SYNTHESIS, CHARACTERIZATION, NUCLEOLYTIC, ANTIBACTERIAL AND ANTIPROLIFERATIVE PROPERTIES OF VANADIUM, COPPER AND MANGANESE COMPLEXES

LIM ENG KHOON

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

July 2011

ACKNOWLEDGEMENTS

I would like to express profound gratitude to my supervisor, Professor Dr. Teoh Siang Guan, for his invaluable support, encouragement, enthusiasm, supervision and useful suggestions throughout this research work. His moral support and continuous guidance enabled me to complete my work successfully. I am also highly thankful to Associate Professor Dr. Ng Chew Hee, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Professor Dr. Mohd Nazalan Mohd Najimudin, School of Biological Sciences, Universiti Sains Malaysia and Professor Dr. Tengku Sifzizul Tengku Muhammad, School of Biological Sciences, Universiti Sains Malaysia, for their valuable suggestions throughout this study.

I would also like to express my deep appreciation to Professor Dr. Fun Hoong Kun and Mr. Mohd Mustaqim Rosli, X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, for their professional guidance, excellent help and valuable advice for running and analysis all my X-ray Crystallography samples.

Special thanks go to Miss Beh Hooi Kheng and Miss Seow Lay Jing, School of Pharmaceutical Sciences, Universiti Sains Malaysia; Mr. Cheah Yew Hoong, Bioassay Unit, Herbal Medicine Research Center, Institute Medical Centre; Miss Chew Guat Siew, Mr. Yam Hok Chai, Mr. Yuen Chee Wah and Mr. Emmanuel Jairaj Moses, School of Biological Sciences, Universiti Sains Malaysia, for their guidance and help in the biological tests. I want to give my thanks to the staff of the School of Chemical Science, Universiti Sains Malaysia, especially to Mr. Aw Yeong Choek Hoe, Mr. Ong Chin Hwie, Mr. Ong Ching Hin, Mr. Razli Effendy bin Khalidee, Mr. Marimuthu Ayeroo, Pn. Hjh. Zali Zaiton Hj. Hussin, Pn. Yeoh Chooi Ling, Mr. Ahmad Azrulhisham Abdul Rahim, Mr. Mohd Kassim Abd Razak, Mr. Yee Chin Leng and Mr. Clement D' Silva, for their constant help and support throughout my study.

I am also sincerely grateful to USM Fellowship award from Institute of Postgraduate Studies (IPS), Universiti Sains Malaysia, for the financial support and RU Grant and Science Fund from Universiti Sains Malaysia, and FRGS Grant from Ministry of Higher Education (MOHE), Malaysia, for funding this research.

I also like to express my warmest gratitude to my friends, especially to Sharon Fatinathan, Yasodha Sivasothy, Ong Chin Hin, Oo Chuan Wei, Vijay, Yoga, Wendy, Mandy, Cynn Dee, William Yip, Karen Onn and many more, for their moral support and kindness.

Finally, I would like to thank my family members, especially my wife, Belle, for supporting and encouraging me to pursue this degree. Without my family encouragement, I would not have finished the degree.

To all of you, I say Ribuan Terima Kasih

	wledge of Cont Figure Tables Abbre ct in Ba	tents s viations and Symbols ahasa Malaysia	i iv xi xxxv xlii xlv xlvii
CHAP	TER 1	INTRODUCTION	1
1.1	Biolog metal	gical roles and medicinal applications of metal complexes and ions	1
1.2	Antiba compl	acterial and antiproliferative activities of transition metal exes	4
1.3	Backg	round of nucleolytic activity of metal complexes	7
	1.3.1	Oxidative DNA cleavage by metal complexes in the presence of 3-mercaptopropionic acid (MPA)	12
	1.3.2	Oxidative DNA cleavage by metal complexes in the presence of ascorbic acid	14
	1.3.3	Oxidative DNA cleavage by metal complexes in the presence of $\mathrm{H}_2\mathrm{O}_2$	16
	1.3.4	Photolytic DNA cleavage by metal complexes	18
	1.3.5	Hydrolytic DNA cleavage by metal complexes	21
	1.3.6	Oxidative DNA cleavage by copper(II) amino acid complexes in the presence of H_2O_2	23
1.4	DNA-	metal complexes interaction	25
1.5	Resear	rch Objective	27

			Page
CHA	PTER 2	EXPERIMENTAL	29
2.1	Reager	ats and materials	29
2.2	Instrun	nents	29
2.3	X-ray o	crystallography	31
2.4	DNA c	leavage experiments	31
2.5	DNA b	inding absorption studies	32
2.6	Antiba	cterial screening (inhibition zone)	33
2.7	Antiba	cterial screening (MIC)	33
2.8	Cell lin	e and cell culture	34
2.9	In vitro	o cytotoxic assay (Sulforhodamine B (SRB))	34
2.102.11	MTT (assay Synthe	3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)	36 37
	2.11.1	Synthesis of complex VO ₂ PP	38
	2.11.2	Synthesis of complex VO ₂ GLY	39
	2.11.3	Synthesis of complex VOPYDC	39
	2.11.4	Synthesis of complex VOMAL	40
	2.11.5	Synthesis of complex VO ₂ HPYDC	40
	2.11.6	Synthesis of complexes Cu-4-Cl-2-NO ₂ BZO, Cu-2-Cl-6- FBZO, Cu-2-ClBZO and Cu-2-BrBZO	41
	2.11.7	Synthesis of complexes Cu-2-Cl-4-NO ₂ BZO, CuP-5-Cl-2-NO ₂ BZO and Cu-2-F-6-FBZO	42

	2.11.8	Synthesis of complexes MnP-4-Cl-2-NO ₂ BZO, MnP-3-NO ₂ - 5-NO ₂ BZO, Mn-4-NO ₂ BZO, MnP-4-NH ₂ BZO, MnP-4- FBZO, MnP-4-ClBZO and MnPGLY	44
	2.11.9	Synthesis of complex MnPyr	46
	2.11.10	Synthesis of complexes VOPhen, VODMPhen, VODPPhen and VODMPPhen	46
СНА	PTER 3	Characterization, Nucleolytic, Antibacterial and Antiproliferative Properties of Vanadium Carboxylato Complexes	48
Resu	lts and Dis	cussion	
3.1	X-ray cry	stallography analysis of complex VO ₂ PP	48
3.2	X-ray cry	stallography analysis of complex VO ₂ GLY	53
3.3	X-ray cry	stallography analysis of complex VOPYDC	58
3.4	FT-IR and	alysis of complexes VO ₂ PP, VO ₂ GLY and VO ₂ HPYDC	63
3.5	FT-IR and	alysis of complexes VOPYDC and VOMAL	69
3.6		nalysis of complexes VO ₂ PP, VO ₂ GLY, VO ₂ HPYDC, and VOMAL	74
3.7		analysis of complexes VO ₂ PP, VO ₂ GLY, VO ₂ HPYDC, and VOMAL	83
3.8	Redox pro and VO ₂ I	operty of complexes VO ₂ PP, VO ₂ GLY, VOPYDC, VOMAL HPYDC	88
3.9		wage activity of complexes VO_2PP , VO_2GLY , $VOPYDC$, and VO_2HPYDC	93
3.10	-	on of DNA cleavage activity of complexes VO ₂ PP, , VOPYDC, VOMAL and VO ₂ HPYDC	100

- **3.11 DNA cleavage mechanism study of complexes VO₂PP, VO₂GLY, 102 VOPYDC, VOMAL and VO₂HPYDC**
- **3.12** Antibacterial activity of complexes VO₂PP, VO₂GLY, VOPYDC, 107 VOMAL and VO₂HPYDC
- **3.13** Antiproliferative activity of complexes VO₂PP, VO₂GLY, VOPYDC, 110 VOMAL and VO₂HPYDC

CHAPTER 4 Characterization, Nucleolytic, Antibacterial and 113 Antiproliferative Properties of Copper Carboxylato Complexes

- 4.1 X-ray crystallography analysis of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.2 X-ray crystallography analysis of complex CuP-5-Cl-2-NO₂BZO 136
- 4.3 FT-IR analysis of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.4 UV-Vis analysis of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.5 Redox property of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4- 163 NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.6 DNA cleavage activity of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4- 168 NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.7 Comparison of DNA cleavage activity of complexes Cu-4-Cl-2- 176 NO₂BZO, Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO

- 4.8 DNA cleavage mechanism studies of complexes Cu-4-Cl-2-NO₂BZO, 178 Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.9 Antibacterial activity of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4- 184 NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- 4.10 Antiproliferative activity of complexes Cu-4-Cl-2-NO₂BZO, Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO and Cu-2-ClBZO
- CHAPTER 5 Characterization, Nucleolytic, Antibacterial and 192 Antiproliferative Properties of Manganese Carboxylato Complexes

Results and Discussion

- 5.1 X-ray crystallography analysis of complexes MnP-4-Cl-2-NO₂BZO, 192 MnP-3-NO₂-5-NO₂BZO and Mn-4-NO₂BZO
- 5.2 X-ray crystallography analysis of complex MnP-4-NH₂BZO 203
- 5.3 X-ray crystallography analysis of complex MnP-4-FBZO 208
- 5.4 X-ray crystallography analysis of complex MnPGLY 213
- 5.5 FT-IR analysis of complexes MnP-4-Cl-2-NO₂BZO, MnP-3-NO₂-5- 218 NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.6 UV-Vis analysis of complexes MnP-4-Cl-2-NO₂BZO, MnP-3-NO₂-5- 231 NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.7 Redox property of complexes MnP-4-Cl-2-NO₂BZO, MnP-3-NO₂-5- 242 NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr

- 5.8 DNA cleavage activity of complexes MnP-4-Cl-2-NO₂BZO, MnP-3- 249 NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.9 Comparison of DNA cleavage activity of complexes MnP-4-Cl-2- 258 NO₂BZO, MnP-3-NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.10 DNA cleavage mechanism studies of complexes MnP-4-Cl-2- 260 NO₂BZO, MnP-3-NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.11 Antibacterial activity of complexes MnP-4-Cl-2-NO₂BZO, MnP-3- 265 NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- 5.12 Antiproliferative activity of complexes MnP-4-Cl-2-NO₂BZO, MnP-3- 268 NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO and MnPyr

CHAPTER 6	Characterization,	Nucleolytic,	Anti	bacterial	and	270
	Antiproliferative	Properties	of	Vanadiur	n(IV)	
	Phenanthroline Der	ivative Complex	kes			

Results and Discussion

6.1 Characterization of complexes VOPhen, VODMPhen, VODPPhen 270 and VODMPPhen

6.2	DNA binding studies	2	78
-----	---------------------	---	----

- 6.2.1 Electronic absorption spectra study of complexes VOPhen, 278 VODMPhen, VODPPhen and VODMPPhen
- 6.2.2 Viscosity study of complexes VOPhen, VODMPhen, 288 VODPPhen and VODMPPhen
- 6.2.3 Circular dichroism (CD) study of complexes VOPhen, 290 VODMPhen, VODPPhen and VODMPPhen

6.3	DNA cleavage activity of complexes VOPhen , VODMPhen , VODPPhen and VODMPPhen	291
6.4	Comparison of DNA cleavage activity of complexes VOPhen , VODMPhen , VODPPhen and VODMPPhen	296
6.5	Antibacterial and antiproliferative activities of complexes VOPhen, VODMPhen, VODPPhen and VODMPPhen	300
6.6	The insight of antibacterial and antiproliferative activities of vanadium carboxylato complexes and vanadium phenanthroline derivative complexes	304
СНА	PTER 7 CONCLUSION	306
REF	ERENCES	307
APP	ENDICES	318
PUB	LICATIONS	320

Page

Figure 1.1	Schematic structures of cisplatin, carboplatin and oxaliplatin	2
Figure 1.2	The structure of part of a DNA double helix	8
Figure 1.3	The chemical structure of DNA. Hydrogen bonds are shown as dotted lines.	9
Figure 1.4	Supercoiled, nicked and linear DNA	11
Figure 1.5	Supercoiled, nicked and linear DNA bands in gel electrophoresis diagram	12
Figure 1.6	The schematic structures; a)[Cu ^{II} (ternary-L-glutamine)(1,10-phenanthroline)(H ₂ O)](ClO ₄) b)[Cu ^{II} (ternary-S-methyl-L-cysteine)(1,10-phenanthroline) (H ₂ O)](ClO ₄)	13
Figure 1.7	The proposed DNA cleavage mechanism of metal complex in the presence of 3-mercaptopropionic acid (MPA)	13
Figure 1.8	The schematic structures; a) [Ru ^{II} (imidazo[4,5-f][1,10]phenanthroline)(NH ₃) ₄](PF ₆) ₂ b) [Cu ^{II} (L-threonine)(1,10-phenanthroline) (H ₂ O)](ClO ₄)	15
Figure 1.9	The proposed DNA cleavage mechanism of metal complex in the presence of ascorbic acid	15
Figure 1.10	The schematic structures; a) [Co ^{II} (imidazole-terpyridine) ₂](ClO ₄) ₂ b) [Cu ^{II} (imidazole terpyridine) ₂](ClO ₄) ₂	17
Figure 1.11	The proposed DNA cleavage mechanism of metal complex in the presence of H_2O_2	17
Figure 1.12	 The schematic structures; a) [Cu^{II} (ternary-S-methyl-L-cysteine)(dipyridoquinoxaline) (H₂O)](ClO₄) b) [Co^{III}(ethylenediamine)₂(imidazo[4,5-f][1,10]- phenanthroline)]Br₃ 	19

