
relative protein levels of Ca2+/calmodulin-dependent 
protein kinase II (CaMKII) and brain-derived neuro­
trophic factor (BDNF) in cerebral cortex and hippo
campal CA1, CA3 and DG regions (Zhang et al., 2013; 
Alzoubi et al., 2015). Melatonin treatment not only nor­
malizes memory impairment and oxidative stress, but 
also causes glial activation and decreases fragile X-men­
tal retardation protein expression in the neurons to con­
trol levels (Kwon et al., 2015). This fragile X protein 
has been shown to regulate circadian rhythms and mem­
ory in flies (Dockendorff et al., 2002; Inoue et al., 2002; 
McBride et al., 2005; Bolduc et al., 2008) and mice 
(Zhao et al., 2005, Zhang et al., 2008).

Chemically Induced Memory Impairment
Gönenç et al. (2005) investigated the effect of mela­

tonin against ethanol-induced oxidative stress and spa­
tial memory impairment in rats. Ethanol was diluted to 
15 % in saline and administered intraperitoneally (i.p.) 
30 min before the first training session on each day of 
the spatial memory tasks (Acheson et al., 2001). Mela
tonin had positive effects on water maze performances 
but not on ethanol-induced spatial memory impairment. 

Baydas et al. (2005a) compared the effects of mela­
tonin on ethanol-induced memory deficits in young and 
aged rats. Melatonin improved learning and memory 
deficits, possibly by inhibiting oxidative stress via re­
ducing lipid peroxide (LPO) and elevating oxidized glu­
tathione (GSH) levels, and by modulating neural plas­
ticity as evidenced by neural cell adhesion molecule 
(NCAM) expression in the hippocampus. The impact of 
melatonin in preventing learning and memory deficits 
was, however, higher in aged compared to young animals.

Melatonin treatment also prevents thinner-induced 
learning and memory deficits in rats (Baydas et al., 
2005b; Nedzvetskii et al., 2012). Learning and memory 
deficits were caused by inhalation of high concentrations 
(3000 p.p.m.) of the thinner for 1 h a day for 45 days. 
Melatonin increased NCAM in the hippocampus, cor­
tex, and cerebellum and reduced LPO (malondialdehy
de and 4-hydroxyalkenals) in these cerebral structures 

R. Zakaria et al.



Vol. 62	 185

(Nedzvetskii et al., 2012). Both studies concluded that 
the beneficial effects of melatonin could possibly be due 
to the reduction in oxidative stress and normalization of 
neural plasticity. 

Dwivedi et al. (2013) induced memory dysfunction us­
ing okadaic acid (OKA) and found that melatonin signifi­
cantly improved memory dysfunction in OKA rats and 
restored nuclear factor erythroid 2-related factor 2 (Nrf2), 
haem oxygenase-1 (HO-1), and glutamate cysteine ligase 
catalytic subunit (GCLC) expression. These factors work 
together to strengthen cellular defence and scavenge reac­
tive oxygen/nitrogen species (ROS/RNS) and detoxify 
electrophiles (Lee et al., 2003; Satoh et al., 2008).

In a recent study, D-galactose was administered to in­
duce memory impairment (Song et al., 2014; Ali et al., 
2015), synaptic dysfunction and oxidative stress through 
decreasing 8-oxoguanine, and inhibiting RAGE/NF-κB/ 
JNK-mediated inflammation and neurodegeneration 
(Ali et al., 2015). Melatonin treatment (10 mg/kg, i.p.) 
alone or in combination with ergothioneine was able to 
reverse D-galactose-induced synaptic disorder via at­
tenuation of oxidative damage and restoration of memo­
ry (Song et al., 2014; Ali et al., 2015).

A more recent study by Xia et al. (2016) showed that 
pre-treatment with melatonin ameliorated a disturbed 
sleep-wake cycle, improved isoflurane-induced spatial 
memory impairment, and reversed down-regulation of 
CREB and N-methyl-D-aspartate receptor subtype 2B 
(NR2B) expression. It is possible to suggest that the 
NR2B-CREB signalling pathway has a critical role in 
the memory process. Thus, hippocampus-specific eleva­
tion of the NR2B subunit composition enhances long-
term potentiation (LTP) in CA1 neurons, which may 
produce hippocampal-dependent cognitive improve­
ment after anaesthesia (Xia et al., 2016).

While many previous studies revealed beneficial ef­
fects of melatonin pre-treatment or treatment on memo­
ry functions, a few studies reported equivocal or even 
negative effects of melatonin on the memory function.

When melatonin was administered over a prolonged 
period to lead-exposed rats, it exacerbated lead-induced 
LTP impairment, learning and memory deficit (Cao et 
al., 2009). Thus, the authors concluded that melatonin 
is not suitable for healthy and lead-exposed children. 
Whether the LTP impairment in this animal model was 
associated with alteration in CREB2B expression (Yin 
et al., 1994, 1995; Tubon et al., 2013) and spared the 
short-term memory remains to be investigated.

In another study using streptozotocin (STZ) to induce 
memory deficits, melatonin seemed to have no impor­
tant role in the effects of dietary restriction on spatial 
memory impairment. Similarly, melatonin and luzindole 
could not restore STZ-induced memory impairment, but 
were able to partially reduce the number of dead neu­
rons in CA1 of the hippocampus (Mehdipour et al., 2015).

Melatonin showed inconclusive results when used in 
dexamethasone (DEX)-induced memory deficit animals. 
Pre-treatment with melatonin prior to the DEX treat­
ment resulted in shorter escape latencies and longer re­

maining in the target quadrant compared to pre-treat­
ment only with DEX. Melatonin also significantly pre­
vented DEX-induced reduction in the expression of 
NR2A/B, BDNF, CaMKII and synaptophysin in mice 
(Tongjaroenbuangam et al., 2013). In another study, how
ever, melatonin, when given together with vitamin C, 
failed to reverse the DEX-induced memory deficit in 
rats (Yılmaz et al., 2015).

Earlier studies using the AD model showed improve­
ment in cognitive function (Xian et al., 2002). However, 
a study by Eslamizade et al. (2016) showed no effect of 
melatonin on the cognitive function despite its protec­
tive effects against Aβ-induced increased NF-κB and 
shrinkage of the CA1 pyramidal neurons. Differences 
between the previous reports and the study by Esla­
mizade et al. (2016) include differences in the melatonin 
dose, age of treatment initiation, and method of AD in­
duction. In the study by Xian (2002) melatonin was ad­
ministered intragastrically rather than intraperitoneally, 
and in doses ranging from 0.1 to 10 mg/kg/day for simi­
lar treatment duration. 

Conclusion 
Melatonin could be involved in stabilizing synaptic 

connections during memory and learning processes as 
well as in modulating expression of various proteins such 
as BDNF, NR2B, CREB, arc, c-fos and NCAM during 
memory formation. In addition, melatonin has anti-in­
flammatory and anti-amyloidogenic properties and is also 
an antioxidant. Therefore, it has the potential to reduce 
brain damage and improve learning and memory deficits.
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