		Page
Figure 1.12	 The schematic structures; c) [Ru^{II}(2,2'-bipyridine)₂(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO₄)₂ d) [Ni^{II}(naptho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione)(1,10-phenanthroline)](PF₆) 	20
Figure 1.13	The proposed DNA cleavage mechanism of metal complex upon irradiation	21
Figure 1.14	 The schematic structures; a) [Co^{III}(bis[2-(2-pyridylethyl)]-(2-pyridylmethyl)amine)(OH) (H₂O)]²⁺ b) [Mn^{II}(quercetin)₂(H₂O)₂]Cl₂ 	22
Figure 1.15	The proposed hydrolytic DNA cleavage mechanism by the metal complex	23
Figure 1.16	The schematic structures; a) Cu ^{II} (N,N'-dimethylglycinato) ₂ b) Cu ^{II} (<i>N</i> , <i>N</i> -di-(<i>N</i> '-methylacetamido)-L-alaninato) ₂	24
Figure 1.17	Complexes bind with DNA via hydrogen bonding	25
Figure 1.18	Complexes bind with DNA via electrostatic interaction	26
Figure 1.19	Complexes binds with DNA via intercalation	26
Figure 3.1	The molecular structure of complex VO_2PP , showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)	50
Figure 3.2	The crystal packing of complex VO ₂ PP	51
Figure 3.3	The molecular structure of complex VO_2GLY , showing 50 % probability displacement ellipsoids and the atomic numbering	55
Figure 3.4	The crystal packing of complex VO ₂ GLY	56

Figure 3.5	The molecular structure of complex VOPYDC , showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)	60
Figure 3.6	The crystal packing of complex VOPYDC	61
Figure 3.7(A)	FT-IR spectrum of complex VO ₂ PP	66
Figure 3.7(B)	FT-IR spectrum of 2-picolinic acid	66
Figure 3.8(A)	FT-IR spectrum of complex VO ₂ GLY	67
Figure 3.8(B)	FT-IR spectrum of diglycolic acid	67
Figure 3.9	Chemical structure of complex VO ₂ HPYDC [72]	68
Figure 3.10(A)	FT-IR spectrum of complex VO ₂ HPYDC	68
Figure 3.10(B)	FT-IR spectrum of 4-hydroxypyridine-2,6-dicarboxylic acid	69
Figure 3.11(A)	FT-IR spectrum of complex VOPYDC	72
Figure 3.11(B)	FT-IR spectrum of pyridine-2,6-dicarboxylic acid	72
Figure 3.12	Chemical structure of complex VOMAL [71]	73
Figure 3.13(A)	FT-IR spectrum of complex VOMAL	73
Figure 3.13(B)	FT-IR spectrum of malonic acid	74
Figure 3.14(A)	UV-Vis spectrum of complex VO_2PP (9.94 x 10 ⁻³ mol L ⁻¹)	77
Figure 3.14(B)	UV-Vis spectrum of complex VO₂PP (3.96 x 10 ⁻⁵ mol L ⁻¹ ; A = 262 nm, $\varepsilon = 10$ 295 mol ⁻¹ Lcm ⁻¹ ; A = 204 nm, $\varepsilon = 20$ 485 mol ⁻¹ Lcm ⁻¹)	77
Figure 3.15(A)	UV-Vis spectrum of complex VO_2GLY (0.014 mol L ⁻¹)	78
Figure 3.15(B)	UV-Vis spectrum of complex VO₂GLY (5.47 x 10 ⁻⁵ mol L ⁻¹ ; A = 259 nm, ε = 2945 mol ⁻¹ Lcm ⁻¹ ; A = 203 nm, ε = 7310 mol ⁻¹ Lcm ⁻¹)	78

		Page
Figure 3.16(A)	UV-Vis spectrum of complex VO_2HPYDC (0.012 mol L ⁻¹)	79
Figure 3.16(B)	UV-Vis spectrum of complex VO₂HPYDC (9.18 x 10 ⁻⁶ mol L ⁻¹ ; A = 276 nm, ε = 12 730 mol ⁻¹ Lcm ⁻¹ ; A = 203 nm, ε = 44 762 mol ⁻¹ Lcm ⁻¹)	79
Figure 3.17(A)	UV-Vis spectrum of complex VOPYDC (0.013 mol L ⁻¹ ; A = 836 nm, ε = 26 mol ⁻¹ Lcm ⁻¹ ; A = 616 nm, ε = 16 mol ⁻¹ Lcm ⁻¹)	80
Figure 3.17(B)	UV-Vis spectrum of complex VOPYDC (2.57 x 10^{-5} mol L ⁻¹ ; A = 268 nm, ε = 5512 mol ⁻¹ Lcm ⁻¹ ; A = 207 nm, ε = 18 648 mol ⁻¹ Lcm ⁻¹)	80
Figure 3.18(A)	UV-Vis spectrum of complex VOMAL (0.011 mol L ⁻¹ ; A = 804 nm, ε = 36 mol ⁻¹ Lcm ⁻¹ ; A = 595 nm, ε = 12 mol ⁻¹ Lcm ⁻¹)	81
Figure 3.18(B)	UV-Vis spectrum of complex VOMAL (4.45 x 10^{-5} mol L ⁻¹ ; A = 263 nm, ε = 1689 mol ⁻¹ Lcm ⁻¹ ; A = 203 nm, ε = 8025 mol ⁻¹ Lcm ⁻¹)	81
Figure 3.19	UV-Vis spectrum of NaVO ₃ (0.016 mol L^{-1})	82
Figure 3.20	UV-Vis spectrum of VOSO ₄ (0.024 mol L ⁻¹ ; A = 777 nm, $\varepsilon = 11 \text{ mol}^{-1}\text{Lcm}^{-1}$; A = 614 nm, $\varepsilon = 5 \text{ mol}^{-1}\text{Lcm}^{-1}$)	82
Figure 3.21(A)	⁵¹ V-NMR spectrum of complex VO_2PP (300.0 K)	85
Figure 3.21(B)	⁵¹ V-NMR spectrum of complex VO₂GLY (300.0 K)	85
Figure 3.21(C)	⁵¹ V-NMR spectrum of complex VO₂HPYDC (300.0 K)	86
Figure 3.21(D)	⁵¹ V-NMR spectrum of complex VOPYDC (300.0 K)	86
Figure 3.21(E)	⁵¹ V-NMR spectrum of complex VOMAL (300.0 K)	87
Figure 3.22	: ⁵¹ V-NMR spectrum of NaVO ₃ (300.0 K)	87
Figure 3.23	: ⁵¹ V-NMR spectrum of complex VOSO ₄ (300.0 K)	88

Figure 3.24(A)	Cyclic voltammogram of complex VO_2PP ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	90
Figure 3.24(B)	Cyclic voltammogram of complex VO_2GLY ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	91
Figure 3.24(C)	Cyclic voltammogram of complex VOPYDC ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	91
Figure 3.24(D)	Cyclic voltammogram of complex VOMAL ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	92
Figure 3.24(E)	Cyclic voltammogram of complex VO_2HPYDC ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	92
Figure 3.25	Cleavage of supercoiled pBR322 by complex VO ₂ PP at different concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2, DNA alone; L3, H_2O_2 alone; L4, complex alone (6 mM); Lanes 5-12 DNA with increasing concentration of complex + H_2O_2 : lane 5, 10 μ M; lane 6, 50 μ M; lane 7, 1 mM; lane 8, 2 mM; lane 9, 3 mM; lane 10, 4 mM; lane 11, 5 mM; lane 12, 6 mM.	94
Figure 3.26	Gene Ruler 1 kb DNA ladder, unit in bp (base pair)	95
Figure 3.27	Cleavage of supercoiled pBR322 by complex VO₂GLY at different concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2, DNA alone; L3, H_2O_2 alone; L4, complex alone (6 mM); Lanes 5-12 DNA with increasing concentration of complex + H_2O_2 : lane 5, 10 μ M; lane 6, 50 μ M; lane 7, 1 mM; lane 8, 2 mM; lane 9, 3 mM; lane 10, 4 mM; lane 11, 5 mM; lane 12, 6 mM.	96
Figure 3.28	Cleavage of supercoiled pBR322 by complex VOPYDC at different concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, Lanes 3-12 DNA with increasing concentration of complex: lane 3, 50 μ M; lane 4, 100 μ M; lane 5, 200 μ M; lane 6, 300 μ M; lane 7, 400 μ M; lane 8, 500 μ M; lane 9, 600 μ M; lane 10, 700 μ M; lane 11, 800 μ M; lane 12, 900 μ M.	97
Figure 3.29	Cleavage of supercoiled pBR322 by complex VOMAL at different concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, Lanes 3-12 DNA with increasing concentration of complex: lane 3, 50 μ M; lane 4, 100 μ M; lane 5, 200 μ M; lane 6, 300 μ M; lane 7, 400 μ M; lane 8, 500 μ M; lane 9, 600 μ M; lane 10, 700 μ M; lane 11, 800 μ M; lane 12, 900 μ M.	98

- **Figure 3.30(A)** Cleavage of supercoiled pBR322 by complex VO₂HPYDC at different 99 concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2, DNA alone; L3, H₂O₂ alone; L4, complex alone (6 mM); Lanes 5-12 DNA with increasing concentration of complex + H₂O₂: lane 5, 10 μ M; lane 6, 50 μ M; lane 7, 1 mM; lane 8, 2 mM; lane 9, 3 mM; lane 10, 4 mM; lane 11, 5 mM; lane 12, 6 mM.
- **Figure 3.30(B)** Cleavage of supercoiled pBR322 by complex **VO₂HPYDC** at different 99 concentrations in phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2, DNA alone; L3, H₂O₂ alone; L4, complex alone (14 mM); Lanes 5-12 DNA with increasing concentration of complex + H₂O₂: lane 5, 7 mM; lane 6, 8 mM; lane 7, 9 mM; lane 8, 10 mM; lane 9, 11 mM; lane 10, 12 mM; lane 11, 13 mM; lane 12, 14 mM.
- **Figure 3.31** Cleavage of supercoiled pBR322 by NaVO₃ at different concentrations in 101 phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2, DNA alone; L3, H_2O_2 alone; L4, NaVO₃ alone (14 mM); Lanes 5-12 DNA with increasing concentration of NaVO₃ + H_2O_2 : lane 5, 7 mM; lane 6, 8 mM; lane 7, 9 mM; lane 8, 10 mM; lane 9, 11 mM; lane 10, 12 mM; lane 11, 13 mM; lane 12, 14 mM.
- **Figure 3.32** Cleavage of supercoiled pBR322 by $VOSO_4$ at different concentrations in 102 phosphate buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, Lanes 3-12 DNA with increasing concentration of $VOSO_4$: lane 3, 50 μ M; lane 4, 100 μ M; lane 5, 200 μ M; lane 6, 300 μ M; lane 7, 400 μ M; lane 8, 500 μ M; lane 9, 600 μ M; lane 10, 700 μ M; lane 11, 800 μ M; lane 12, 900 μ M.
- Figure 3.33Effect of various scavengers on the cleavage of pBR322 by 2 mM complex
VO2PP. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane
3, DNA + 2 mM complex VO_2PP + H_2O_2 . Lanes 4 12 involves reaction
of 2 mM complex VO_2PP + H_2O_2 with DNA in presence of various
scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6,
DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM
NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM
NaN₃.
- Figure 3.34Effect of various scavengers on the cleavage of pBR322 by 6 mM complex
VO2GLY. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone;
Lane 3, DNA + 6 mM complex VO2GLY + H2O2. Lanes 4 12 involves
reaction of 6 mM complex VO2GLY + H2O2 with DNA in presence of
various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol;
lane 6, DMSO (1 M); lane 7, 1 mM NaN3; lane 8, 10 mM NaN3; lane 9, 20
mM NaN3; lane 10, 30 mM NaN3; lane 11, 50 mM NaN3; lane 12, 100
mM NaN3.104

- Figure 3.35 Effect of various scavengers on the cleavage of pBR322 by 7 mM complex 105 VO₂HPYDC. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA + 7 mM complex VO₂HPYDC + H₂O₂. Lanes 4 12 involves reaction of 7 mM complex VO₂HPYDC + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 3.36 Effect of various scavengers on the cleavage of pBR322 by 200 μM complex 105 VOPYDC. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA + 200 μM complex VOPYDC. Lanes 4 12 involves reaction of 200 μM complex VOPYDC with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 3.37 Effect of various scavengers on the cleavage of pBR322 by 400 μM complex 106 VOMAL. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA + 400 μM complex VOMAL. Lanes 4 12 involves reaction of 400 μM complex VOMAL with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 3.38 The proposed DNA cleavage mechanism of complexes VO_2PP , 106 VO_2GLY and VO_2HPYDC in the presence of H_2O_2
- Figure 3.39 The proposed DNA cleavage mechanism of complexes 107 **VOPYDC** and **VOMAL** in the absence of H_2O_2
- **Figure 4.1** The molecular structure of complex **Cu-4-Cl-2-NO₂BZO**, 118 showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)
- Figure 4.2 The crystal packing of complex Cu-4-Cl-2-NO₂BZO 119
- **Figure 4.3** The molecular structure of complex **Cu-2-Cl-4-NO₂BZO**, 121 showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)
- Figure 4.4 The crystal packing of complex Cu-2-Cl-4-NO₂BZO 122

Figure 4.5	The molecular structure of complex Cu-2-Cl-6-FBZO , showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)	124
Figure 4.6	The crystal packing of complex Cu-2-Cl-6-FBZO	125
Figure 4.7	The molecular structure of complex Cu-2-F-6-FBZO , showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)	127
Figure 4.8	The crystal packing of complex Cu-2-F-6-FBZO	128
Figure 4.9	The molecular structure of complex Cu-2-ClBZO , showing 50 % probability displacement ellipsoids and the atomic numbering	130
Figure 4.10	The crystal packing of complex Cu-2-ClBZO	131
Figure 4.11	The molecular structure of complex Cu-2-BrBZO , showing 50 % probability displacement ellipsoids and the atomic numbering	133
Figure 4.12	The crystal packing of complex Cu-2-BrBZO	134
Figure 4.13	The partial polymeric structure of complex CuP-5-Cl-2- NO ₂ BZO, showing 50 % probability displacement ellipsoids and the atomic numbering (Refer to the list of Publication at page 325)	138
Figure 4.14	The chemical structure of polymeric complex CuP-5-Cl-2- NO_2BZO	139
Figure 4.15	The crystal packing of polymeric complex CuP-5-Cl-2-NO ₂ BZO	140
Figure 4.16(A)	FT-IR spectrum of complex Cu-4-Cl-2-NO ₂ BZO	146
Figure 4.16(B)	FT-IR spectrum of 4-chloro-2-nitrobenzoic acid	146
Figure 4.17(A)	FT-IR spectrum of complex Cu-2-Cl-4-NO ₂ BZO	147
Figure 4.17(B)	FT-IR spectrum of 2-chloro-4-nitrobenzoic acid	147

Figure 4.18(A)	FT-IR spectrum of complex CuP-5-Cl-2-NO ₂ BZO	148
Figure 4.18(B)	FT-IR spectrum of 5-chloro-2-nitrobenzoic acid	148
Figure 4.19(A)	FT-IR spectrum of complex Cu-2-Cl-6-FBZO	149
Figure 4.19(B)	FT-IR spectrum of 2-chloro-6-fluorobenzoic acid	149
Figure 4.20(A)	FT-IR spectrum of complex Cu-2-F-6-FBZO	150
Figure 4.20(B)	FT-IR spectrum of 2,6-difluorobenzoic acid	150
Figure 4.21(A)	FT-IR spectrum of complex Cu-2-ClBZO	151
Figure 4.21(B)	FT-IR spectrum of 2-chlorobenzoic acid	151
Figure 4.22(A)	FT-IR spectrum of complex Cu-2-BrBZO	152
Figure 4.22(B)	FT-IR spectrum of 2-bromobenzoic acid	152
Figure 4.23(A)	UV-Vis spectrum of complex Cu-4-Cl-2-NO₂BZO (6.00 x 10^{-3} mol L ⁻¹ ; A = 697 nm, ε = 56 mol ⁻¹ Lcm ⁻¹)	155
Figure 4.23(B)	UV-Vis spectrum of complex Cu-4-Cl-2-NO₂BZO (1.20 x 10 ⁻⁵ mol L ⁻¹ ; A = 319 nm, ε = 3600 mol ⁻¹ Lcm ⁻¹ ; A = 262 nm, ε = 10 324 mol ⁻¹ Lcm ⁻¹ ; A = 216 nm, ε = 30 129 mol ⁻¹ Lcm ⁻¹)	155
Figure 4.24(A)	UV-Vis spectrum of complex Cu-2-Cl-4-NO₂BZO (6.54 x 10^{-3} mol L ⁻¹ ; A = 674 nm, ε = 63 mol ⁻¹ Lcm ⁻¹)	156
Figure 4.24(B)	UV-Vis spectrum of complex Cu-2-Cl-4-NO ₂ BZO (1.31 x 10 ⁻⁵ mol L ⁻¹ ; A = 275 nm, ε = 24 477 mol ⁻¹ Lcm ⁻¹ ; A = 211 nm, ε = 42 468 mol ⁻¹ Lcm ⁻¹)	156
Figure 4.25(A)	UV-Vis spectrum of complex CuP-5-Cl-2-NO₂BZO (5.90 x 10^{-3} mol L ⁻¹ ; A = 662 nm, ε = 60 mol ⁻¹ Lcm ⁻¹)	157
Figure 4.25(B)	UV-Vis spectrum of complex CuP-5-Cl-2-NO₂BZO (1.18 x 10 ⁻⁵ mol L ⁻¹ ; A = 274 nm, ε = 26 555 mol ⁻¹ Lcm ⁻¹ ; A = 211 nm, ε = 43 376 mol ⁻¹ Lcm ⁻¹)	157

		Page
Figure 4.26(A)	UV-Vis spectrum of complex Cu-2-Cl-6-FBZO (6.33 x 10^{-3} mol L ⁻¹ ; A = 735 nm, ε = 57 mol ⁻¹ Lcm ⁻¹)	158
Figure 4.26(B)	UV-Vis spectrum of complex Cu-2-Cl-6-FBZO (1.26 x 10 ⁻⁵ mol L ⁻¹ ; A = 264 nm, ε = 9920 mol ⁻¹ Lcm ⁻¹ ; A = 212 nm, ε = 42 285 mol ⁻¹ Lcm ⁻¹)	158
Figure 4.27(A)	UV-Vis spectrum of complex Cu-2-F-6-FBZO (4.27 x 10^{-3} mol L ⁻¹ ; A = 692 nm, ε = 69 mol ⁻¹ Lcm ⁻¹)	159
Figure 4.27(B)	UV-Vis spectrum of complex Cu-2-F-6-FBZO (4.27 x 10 ⁻⁶ mol L ⁻¹ ; A = 264 nm, ε = 10 009 mol ⁻¹ Lcm ⁻¹ ; A = 210 nm, ε = 45 380 mol ⁻¹ Lcm ⁻¹)	159
Figure 4.28 (A)	UV-Vis spectrum of complex Cu-2-ClBZO (5.81 x 10^{-3} mol L ⁻¹ ; A = 731 nm, ε = 65 mol ⁻¹ Lcm ⁻¹)	160
Figure 4.28(B)	UV-Vis spectrum of complex Cu-2-ClBZO (1.16 x 10 ⁻⁵ mol L ⁻¹ ; A = 270 nm, ε = 9526 mol ⁻¹ Lcm ⁻¹ ; A = 211 nm, ε = 47 783 mol ⁻¹ Lcm ⁻¹)	160
Figure 4.29 (A)	UV-Vis spectrum of complex Cu-2-BrBZO (4.39 x 10^{-3} mol L ⁻¹ ; A = 739 nm, ε = 55 mol ⁻¹ Lcm ⁻¹)	161
Figure 4.29(B)	UV-Vis spectrum of complex Cu-2-BrBZO (1.01 x 10 ⁻⁵ mol L ⁻¹ ; A = 256 nm, $\varepsilon = 16\ 300\ mol^{-1}Lcm^{-1}$; A = 211 nm, $\varepsilon = 45\ 575\ mol^{-1}Lcm^{-1}$)	161
Figure 4.30	UV-Vis spectrum of CuCl ₂ (0.022 mol L ⁻¹ ; A = 758 nm, $\epsilon = 25 \text{ mol}^{-1}\text{Lcm}^{-1}$)	162
Figure 4.31	UV-Vis spectrum of CuSO ₄ (0.022 mol L ⁻¹ ; A = 768 nm, $\epsilon = 22 \text{ mol}^{-1}\text{Lcm}^{-1}$)	162
Figure 4.32(A)	Cyclic voltammogram of complex Cu-4-Cl-2-NO₂BZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	165
Figure 4.32(B)	Cyclic voltammogram of complex Cu-2-Cl-4-NO₂BZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	165

Figure 4.32(C)	Cyclic voltammogram of complex CuP-5-Cl-2-NO₂BZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	166
Figure 4.32(D)	Cyclic voltammogram of complex Cu-2-Cl-6-FBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	166
Figure 4.32(E)	Cyclic voltammogram of complex Cu-2-F-6-FBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	167
Figure 4.32(F)	Cyclic voltammogram of complex Cu-2-ClBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	167
Figure 4.32 (G)	Cyclic voltammogram of complex Cu-2-BrBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	168
Figure 4.33	Cleavage of supercoiled pBR322 by complex Cu-4-Cl-2-NO₂BZO at different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-4-Cl-2-NO₂BZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-4-Cl-2-NO₂BZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.	169
Figure 4.34	Cleavage of supercoiled pBR322 by complex Cu-2-Cl-4-NO ₂ BZO at different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-2-Cl-4-NO ₂ BZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-2-Cl-4-NO ₂ BZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.	170
Figure 4.35	Cleavage of supercoiled pBR322 by complex CuP-5-Cl-2-NO₂BZO at different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex CuP-5-Cl-2-NO₂BZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex CuP-5-Cl-2-NO₂BZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.	171
Figure 4.36	Cleavage of supercoiled pBR322 by complex Cu-2-Cl-6-FBZO at different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-2-Cl-6-FBZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-2-Cl-6-FBZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.	172

- **Figure 4.37** Cleavage of supercoiled pBR322 by complex Cu-2-F-6-FBZO at different 173 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-2-F-6-FBZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-2-F-6-FBZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- **Figure 4.38** Cleavage of supercoiled pBR322 by complex Cu-2-ClBZO at different 174 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-2-ClBZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-2-ClBZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- **Figure 4.39** Cleavage of supercoiled pBR322 by complex Cu-2-BrBZO at different 175 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M complex Cu-2-BrBZO alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of complex Cu-2-BrBZO + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- **Figure 4.40** Cleavage of supercoiled pBR322 by $CuCl_2$ at different concentrations in TN 177 buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M CuCl₂ alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of $CuCl_2 + H_2O_2$: lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- **Figure 4.41** Cleavage of supercoiled pBR322 by $CuSO_4$ at different concentrations in TN 178 buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 DNA + H_2O_2 alone, L4 DNA + 40 μ M CuSO₄ alone (without H_2O_2). Lanes 5-12 DNA with increasing concentration of $CuSO_4 + H_2O_2$: lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- Figure 4.42Effect of various scavengers on the cleavage of pBR322 by 40 μ M complex
Cu-4-Cl-2-NO₂BZO Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA
alone; lane 3, DNA + 40 μ M of complex Cu-4-Cl-2-NO₂BZO + H₂O₂.
Lanes 4 12 involves reaction of 40 μ M complex Cu-4-Cl-2-NO₂BZO +
H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1
M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane
8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40
mM NaN₃; lane 12, 50 mM NaN₃.

- **Figure 4.43** Effect of various scavengers on the cleavage of pBR322 by 40 μ M complex 180 **Cu-2-Cl-4-NO₂BZO** Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μ M of complex **Cu-2-Cl-4-NO₂BZO** + H₂O₂. Lanes 4 – 12 involves reaction of 40 μ M complex **Cu-2-Cl-4-NO₂BZO** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40 mM NaN₃; lane 12, 50 mM NaN₃.
- **Figure 4.44** Effect of various scavengers on the cleavage of pBR322 by 40 μ M complex 181 **CuP-5-Cl-2-NO₂BZO** Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μ M of complex **CuP-5-Cl-2-NO₂BZO** + H₂O₂. Lanes 4 – 12 involves reaction of 40 μ M complex **CuP-5-Cl-2-NO₂BZO** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40 mM NaN₃; lane 12, 50 mM NaN₃.
- Figure 4.45 Effect of various scavengers on the cleavage of pBR322 by 40 μM complex 181 Cu-2-Cl-6-FBZO Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μM of complex Cu-2-Cl-6-FBZO + H₂O₂. Lanes 4 12 involves reaction of 40 μM complex Cu-2-Cl-6-FBZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40 mM NaN₃; lane 12, 50 mM NaN₃.
- Figure 4.46 Effect of various scavengers on the cleavage of pBR322 by 40 μM complex 182 Cu-2-F-6-FBZO Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μM of complex Cu-2-F-6-FBZO + H₂O₂. Lanes 4 12 involves reaction of 40 μM complex Cu-2-F-6-FBZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40 mM NaN₃; lane 12, 50 mM NaN₃.
- Figure 4.47 Effect of various scavengers on the cleavage of pBR322 by 40 μM complex 182 Cu-2-CIBZO Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μM of complex Cu-2-CIBZO + H₂O₂. Lanes 4 12 involves reaction of 40 μM complex Cu-2-CIBZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 40 mM NaN₃; lane 12, 50 mM NaN₃.

- Figure 4.48 Effect of various scavengers on the cleavage of pBR322 by 40 μM complex 183 Cu-2-BrBZO Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 40 μM of complex Cu-2-BrBZO + H₂O₂. Lanes 4 12 involves reaction of 40 μM complex Cu-2-BrBZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃, lane 8, 10 mM NaN₃, lane 9, 20 mM NaN₃, lane 10, 30 mM NaN₃, lane 11, 40 mM NaN₃, lane 12, 50 mM NaN₃.
- Figure 4.49 The proposed DNA cleavage mechanism of complexes Cu-4-Cl- 183
 2-NO₂BZO, Cu-2-Cl-4-NO₂BZO, CuP-5-Cl-2-NO₂BZO, Cu2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2BrBZO in the presence of H₂O₂
- **Figure 5.1** The partial polymeric structure of complex MnP-4-Cl-2- 195 NO₂BZO, showing 50 % probability displacement ellipsoids and the atomic numbering
- Figure 5.2The crystal packing of polymeric complex MnP-4-Cl-2-196NO2BZO
- **Figure 5.3** The partial polymeric structure of complex MnP-3-NO₂-5- 198 NO₂BZO, showing 50 % probability displacement ellipsoids and the atomic numbering
- Figure 5.4The crystal packing of polymeric complex MnP-3-NO2-5-198NO2BZO
- **Figure 5.5** The molecular structure of complex **Mn-4-NO₂BZO**, showing 200 50 % probability displacement ellipsoids and the atomic numbering
- Figure 5.6 The crystal packing of complex Mn-4-NO₂BZO 201
- **Figure 5.7** The partial polymeric structure of complex MnP-4-NH₂BZO, 205 showing 50 % probability displacement ellipsoids and the atomic numbering
- Figure 5.8 The crystal packing of polymeric complex MnP-4-NH₂BZO 206
- **Figure 5.9** The partial polymeric structure of complex **MnP-4-FBZO**, 210 showing 50 % probability displacement ellipsoids and the atomic numbering

		Page
Figure 5.10	The crystal packing of polymeric complex MnP-4-FBZO	211
Figure 5.11	The partial polymeric structure of complex MnPGLY , showing 50 % probability displacement ellipsoids and the atomic numbering	215
Figure 5.12	The crystal packing of polymeric complex MnPGLY	216
Figure 5.13	FT-IR spectrum of complex MnP-4-Cl-2-NO ₂ BZO	224
Figure 5.14(A)	FT-IR spectrum of complex MnP-3-NO ₂ -5-NO ₂ BZO	224
Figure 5.14(B)	FT-IR spectrum of 3,5-dinitrobenzoic acid	225
Figure 5.15(A)	FT-IR spectrum of complex Mn-4-NO ₂ BZO	225
Figure 5.15(B)	FT-IR spectrum of 4-nitrobenzoic acid	226
Figure 5.16(A)	FT-IR spectrum of complex MnP-4-NH ₂ BZO	226
Figure 5.16(B)	FT-IR spectrum of 4-aminobenzoic acid	227
Figure 5.17(A)	FT-IR spectrum of complex MnP-4-FBZO	227
Figure 5.17(B)	FT-IR spectrum of 4-flourobenzoic acid	228
Figure 5.18	Postulated structure of partial polymeric complex MnP-4-ClBZO	228
Figure 5.19(A)	FT-IR spectrum of complex MnP-4-ClBZO	229
Figure 5.19(B)	FT-IR spectrum of 4-chlorobenzoic acid	229
Figure 5.20	FT-IR spectrum of complex MnPGLY	230
Figure 5.21	Chemical structure of complex MnPyr [73]	230
Figure 5.22	FT-IR spectrum of complex MnPyr	231

		Page
Figure 5.23(A)	UV-Vis spectrum of complex MnP-4-Cl-2-NO ₂ BZO (8.37 x 10^{-3} mol L ⁻¹)	234
Figure 5.23(B)	UV-Vis spectrum of complex MnP-4-Cl-2-NO₂BZO (2.00 x 10 ⁻⁵ mol L ⁻¹ ; A = 318 nm, ε = 4127 mol ⁻¹ Lcm ⁻¹ ; A = 262 nm, ε = 11122 mol ⁻¹ Lcm ⁻¹ ; A = 214 nm, ε = 41036 mol ⁻¹ Lcm ⁻¹)	234
Figure 5.24(A)	UV-Vis spectrum of complex MnP-3-NO ₂ -5-NO ₂ BZO $(5.22 \times 10^{-3} \text{ mol } \text{L}^{-1})$	235
Figure 5.24(B)	UV-Vis spectrum of complex MnP-3-NO₂-5-NO₂BZO (2.08 x 10 ⁻⁵ mol L ⁻¹ ; A = 238 nm, ε = 32169 mol ⁻¹ Lcm ⁻¹ ; A = 212 nm, ε = 45175 mol ⁻¹ Lcm ⁻¹)	235
Figure 5.25(A)	UV-Vis spectrum of complex Mn-4-NO ₂ BZO (6.45 x 10^{-3} mol L ⁻¹)	236
Figure 5.25(B)	UV-Vis spectrum of complex Mn-4-NO₂BZO (2.57 x 10 ⁻⁵ mol L ⁻¹ ; A = 273 nm, ε = 19411 mol ⁻¹ Lcm ⁻¹ ; A = 210 nm, ε = 18785 mol ⁻¹ Lcm ⁻¹)	236
Figure 5.26(A)	UV-Vis spectrum of complex MnP-4-NH ₂ BZO $(0.010 \text{ mol } \text{L}^{-1})$	237
Figure 5.26(B)	UV-Vis spectrum of complex MnP-4-NH₂BZO (8.23 x 10 ⁻⁶ mol L ⁻¹ ; A = 265 nm, ε = 30469 mol ⁻¹ Lcm ⁻¹ ; A = 210 nm, ε = 36701 mol ⁻¹ Lcm ⁻¹)	237
Figure 5.27(A)	UV-Vis spectrum of complex MnP-4-FBZO ($6.26 \times 10^{-3} \text{ mol } \text{L}^{-1}$)	238
Figure 5.27(B)	UV-Vis spectrum of complex MnP-4-FBZO (2.50 x 10 ⁻⁵ mol L ⁻¹ ; A = 223 nm, ε = 18 000 mol ⁻¹ Lcm ⁻¹)	238
Figure 5.28(A)	UV-Vis spectrum of complex MnP-4-ClBZO (5.82 x 10^{-3} mol L ⁻¹)	239
Figure 5.28(B)	UV-Vis spectrum of complex MnP-4-ClBZO (2.32 x 10 ⁻⁵ mol L ⁻¹ ; A = 225 nm, ε = 17 835 mol ⁻¹ Lcm ⁻¹)	239

Figure 5.29(A)	UV-Vis spectrum of complex MnPGLY (0.015 mol L ⁻¹)	240
Figure 5.29(B)	UV-Vis spectrum of complex MnPGLY (3.05 x 10^{-3} mol L ⁻¹ ; A = 212 nm, $\varepsilon = 156 \text{ mol}^{-1}\text{Lcm}^{-1}$)	240
Figure 5.30(A)	UV-Vis spectrum of complex MnPyr (0.012 mol L^{-1})	241
Figure 5.30(B)	UV-Vis spectrum of complex MnPyr (4.65 x 10^{-5} mol L ⁻¹ ; A = 262 nm, ε = 8699 mol ⁻¹ Lcm ⁻¹ ; A = 213 nm, ε = 18147 mol ⁻¹ Lcm ⁻¹)	241
Figure 5.31	UV-Vis spectrum of complex MnCl ₂ (0.031 mol L ⁻¹ ; A = 211 nm; ε = 11 mol ⁻¹ Lcm ⁻¹)	242
Figure 5.32(A)	Cyclic voltammogram of complex $MnP-4-Cl-2-NO_2BZO$; Epa = anodic oxidation peak, Epc = cathodic reduction peak	245
Figure 5.32(B)	Cyclic voltammogram of complex $MnP-3-NO_2-5-NO_2BZO$; Epa = anodic oxidation peak, Epc = cathodic reduction peak	245
Figure 5.32(C)	Cyclic voltammogram of complex Mn-4-NO₂BZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	246
Figure 5.32(D)	Cyclic voltammogram of complex MnP-4-NH₂BZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	246
Figure 5.32(E)	Cyclic voltammogram of complex MnP-4-FBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	247
Figure 5.32(F)	Cyclic voltammogram of complex MnP-4-ClBZO ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	247
Figure 5.32(G)	Cyclic voltammogram of complex MnPGLY ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	248
Figure 5.32(H)	Cyclic voltammogram of complex MnPyr ; Epa = anodic oxidation peak, Epc = cathodic reduction peak	248

- **Figure 5.33** Cleavage of supercoiled pBR322 by complex **MnP-4-Cl-2-NO₂BZO** at 250 different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4, DNA + complex alone (80 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnP-4-Cl-2-NO_2BZO** + H_2O_2 : lane 5, 10 μ M; lane 6, 20 μ M; lane 7, 30 μ M; lane 8, 40 μ M; lane 9, 50 μ M; lane 10, 60 μ M; lane 11, 70 μ M; lane 12, 80 μ M.
- **Figure 5.34** Cleavage of supercoiled pBR322 by complex MnP-3-NO₂-5-NO₂BZO at 251 different concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4, DNA + complex alone (160 μ M). Lanes 5-12 DNA with increasing concentration of complex MnP-3-NO₂-5-NO₂BZO + H_2O_2 : lane 5, 80 μ M; lane 6, 100 μ M; lane 7, 110 μ M; lane 8, 120 μ M; lane 9, 130 μ M; lane 10, 140 μ M; lane 11, 150 μ M; lane 12, 160 μ M.
- **Figure 5.35** Cleavage of supercoiled pBR322 by complex $Mn-4-NO_2BZO$ at different 252 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H₂O₂ alone; L4, DNA + complex alone (160 μ M). Lanes 5-12 DNA with increasing concentration of complex $Mn-4-NO_2BZO$ + H₂O₂: lane 5, 80 μ M; lane 6, 100 μ M; lane 7, 110 μ M; lane 8, 120 μ M; lane 9, 130 μ M; lane 10, 140 μ M; lane 11, 150 μ M; lane 12, 160 μ M.
- **Figure 5.36** Cleavage of supercoiled pBR322 by complex $MnP-4-NH_2BZO$ at different 253 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H₂O₂ alone; L4, DNA + complex alone (160 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnP-4-NH₂BZO** + H₂O₂: lane 5, 80 μ M; lane 6, 100 μ M; lane 7, 110 μ M; lane 8, 120 μ M; lane 9, 130 μ M; lane 10, 140 μ M; lane 11, 150 μ M; lane 12, 160 μ M.
- **Figure 5.37** Cleavage of supercoiled pBR322 by complex **MnP-4-FBZO** at different 254 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4 DNA + complex alone (80 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnP-4-FBZO** + H_2O_2 : lane 5, 10 μ M; lane 6, 20 μ M; lane 7, 30 μ M; lane 8, 40 μ M; lane 9, 50 μ M; lane 10, 60 μ M; lane 11, 70 μ M; lane 12, 80 μ M.
- **Figure 5.38** Cleavage of supercoiled pBR322 by complex **MnP-4-ClBZO** at different 255 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4 DNA + complex alone (80 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnP-4-ClBZO** + H_2O_2 : lane 5, 10 μ M; lane 6, 20 μ M; lane 7, 30 μ M; lane 8, 40 μ M; lane 9, 50 μ M; lane 10, 60 μ M; lane 11, 70 μ M; lane 12, 80 μ M.

- **Figure 5.39** Cleavage of supercoiled pBR322 by complex **MnPGLY** at different 256 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4, DNA + complex alone (80 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnPGLY** + H_2O_2 : lane 5, 10 μ M; lane 6, 20 μ M; lane 7, 30 μ M; lane 8, 40 μ M; lane 9, 50 μ M; lane 10, 60 μ M; lane 11, 70 μ M; lane 12, 80 μ M.
- **Figure 5.40** Cleavage of supercoiled pBR322 by complex **MnPyr** at different 257 concentrations in TN buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4, DNA + complex alone (80 μ M). Lanes 5-12 DNA with increasing concentration of complex **MnPyr** + H_2O_2 : lane 5, 10 μ M; lane 6, 20 μ M; lane 7, 30 μ M; lane 8, 40 μ M; lane 9, 50 μ M; lane 10, 60 μ M; lane 11, 70 μ M; lane 12, 80 μ M.
- **Figure 5.41** Cleavage of supercoiled pBR322 by MnCl₂ at different concentrations in TN 259 buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder; L2, DNA alone; L3, DNA + H_2O_2 alone; L4, DNA + MnCl₂ alone (160 μ M); lane 5, 80 μ M; lane 6, 100 μ M; lane 7, 110 μ M; lane 8, 120 μ M; lane 9, 130 μ M; lane 10, 140 μ M; lane 11, 150 μ M; lane 12, 160 μ M
- Figure 5.42 Effect of various scavengers on the cleavage of pBR322 by 50 μM complex 261 MnP-4-Cl-2-NO₂BZO. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 50 μM complex MnP-4-Cl-2-NO₂BZO + H₂O₂. Lanes 4 12 involves reaction of 50 μM complex MnP-4-Cl-2-NO₂BZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 5.43 Effect of various scavengers on the cleavage of pBR322 by 100 μM complex 261 MnP-3-NO₂-5-NO₂BZO. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 100 μM complex MnP-3-NO₂-5-NO₂BZO + H₂O₂. Lanes 4 12 involves reaction of 100 μM complex MnP-3-NO₂-5-NO₂BZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- **Figure 5.44** Effect of various scavengers on the cleavage of pBR322 by 110 μ M complex 262 **Mn-4-NO₂BZO**. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 110 μ M complex **Mn-4-NO₂BZO** + H₂O₂. Lanes 4 – 12 involves reaction of 110 μ M complex **Mn-4-NO₂BZO** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.

- Figure 5.45 Effect of various scavengers on the cleavage of pBR322 by 100 μM complex 262 MnP-4-NH₂BZO. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 100 μM complex MnP-4-NH₂BZO + H₂O₂. Lanes 4 12 involves reaction of 100 μM complex MnP-4-NH₂BZO + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- **Figure 5.46** Effect of various scavengers on the cleavage of pBR322 by 50 μ M complex 263 **MnP-4-FBZO**. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 50 μ M complex **MnP-4-FBZO** + H₂O₂. Lanes 4 – 12 involves reaction of 50 μ M complex **MnP-4-FBZO** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- **Figure 5.47** Effect of various scavengers on the cleavage of pBR322 by 60 μ M complex 263 **MnP-4-CIBZO**. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 60 μ M complex **MnP-4-CIBZO** + H₂O₂. Lanes 4 – 12 involves reaction of 60 μ M complex **MnP-4-CIBZO** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 5.48Effect of various scavengers on the cleavage of pBR322 by 60 μ M complex
MnPGLY. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3,
DNA + 60 μ M complex MnPGLY + H₂O₂ Lanes 4 12 involves reaction of
60 μ M complex MnPGLY + H₂O₂ with DNA in presence of various
scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6,
DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM
NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM
NaN₃.264
- **Figure 5.49** Effect of various scavengers on the cleavage of pBR322 by 60 μ M complex 264 **MnPyr**. Lane 1, Gene Ruler 1 kb DNA ladder; lane 2, DNA alone; lane 3, DNA + 60 μ M complex **MnPyr** + H₂O₂. Lanes 4 – 12 involves reaction of 60 μ M complex **MnPyr** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 5.50 The proposed DNA cleavage mechanism of complexes MnP-4- 265 Cl-2-NO₂BZO, MnP-3-NO₂-5-NO₂BZO, Mn-4-NO₂BZO, MnP-4-NH₂BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr

Figure 6.1	The postulated chemical structure of complexes VOPhen, VODMPhen, VODPPhen and VODMPPhen	271
Figure 6.2(A)	FT-IR spectrum of complex VOPhen	274
Figure 6.2(B)	FT-IR spectrum of 1,10-phenanthroline	274
Figure 6.3(A)	FT-IR spectrum of complex VODMPhen	275
Figure 6.3(B)	FT-IR spectrum of 2,9-dimethly-1,10-phenanthroline	275
Figure 6.4(A)	FT-IR spectrum of complex VODPPhen	276
Figure 6.4(B)	FT-IR spectrum of 4,7-diphenyl-1,10-phenanthroline	276
Figure 6.5(A)	FT-IR spectrum of complex VODMPPhen	277
Figure 6.5(B)	FT-IR spectrum of 2,9-dimethly-4,7-diphenyl-1,10- phenanthroline	277
Figure 6.6	Absorption spectra of complex VOPhen in the absence and in the presence of increasing amount of DNA, [complex] = 20 μ M, [DNA] = 20-120 μ M	281
Figure 6.7	Absorption spectra of complex VODMPhen in the absence and in the presence of increasing amount of DNA, [complex] = $20 \ \mu$ M, [DNA] = 20-120 μ M	281
Figure 6.8	Absorption spectra of complex VODPPhen in the absence and in the presence of increasing amount of DNA, [complex] = 20 μ M, [DNA] = 10-60 μ M	282
Figure 6.9	Absorption spectra of complex VODMPPhen in the absence and in the presence of increasing amount of DNA, [complex] = $20 \ \mu$ M, [DNA] = 10-60 μ M	282
Figure 6.10	Plot of [DNA]/(ϵ_a - ϵ_f) versus [DNA] of complex VOPhen	283
Figure 6.11	Plot of [DNA]/(ϵ_a - ϵ_f) versus [DNA] of complex VODMPhen	283
Figure 6.12	Plot of [DNA]/(ϵ_a - ϵ_f) versus [DNA] of complex VODPPhen	284

Figure 6.13	Plot of [DNA]/(ϵ_a - ϵ_f) versus [DNA] of complex VODMPPhen	284
Figure 6.14	Absorption spectra of complex VO_2PP in the absence and in the presence of increasing amount of DNA, [complex] = 40 μ M, [DNA] = 120 μ M (Ratio DNA: Complex; 1:3)	287
Figure 6.15	Absorption spectra of complex Cu-2-Cl-6-FBZO in the absence and in the presence of increasing amount of DNA, [complex] = 13μ M, [DNA] = 39μ M (Ratio DNA: Complex; 1:3)	287
Figure 6.16	Absorption spectra of complex Mn-4-NO₂BZO in the absence and in the presence of increasing amount of DNA, [complex] = $26 \ \mu$ M, [DNA] = $78 \ \mu$ M (Ratio DNA: Complex; 1:3)	288
Figure 6.17	Effect of increasing amounts of complexes VOPhen , VODMPhen , VODPPhen and VODMPPhen on the relative viscosities of CT-DNA at 30 (\pm 0.1) °C, [DNA] = 200 μ M	289
Figure 6.18	(a) CD spectrum of CT DNA in the absence of complex (50 μ M); (b) CD spectrum of CT DNA (50 μ M) in the presence of complex VOPhen (50 μ M); (c) CD spectrum of CT DNA (50 μ M) in the presence of complex VODMPhen (50 μ M)	291
Figure 6.19	Cleavage of supercoiled pBR322 by complex VOPhen at different concentrations in Tris-HCl buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 H_2O_2 alone, L4 complex VOPhen alone (40 μ M). Lanes 5-12 DNA with increasing concentration of complex VOPhen + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.	294
Figure 6.20	Cleavage of supercoiled pBR322 by complex VOPhen at different concentrations in Tris-HCl buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, Lanes 3-12 DNA with increasing concentration of complex VOPhen : lane 3, 50 μ M; lane 4, 70 μ M; lane 5, 100 μ M; lane 6, 120 μ M; lane 7, 140 μ M; lane 8, 160 μ M; lane 9, 180 μ M; lane 10, 200 μ M; lane 11, 220 μ M; lane 12, 240 μ M.	294
Figure 6.21	Cleavage of supercoiled pBR322 by complex VODMPhen at different concentrations in Tris-HCl buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 H_2O_2 alone, L4 complex VODMPhen alone (240 μ M). Lanes 5-12 DNA with increasing concentration of complex VODMPhen +	295

9, 180 μM; lane 10, 200 μM; lane 11, 220 μM; lane 12, 240 μM.

 H_2O_2 : lane 5, 100 μ M; lane 6, 120 μ M; lane 7, 140 μ M; lane 8, 160 μ M; lane

- **Figure 6.22** Cleavage of supercoiled pBR322 by complex **VODPPhen** at different 295 concentrations in Tris-HCl buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 H_2O_2 alone, L4 complex **VODPPhen** alone (40 μ M). Lanes 5-12 DNA with increasing concentration of complex **VODPPhen** + H_2O_2 : lane 5, 5 μ M; lane 6, 10 μ M; lane 7, 15 μ M; lane 8, 20 μ M; lane 9, 25 μ M; lane 10, 30 μ M; lane 11, 35 μ M; lane 12, 40 μ M.
- **Figure 6.23** Cleavage of supercoiled pBR322 by complex **VODMPPhen** at different 296 concentrations in Tris-HCl buffer pH 7.5. L1 Gene Ruler 1 kb DNA ladder, L2 DNA alone, L3 H_2O_2 alone, L4 complex **VODMPPhen** alone (240 μ M). Lanes 5-12 DNA with increasing concentration of complex **VODMPPhen** + H_2O_2 : lane 5, 100 μ M; lane 6, 120 μ M; lane 7, 140 μ M; lane 8, 160 μ M; lane 9, 180 μ M; lane 10, 200 μ M; lane 11, 220 μ M; lane 12, 240 μ M.
- **Figure 6.24** Effect of various scavengers on the cleavage of pBR322 by 25 μ M complex 298 **VOPhen**. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA + 25 μ M complex **VOPhen** + H₂O₂. Lanes 4 12 involves reaction of 25 μ M complex **VOPhen** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- Figure 6.25Effect of various scavengers on the cleavage of pBR322 by 120 μ M complex
VODMPhen. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone;
Lane 3, DNA +120 μ M complex VODMPhen + H₂O₂. Lanes 4 12 involves
reaction of 120 μ M complex VODMPhen + H₂O₂ with DNA in presence of
various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol;
lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20
mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM
NaN₃.298
- Figure 6.26 Effect of various scavengers on the cleavage of pBR322 by 25 μM complex 299 VODPPhen. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA + 25 μM complex VODPPhen + H₂O₂. Lanes 4 12 involves reaction of 25 μM complex VODPPhen + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃; lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.
- **Figure 6.27** Effect of various scavengers on the cleavage of pBR322 by 120 μ M complex 299 **VODMPPhen**. Lane 1, Gene Ruler 1 kb DNA ladder; Lane 2, DNA alone; Lane 3, DNA +120 μ M complex **VODMPPhen** + H₂O₂. Lanes 4 12 involves reaction of 120 μ M complex **VODMPPhen** + H₂O₂ with DNA in presence of various scavengers; lane 4, t-butyl alcohol (1 M); lane 5, 1 mM Mannitol; lane 6, DMSO (1 M); lane 7, 1 mM NaN₃; lane 8, 10 mM NaN₃;

lane 9, 20 mM NaN₃; lane 10, 30 mM NaN₃; lane 11, 50 mM NaN₃; lane 12, 100 mM NaN₃.

LIST OF FIGURES

Appendix A	UV-Vis spectrum of complex NaVO ₃ (6.24 x 10^{-5} mol L ⁻¹ ; A = 264 nm, ε = 2402 mol ⁻¹ Lcm ⁻¹ ; A = 205 nm, ε = 7491 mol ⁻¹ Lcm ⁻¹)	323
Appendix B	UV-Vis spectrum of complex VOSO ₄ (4.73 x 10 ⁻⁵ mol L ⁻¹ ; A = 206 nm, ε = 3087 mol ⁻¹ Lcm ⁻¹ ; A = 201 nm, ε = 2949 mol ⁻¹ Lcm ⁻¹)	323
Appendix C	UV-Vis spectrum of complex CuSO ₄ (1.35 x 10^{-4} mol L ⁻¹ ; A = 237 nm, ε = 3431 mol ⁻¹ Lcm ⁻¹)	324
Appendix D	UV-Vis spectrum of complex CuCl ₂ (8.92 x 10^{-5} mol L ⁻¹ ; A = 235 nm, ε = 3360 mol ⁻¹ Lcm ⁻¹)	324

LIST OF TABLES

Table 1.1	Some of metal ions in clinical use	3
Table 1.2	The antibacterial and antiproliferative activities of some vanadium, copper and manganese complexes	5
Table 2.1	List of chemicals used in the synthesis	30
Table 2.2	List of complexes have been synthesized	37
Table 3.1	Crystal data, data collection and structure refinement parameters of complex VO_2PP	50
Table 3.2	Selected bond lengths (Å) and bond angles (°) of complex VO_2PP	52
Table 3.3	Hydrogen bonding distances and angles of complex VO ₂ PP	52
Table 3.4	Crystal data, data collection and structure refinement parameters of complex VO_2GLY	54
Table 3.5	Selected bond lengths (Å) and bond angles (°) of complex VO_2GLY	57
Table 3.6	Hydrogen bonding distances and angles of complex VO ₂ GLY	57
Table 3.7	Crystal data, data collection and structure refinement parameters of complex VOPYDC	59
Table 3.8	Selected bond lengths (Å) and bond angles (°) of complex VOPYDC	62
Table 3.9	Hydrogen bonding distances and angles of complex VOPYDC	62
Table 3.10	FT-IR analysis data of complexes VO_2PP , VO_2GLY and VO_2HPYDC	65
Table 3.11	FT-IR analysis data of complexes VOPYDC and VOMAL	71
Table 3.12	The UV-Vis analysis data of complexes VO ₂ PP, VO ₂ GLY, VO ₂ HPYDC, VOPYDC and VOMAL	76

LIST OF TABLES

- Table 3.13The ⁵¹V-NMR chemical shift of complexes VO₂PP, VO₂GLY, 84VO₂HPYDC, VOPYDC and VOMAL
- Table 3.14The Epa, Epc, Δ Ep and $E_{1/2}$ values of complexes VO₂PP, 90VO₂GLY, VOPYDC, VOMAL and VO₂HPYDC
- Table 3.15Concentration of complexes VO2PP, VO2GLY, VOPYDC, 101VOMAL and VO2HPYDC that induce total cleavage of supercoilDNA
- **Table 3.16** Antibacterial activity of complexes VO₂PP, VO₂GLY, 109 VOPYDC, VOMAL, VO₂HPYDC, VOSO₄ and NaVO₃, results correspond to diameter of the inhibition zone(mm)
- Table 3.17Antibacterial activity of complexes VOPYDC, VO2HPYDC and 110
VOSO4, the results are expressed as MIC (minimal inhibitory
concentration)110
- Table 3.18Antiproliferative activity of complexes VO2PP, VO2GLY, 112VOPYDC, VOMAL and VO2HPYDC towards human cancer
cell lines
- Table 4.1Crystal data, data collection and structure refinement parameters115of complexes Cu-4-Cl-2-NO2BZO and Cu-2-Cl-4-NO2BZO
- Table 4.2Crystal data, data collection and structure refinement parameters116of complexes Cu-2-Cl-6-FBZO and Cu-2-F-6-FBZO
- Table 4.3Crystal data, data collection and structure refinement parameters117of complexes Cu-2-ClBZO and Cu-2-BrBZO
- Table 4.4Selected bond lengths (Å) and bond angles (°) of complex Cu-4-120Cl-2-NO2BZO
- Table 4.5Hydrogen bonding distances and angles of complex Cu-4-Cl-2-120NO2BZO
- Table 4.6Selected bond lengths (Å) and bond angles (°) of complex Cu-2-123Cl-4-NO2BZO

Table 4.7	Hydrogen bonding distances and angles of complex Cu-2-Cl-4-NO ₂ BZO	124
Table 4.8	Selected bond lengths (Å) and bond angles (°) of Cu-2-Cl-6-FBZO	126
Table 4.9	Hydrogen bonding distances and angles of Cu-2-Cl-6-FBZO	126
Table 4.10	Selected bond lengths (Å) and bond angles (°) of Cu-2-F-6-FBZO	129
Table 4.11	Hydrogen bonding distances and angles of Cu-2-F-6-FBZO	129
Table 4.12	Selected bond lengths (Å) and bond angles (°) of complex Cu-2-CIBZO	132
Table 4.13	Hydrogen bonding distances and angles of Cu-2-ClBZO	132
Table 4.14	Selected bond lengths (Å) and bond angles (°) of complex Cu-2-BrBZO	135
Table 4.15	Hydrogen bonding distances and angles of Cu-2-BrBZO	135
Table 4.16	Crystal data, data collection and structure refinement parameters of complex CuP-5-Cl-2-NO ₂ BZO	137
Table 4.17	Selected bond lengths (Å) and bond angles (°) of complex CuP-5-Cl-2-NO ₂ BZO	141
Table 4.18	Hydrogen bonding distances and angles of complex CuP-5-Cl-2-NO ₂ BZO	141
Table 4.19	FT-IR analysis data of complexes Cu-4-Cl-2-NO ₂ BZO, Cu-2-Cl- 4-NO ₂ BZO, CuP-5-Cl-2-NO ₂ BZO, Cu-2-Cl-6-FBZO, Cu-2-F- 6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO	144
Table 4.20	The UV-Vis analysis data of complexes Cu-4-Cl-2-NO ₂ BZO, Cu-2-Cl-4-NO ₂ BZO, CuP-5-Cl-2-NO ₂ BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO	154

Page

- Table 4.21The Epa, Epc, Δ Ep and E_{1/2} values of complexes Cu-4-Cl-2-164NO2BZO, Cu-2-Cl-4-NO2BZO, CuP-5-Cl-2-NO2BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO
- Table 4.22Concentration of complexesCu-4-Cl-2-NO2BZO, Cu-2-Cl-4-177NO2BZO, CuP-5-Cl-2-NO2BZO, Cu-2-Cl-6-FBZO, Cu-2-F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO that induce total cleavageof supercoil DNA
- Table 4.23Antibacterial activity of complexes Cu-4-Cl-2-NO2BZO, Cu-2-186Cl-4-NO2BZO, CuP-5-Cl-2-NO2BZO and Cu-2-Cl-6-FBZO,
results correspond to diameter of the inhibition zone (mm)186
- Table 4.24Antibacterial activity of complexes Cu-2-F-6-FBZO, Cu-2-187ClBZO and Cu-2-BrBZO, CuCl2 and CuSO4, results correspond
to diameter of the inhibition zone (mm)187
- Table 4.25Antibacterial activity of complexes Cu-4-Cl-2-NO2BZO, Cu-2-
Cl-4-NO2BZO, CuP-5-Cl-2-NO2BZO, Cu-2-Cl-6-FBZO, Cu-2-
F-6-FBZO, Cu-2-ClBZO and Cu-2-BrBZO against Gram
negative bacteria Enterobacter aerogenes, the results are expressed
as MIC (minimal inhibitory concentration)
- Table 4.26Antiproliferative activity of complexes Cu-4-Cl-2-NO2BZO, Cu-
2-Cl-4-NO2BZO, CuP-5-Cl-2-NO2BZO and Cu-2-Cl-6-FBZO
towards human cancer cell lines
- Table 4.27Antiproliferative activity of complexes Cu-2-F-6-FBZO and
Cu-2-ClBZO towards human cancer cell lines191
- Table 5.1Crystal data, data collection and structure refinement parameters194of complexesMnP-4-Cl-2-NO2BZOandMnP-3-NO2-5-NO2BZO
- Table 5.2Crystal data, data collection and structure refinement parameters195of complex Mn-4-NO2BZO
- Table 5.3Selected bond lengths (Å) and bond angles (°) of complex197MnP-4-Cl-2-NO2BZO197

Table 5.4	Hydrogen bonding distances and angles of complex MnP-4-Cl-2-NO ₂ BZO	197
Table 5.5	Selected bond lengths (Å) and bond angles (°) of complex MnP-3-NO₂-5-NO₂BZO	199
Table 5.6	Hydrogen bonding distances and angles of complex MnP-3-NO ₂ -5-NO ₂ BZO	200
Table 5.7	Selected bond lengths (Å) and bond angles (°) of complex $Mn-4-NO_2BZO$	202
Table 5.8	Hydrogen bonding distances and angles of complex Mn-4-NO₂BZO	202
Table 5.9	Crystal data, data collection and structure refinement parameters of complex MnP-4-NH ₂ BZO	204
Table 5.10	Selected bond lengths (Å) and bond angles (°) of complex $MnP-4-NH_2BZO$	207
Table 5.11	Hydrogen bonding distances and angles of complex MnP-4-NH ₂ BZO	207
Table 5.12	Crystal data, data collection and structure refinement parameters of complex MnP-4-FBZO	209
Table 5.13	Selected bond lengths (Å) and bond angles (°) of complex MnP-4-FBZO	212
Table 5.14	Hydrogen bonding distances and angles of complex MnP-4-FBZO	212
Table 5.15	Crystal data, data collection and structure refinement parameters of complex MnPGLY	214
Table 5.16	Selected bond lengths (Å) and bond angles (°) of complex \mathbf{MnPGLY}	217
Table 5.17	Hydrogen bonding distances and angles of complex MnPGLY	217

- Table 5.18The FT-IR analysis data of complexes MnP-4-Cl-2-NO2BZO, 222
MnP-3-NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-NH2BZO,
MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- Table 5.19The UV-Vis analysis data of complexes MnP-4-Cl-2-NO2BZO, 233MnP-3-NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-NH2BZO,
MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr
- Table 5.20The Epa, Epc, Δ Ep and E1/2 values of complexes MnP-4-Cl-2-
244
NO2BZO, MnP-3-NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-
NH2BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and
MnPyr
- Table 5.21Concentration of complexes MnP-4-Cl-2-NO2BZO, MnP-3-259NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-NH2BZO, MnP-4-FBZO, MnP-4-ClBZO, MnPGLY and MnPyr that induce totalcleavage of supercoil DNA
- Table 5.22Antibacterial activity of complexes MnP-4-Cl-2-NO2BZO, MnP-2663-NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-NH2BZO, results
correspond to diameter of the inhibition zone (mm)266
- Table 5.23Antibacterial activity of complexes MnP-4-FBZO, MnP-4-267ClBZO, MnPGLY, MnPyr and MnCl2, results correspond to
diameter of the inhibition zone (mm)67
- Table 5.24Antiproliferative activity of complexes MnP-4-Cl-2-NO2BZO, 269MnP-3-NO2-5-NO2BZO, Mn-4-NO2BZO, MnP-4-NH2BZOand MnPyr towards human cancer cell lines
- Table 6.1FT-IR analysis data of complexes VOPhen, VODMPhen, 273VODPPhen and VODMPPhen
- Table 6.2The UV absorption data of complexes VOPhen, VODMPhen, 285VODPPhen and VODMPPhen upon addition of increasing
concentration of CT-DNA
- Table 6.3Antibacterial activity of complexes VOPhen, VODMPhen, 302VODPPhen and VODMPPhen, results correspond to diameter of
the inhibition zone (mm)

Page

Table 6.4Antibacterial activity of complexes VOPhen, VODMPhen, 303VODPPhen and VODMPPhen, the results are expressed as MIC
(minimal inhibitory concentration)

LIST OF ABBREVIATIONS AND SYMBOLS

Cu-2-F-6-FBZO	tetrakis(μ -2,6-diflourobenzoato- $\kappa^{2}O,O'$)bis[aquacopper(II)]		
Cu-2-BrBZO	tetrakis(μ -2-bromobenzoato- $\kappa^{2}O,O'$)bis[aquacopper(II)]		
Cu-2-Cl-4-NO ₂ BZO	tetrakis(µ-2-chloro-4-nitrobenzoato-к ² 0,0') bis[aquacopper(II)]		
Cu-2-Cl-6-FBZO	tetrakis(μ -2-chloro-6-fluorobenzoato- $\kappa^2 O, O'$) bis[aquacopper(II)]		
Cu-2-ClBZO	tetrakis(μ -2-chloro-benzoato- $\kappa^2 O, O'$)bis[aquacopper(II)]		
Cu-4-Cl-2-NO ₂ BZO	tetrakis(μ-4-chloro-2-nitrobenzoato-κ ${}^{2}\mathcal{O}, \mathcal{O}'$) bis[aquacopper(II)]		
CuP-5-Cl-2-NO ₂ BZO	catena-poly[[bis(5-chloro-2-nitrobenzoato)copper(II)] bis(µ-5-chloro-2- nitrobenzoato)]		
Hela	Human cervical cancer cell line		
HepG2	Human liver cancer cell line		
IC ₅₀	A measure of the concentration of particular drug that inhibit the biological process of cells by half		
bp	base pair		
LC ₅₀	A measure of the concentration of particular drug that kill 50 % of the cells		
LMCT	Ligand to Metal Charge Transfer		
MCF-7	Human breast cancer cell line		
MDA-MB-231	Human invasive breast cancer cell line		
MIC	minimal inhibitory concentration		
Mn-4-NO ₂ BZO	tetraaquabis(4-nitrobenzoato)manganese(II) hydrate		

LIST OF ABBREVIATIONS AND SYMBOLS

MnP-4-ClBZO	catena-poly[[diaquabis(4-chlorobenzoato) manganese(II)]bis(µ-4-chlorobenzoato)]
MnP-4-Cl-2-NO ₂ BZO	catena-poly[[diaquabis(4-chloro-2-nitrobenzoato) manganese(II)]bis(µ-4-chloro-2-nitrobenzoato)]
MnP-4-FBZO	catena-poly[[diaquabis(4-flourobenzoato) manganese(II)]bis(µ-4-flourobenzoato)]
MnP-4-NH ₂ BZO	catena-poly[[bis(4-aminobenzoato)manganese(II)] tri(µ-4-aminobenzoato)]
MnPGLY	catena-poly[[aqua(diglycolato)manganese(II) hydrate)] bis(µ-diglycolato)]
MnPyr	diaquabis(pyridine-2-carboxylato)manganese(II) hydrate
MTT	(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)
NMR	Nuclear Magnetic Resonance
ROS	Reactive oxygen species
SRB	Sulforhodamine B
SRB TGI	Sulforhodamine B Cytostatic activity = A measure of the concentration of particular drug that inhibit total growth of cell lines.
	Cytostatic activity = A measure of the concentration of
TGI	Cytostatic activity = A measure of the concentration of particular drug that inhibit total growth of cell lines.
TGI UV-Vis	Cytostatic activity = A measure of the concentration of particular drug that inhibit total growth of cell lines. Ultraviolet-Visible

LIST OF ABBREVIATIONS AND SYMBOLS

VODMPhen	aqua(2,9-dimethyl-1,10-phenanthroline) sulfatooxovanadium(IV)
VODMPPhen	aqua(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) sulfatooxovanadium(IV) hydrate
VODPPhen	aqua(4,7-diphenyl-1,10-phenanthroline) sulfatooxovanadium(IV) hydrate
VOMAL	disodium diaquabis(malonato)oxovanadium(IV)
VOPhen	aqua(1,10-phenanthroline)sulfatooxovanadium(IV)
VOPYDC	diaqua(pyridine-2,6-carboxylato)oxovanadium(IV)ethanol solvate
ΔΕρ	Epa – Epc
$\mathbf{V}^{\mathbf{V}}$	Vanadium V
V ^{IV}	Vanadium IV
3	Molar absorptivity

SINTESIS, PENCIRIAN, SIFAT-SIFAT NUCLEOLITIK, ANTIBAKTERIA DAN ANTIPOLIFERATIF BAGI KOMPLEKS VANADIUM, KUPRUM DAN MANGAN

ABSTRAK

Siri kompleks bagi vanadium karboksilato, kuprum karboksilato, mangan karboksilato dan terbitan vanadium fenantrolina telah disintesis dan dicirikan. Maklumat penuh tentang kompleks ditunjukkan dalam Jadual 2.2 (muka surat 37). Kompleks ini telah dicirikan dengan menggunakan kristalografi X-ray, analisis unsur, FT-IR, spektroskopi UV–Vis dan siklik voltammetrik. Dalam kajian elektrokimia, kompleks vanadium karboksilato telah menunjukkan aktif redok dengan mempamerkan pasangan redok kuasi-berbalik yang selaras dengan V^V/V^{IV} proses redok, manakala kompleks kuprum karboksilato telah menunjukkan aktif redok dengan mempamerkan dua pasangan redok kuasi-berbalik yang selaras dengan Cu^{II}Cu^{II}/Cu^{II} dan Cu^{II}Cu^I/Cu^I proses redok dan mangan karboksilato telah menunjukkan aktif redok dengan mempamerkan dua pasangan redok kuasi-berbalik yang selaras dengan Cu^{II}Cu^{II}Cu^{II} dan Cu^{II}Cu^I/Cu^{II} proses redok. Dalam pasangan redok kuasi-berbalik yang selaras dengan Cu^{II}Cu^{II}Cu^{II} dan Cu^{II}Cu^{II}/Cu^{II} proses redok dan mangan karboksilato telah menunjukkan aktif redok dengan mempamerkan pasangan redok kuasi-berbalik yang selaras dengan Mn^{II}/Mn^{III} proses redok. Dalam kajian nukleolitik, semua kompleks didapati boleh mengakibatkan pengoksidaan belahan DNA tetapi dengan cara yang berbeza. Kompleks kuprum karboksilato dan mangan karboksilato boleh mengakibatkan belahan DNA dalam kehadiran H₂O₂. Sementara itu,

kompleks vanadium karboksilato, kompleks vanadium(V) karboksilato untuk memerlukan H₂O₂ untuk mengakibatkan belahan DNA manakala kompleks vanadium(IV) karboksilato tidak memerlukan H₂O₂ untuk mengakibatkan belahan DNA. Bagi kompleks terbitan vanadium fenantrolina pula, mereka boleh mengakibatkan belahan DNA dalam kehadiran H_2O_2 dan dalam keadaan tanpa H_2O_2 . Walaubagaimanapun, aktiviti belahan DNA meningkat secara mendadak dalam kehadiran H₂O₂. Agen perencet reaktif spesis oksigen (ROS) juga telah digunakan untuk menentukan spesis reaktif yang bertanggunjawab dalam belahan DNA. Hidroksil radikal dan oksigen tunggal adalah ROS yang bertanggunjawab dalam belahan DNA. Dalam penyaringan antibakteria, semua kompleks kecuali kompleks mangan karboksilato mempamerkan aktiviti antibakteria terhadap spesis bakteria Gram positif atau Gram negatif. Kompleks kuprum karboksilato menunjukkan aktiviti antibakteria yang sangat selektif di mana mereka hanya menunjukkan aktiviti antibakteria terhadap Enterobacter aerogenes berGram negatif bakteria. Aktiviti antibakteria kompleks terbitan vanadium fenantrolina telah menunjukan bahawa kumpulan metil yang terikat pada kedudukan 2 dan 9 pada gelang fenantrolina dapat meningkatkan aktiviti antibakteria. Dalam penyaringan antipoliferatif. umum kompleks vanadium karboksilato secara mempamerkan aktiviti antipoliferatif yang lebih tinggi berbanding dengan kompleks kuprum karboksilato dan mangan karboksilato. Kompleks kuprum karboksilato dan mangan karboksilato menunjukkan selektiviti sitotoksik terhadap garisan sel kanser HepG2 apabila dibandingkan dengan garisan sel kanser MCF-7 dan Hela. Eksperimen nukleolitik telah menyarankan bahawa belahan atau fragmentasi DNA oleh ROS yang dihasilkan oleh kompleks berkemungkinan besar bertangungjawab terhadap aktiviti antipoliferatif yang dipamerkan oleh kompleks.

Synthesis, Characterization, Nucleolytic, Antibacterial and Antiproliferative Properties of Vanadium, Copper and Manganese Complexes

ABSTRACT

Series of vanadium carboxylato complexes, copper carboxylato complexes, manganese carboxylato complexes and vanadium phenanthroline derivative complexes have been synthesized and characterized. The details of all the complexes are tabulated in Table 2.2 (page 37). The complexes have been characterized by X-ray crystallography, elemental analysis, FT-IR, UV-Vis spectroscopy and cyclic voltammetry. In electrochemistry studies, vanadium carboxylato complexes show redox active by displaying a quasireversible redox couple corresponding to V^V/V^{IV} redox process while copper carboxylato complexes show redox active by displaying two quasi-reversible redox couples corresponding to Cu^{II}Cu^{II}/Cu^{II}Cu^I and Cu^{II}Cu^I/Cu^ICu^I redox processes and manganese carboxylato complexes show redox active by displaying a quasi-reversible redox couple corresponding to Mn^{II}/Mn^{III} redox process. In nucleolytic studies, all the complexes can induce oxidative DNA cleavage but in different manner. The copper carboxylato complexes and manganese carboxylato complexes can induce DNA cleavage in the presence of H_2O_2 . Meanwhile for vanadium carboxylato complexes, vanadium(V) carboxylato complexes require H2O2 to induce DNA cleavage while vanadium(IV) carboxylato complexes do not require H₂O₂ to induce DNA cleavage. As

for vanadium phenanthroline derivative complexes, they can induce DNA cleavage in the presence and in the absence of H_2O_2 . However, the DNA cleavage activity of the vanadium phenanthroline derivative complexes is greatly enhanced in the presence of H_2O_2 . Reactive oxygen species (ROS) scavengers have also been used to ascertain the reactive species responsible for DNA cleavage. The hydroxyl radical and singlet oxygen species have been found to be the ROS that are responsible in the DNA cleavage reaction. In the antibacterial screening, all the complexes except manganese carboxylato complexes exhibit antibacterial activity against certain Gram negative or Gram positive bacteria species. Copper carboxylato complexes show a very selective antibacterial activity whereby they only exhibit antibacterial activity against Gram negative bacteria Enterobacter aerogenes. The antibacterial activity of vanadium phenanthroline derivative complexes reveals that methyl groups attached at the position 2 and 9 in phenanthroline ring may increase the complexes antibacterial activity. In antiproliferative screening, vanadium carboxylato complexes in general exhibit higher antiproliferative activity when compared to copper carboxylato complexes and manganese carboxylato complexes. Copper carboxylato complexes and manganese carboxylato complexes exhibit cytotoxic selectivity against HepG2 cancer cell line when compared to MCF-7 and Hela cancer cell lines. The nucleolytic experiments suggest that the cleavage or fragmentation of DNA by ROS generated by the complexes maybe responsible for the antiproliferative activity exhibited by the complexes.

Keywords: Vanadium Complexes; Copper Complexes; Manganese Complexes; DNA Cleavage; Antibacterial; Antiproliferative

CHAPTER 1

INTRODUCTION

1.1 Biological roles and medicinal applications of metal complexes and metal ions

Studies on biological activities of metal complexes have been one of our long-term interests. Metal complexes are well known to exhibit antibacterial, antiproliferative, antiapoptotic, anti-inflammatory and insulin mimetic properties [1-28]. Several of the metal complexes have entered clinical trials and few have been registered for clinical use [29-31]. Platinum based complexes such as cisplatin, carboplatin and oxaliplatin are widely used as chemotherapeutic agents against ovarian, lung, head, neck and colorectal cancers, and have greatly improving the survival rates of patients worldwide. Schematic structures of cisplatin, carboplatin and oxaliplatin are depicted in Figure 1.1. These platinum complexes react in vivo, crosslink the DNA in several different ways and subsequently interfering the cell division by mitosis. The damaged DNA elicits DNA repair mechanisms, which in turn activate apoptosis when repair proves impossible. Meanwhile, Aurum(I) thiolate drugs such as aurothiomalate (Myocrisin^{κ}), aurothioglucose (Solganol^R), aurothiopropanol sulfonate (Allochrysin^R), and the oral drug auranofin (Ridaura^R), are widely used for the treatment of difficult cases of rheumatoid arthritis. Bismuth(III) compounds such as bismuth subcitrate and subsalicylate are widely used for the treatment of diarrhoea, dyspepsia and gastric and duodenal ulcers. Bismuth(III) compounds are found to be antibacterial active against

bacteria Helicobacter pylori which is associated with the mucus layer of ulcers. Sodium nitroprusside $(Na_2[Fe^{II}(CN)_5(NO)] \cdot 2H_2O$ or $(Nipride^R)$ is used to treat hypotensive while Cu-salicylate (Alcusal^R) is used to treat inflammatory. The success of metal complexes in medicinal applications has aroused great interest in the development of new metal complexes to diagnose and treat diseases including cancers, bacteria and virus infection related diseases, inflammatory and diabetes.

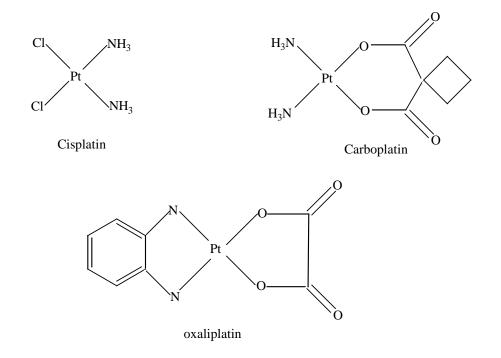


Figure 1.1: Schematic structures of cisplatin, carboplatin and oxaliplatin

Apart from metal complexes, metal ion or inorganic elements play essential roles in biological and biomedical processes in human health and disease as metalloenzymes and metalloproteins [29]. As metalloproteins, metal ions perform as catalyst or stabilizer to stabilize the protein tertiary or quaternary structure. In addition, many proteins need to bind one or more metal ions to perform their functions. Complex zinc ion is one of the most important components of metalloproteins in the human body, which functions as DNA transcription and regulation as well as oxidation and hydrolysis, cleavage of peptide bonds as well as formation of phosphodiester bonds. Meanwhile, copper ion is presence in some of the most important metalloenzymes in the human body and functions as superoxide dismutase to neutralize free radical generated from various human biological systems. Metal ions are also very important for the structure and function (in the case of RNA) of nucleic acids. Besides, many organic compounds used in medicine do not have a purely organic mode of action; some are activated or biotransformed by metal ions including metalloenzymes, others have a direct or indirect effect on metal ion metabolism. Some of the metal ions have also been registered for clinical used as therapy and diagnosis agents, as listed in Table 1.1.

Compounds	Function/Treat
Li ₂ CO ₃	Prophylaxis for bipolar disorders
CaCO ₃ , Mg(OH) ₂	Antacid
$La_2^{III}(CO_3)_3$	Chronic renal failure
$MgSO_4$	Hypomagnesemia
Potassium citrate	Kidney stones
Magnesium citrate	Saline laxative

Table 1.1: Some of metal ions in clinical use

1.2 Antibacterial and antiproliferative activities of transition metal complexes

Transition metal complexes such as vanadium, copper and manganese complexes are known to exhibit excellent antibacterial and antiproliferative activities. The summary of antibacterial and antiproliferative activities of selected few vanadium, copper and manganese complexes that have already described in the literatures is tabulated in Table 1.2. Referring to Table 1.2, it can be seen that transition metal complexes are rich in antibacterial and antiproliferative activities, being active against a wide spectrum of bacteria species or cancer cells. Transition metal complexes may induce cell death through disruption of the cell cycle or by DNA strand scission [32]. There are evidences to indicate that metal complexes can induce DNA strand scission not directly reacting with DNA components but acting mainly through the production of highly reactive oxygen species, especially hydroxyl radicals generated in cells. These reactive oxygen species actually cause the DNA strand scission. Transition metal complexes through Fenton-like reactions and/or during the intracellular reduction can generate reactive oxygen species. Besides, some transition metal complexes, which are photoactivatable, can induce DNA cleavage upon UV irradiation and singlet oxygen is the common reactive oxygen species that is generated in this process. Rich diversity of antibacterial and antiproliferative activities by transition metal complexes provides exciting prospects for the design of novel therapeutic agents with unique mechanisms of action to act against certain bacteria or cancers, as different metal complexes can produce different therapeutic effect. Therefore, detailed investigations could be helpful in designing more potent antibacterial and anticancer agents for the therapeutic use.

Complexes	Antibacterial/ Antiproliferative activity	Bacteria species/Cancer cells	Ref:
[Cu ^{II} (4-(2-pyridylmethyl)-1,7- dimethyl-1,4,7-triazonane-2,6- dione)(CH ₃ CN) ₂](ClO ₄) ₂	Antibacterial	Escherichia coli (T7), Staphylococus aureus, Pseudomonas aeruginosa	13
Cu^{II} (2-furancarbaldehyde thiosemicarbazone) 0.5H ₂ O	Antibacterial	Bacillus subtilis, Staphylococus aureus	18
[Cu ₂ ^{II} (N,N'-bis(3- aminopropyl)oxamide)(2,2'- bipyridine)(2,4,6- trinitrophenol)(H ₂ O)](2,4,6- trinitrophenol)	Antibacterial	Escherichia coli, Bacillus subtilis, Staphylococus aureus	16
$Cu_{2}^{II}(N,N'-bis(N-hydroxyethylaminoethyl)$ oxamide)(2,4,6-trinitrophenol) ₂	Antiproliferative	SMMC-7721 human hepatocellular carcinoma cells, A549 human lung adenocarcinoma cells	8
Cu ^{II} (ethyl 2-bis(2- pyridylmethyl)aminopropionate)Cl ₂	Antiproliferative	Eca-109 human esophageal cancer cells, A549 human lung adenocarcinoma cells	10
Cu ^{II} (norfloxacinato)(2,2'- bipyridine)Cl ₂	Antiproliferative	HL-60 and K562 human leukemia cells	19

Table 1.2: The antibacterial and antiproliferative	activities of some vanadium, copper
and manganese complexes	

Table 1.2: Co

Complexes	Antibacterial/ Antiproliferative activity	Bacteria species/Cancer cells	Ref:
Mn ^{II} (tetraphenyl porphyrin), (ebselen–porphyrin conjugate)	Antibacterial	Staphylococus aureus	15
Mn ^{II} (tetraamide macrocyclic)NO ₃	Antibacterial	Pseudomonas cepacicola, Klebsella aerogenous	25
Mn ^{II} (6,7-dicycanodipyrido[2,2- d:29,39-f]quinoxaline) (NO ₃)(H ₂ O)]NO ₃ .CH ₃ OH	Antiproliferative	BGC-823 human stomach cancer cells, HL-60 human leukemia cells	27
$V_4^V O_{10}(\mu-O)_2[VO(H-ciprofloxacin)_2)]_2.13H_2O$	Antibacterial	Staphylococus aureus, Escherichia coli, Pseudomonas aeruginosa	21
V ^V (2-methyl-3H-5-hydroxy-6- carboxy-4-pyrimidinone ethyl ester)	Antiproliferative	Hela human cervical cancer cells	6
V ^V O ₂ (salicylaldehydesemicarbazone)	Antiproliferative	MC3T3-E1 osteoblastic mouse calvaria-derived cells, UMR106 rat osteosarcoma- derived cells	12
$V^{IV}O(3\text{-amino-}6(7)\text{-}$ chloroquinoxaline-2-carbonitrile N^1 , N^4 -dioxide) ₂	Antiproliferative	V79 chinese hamster lung fibroblasts cells	24

1.3 Background of nucleolytic activity of metal complexes

Recently, research on nucleolytic activity of metal complexes has blossomed leading to the discovery of the capacity of metal complexes to interact with DNA and further to induce DNA cleavage in the presence of co-factor. Transition metal complexes such as ruthenium, copper, cobalt, manganese and vanadium complexes have been reported to promote DNA cleavage in the presence of co-factor [33-55]. The DNA cleavage by metal complexes can occur via oxidative, photolytic and hydrolytic cleavage.

Double helical DNA consists of two complementary, antiparallel polydeoxyribonucleotide strands associated by specific hydrogen bonding interactions between nucleotide bases, Figure 1.2. The backbone of the DNA strand is made from alternating phosphate and sugar residues. The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon) sugar. The sugars are joined together by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings. The sugar phosphate backbone of paired strands defines the helical grooves, within which the edges of the heterocyclic bases are exposed. The biologically relevant B-form structure of the DNA double helix is characterized by a shallow, wide major groove and a deep, narrow minor groove. The major and minor grooves provide a lot of hydrogen binding sites. The DNA double helix is stabilized by hydrogen bonds between the nucleotide bases attached to the two strands. The four bases found in DNA are adenine, cytosine, guanine and thymine, Figure 1.3. These four bases are attached to the sugar/phosphate to form the complete nucleotide.



Figure 1.2: The structure of part of a DNA double helix

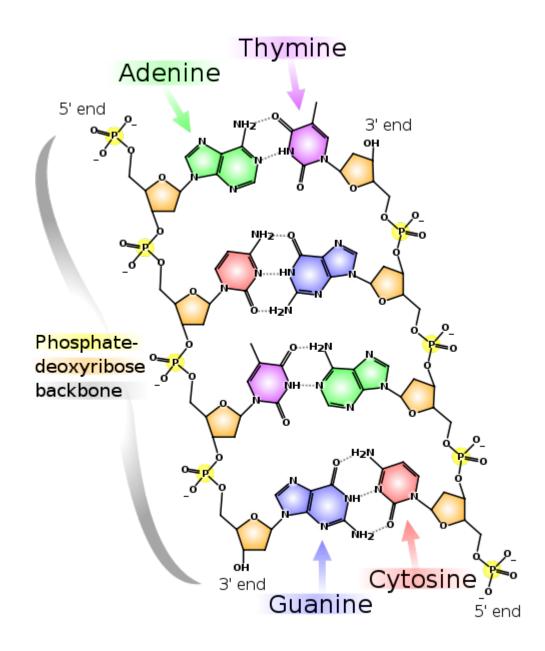


Figure 1.3: The chemical structure of DNA. Hydrogen bonds are shown as dotted lines

The DNA cleavage by metal complexes can be monitored by agarose gel electrophoresis. The DNA strain that was used in DNA cleavage studies is pBR322 DNA. The pBR322 DNA is a double helix DNA and it exists in supercoil form. In general, if scission or cleavage occurs on one strand of the supercoil DNA, the supercoil (Form I) will relax and convert to nicked form (Form II) while if scission occurs on both strands, a linear form (Form III) will be generated (Figure 1.4). These three forms of DNA will migrate in different rate in gel electrophoresis (Figure 1.5) with supercoil form migrates the fastest while nicked form migrates the slowest and linear form migrates in between supercoil and nicked forms. DNA cleavage by metal complexes is varied among the complexes, with some metal complexes can induce both single and double strand scissions while some metal complexes can only induce single scission.

In oxidative and photolytic DNA cleavage, metal complexes cannot induce DNA cleavage directly but indirectly through generating reactive oxygen species (ROS) such as hydroxyl radical and singlet oxygen. These ROS are actually responsible in DNA cleavage reaction. In order to study the DNA cleavage mechanism by metal complexes, various inhibiting agents have been used such as DMSO, t-butanol, mannitol and sodium azide. DMSO, t-butanol and mannitol are used as hydroxyl radical inhibitors while sodium azide is used as singlet oxygen inhibitor. Meanwhile in hydrolytic DNA cleavage, metal complexes can induce DNA cleavage directly by cleaving the P–O bonds in the phosphodiester of DNA.

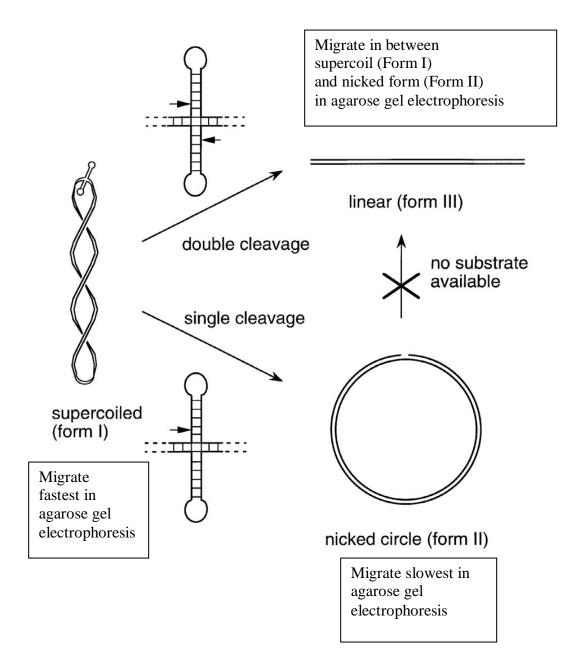
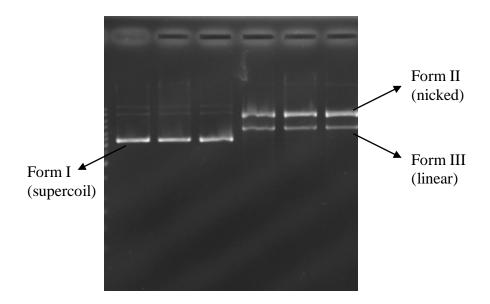
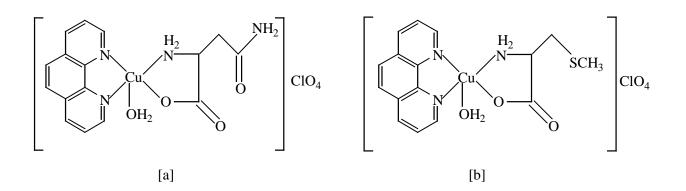
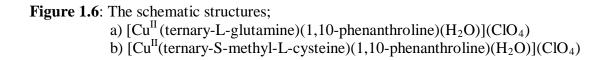


Figure 1.4: Supercoiled, nicked and linear DNA


Figure 1.5: Supercoiled, nicked and linear DNA bands in gel electrophoresis diagram

1.3.1 Oxidative DNA cleavage by metal complexes in the presence of 3mercaptopropionic acid (MPA)

Complexes $[Cu^{II}(ternary-L-glutamine)(1,10-phenanthroline)(H_2O)](ClO_4)$ and $[Cu^{II}(ternary-S-methyl-L-cysteine)(1,10-phenanthroline)(H_2O)](ClO_4)$ (Figure 1.6) can exhibit oxidative DNA cleavage in the presence of 3-mercaptopropionic acid (MPA) [33, 34]. MPA plays as reduction agent in the DNA cleavage reaction. Both of the complexes can only induce single DNA scission by converting supercoil DNA to nicked form. The mechanistic aspects of the DNA cleavage reactions have been investigated with various inhibiting agents and the results show that hydroxyl radical scavenger DMSO can inhibit the DNA cleavage induced by both of the complexes. This indicates the involvement of

hydroxyl radical in the cleavage reaction. The proposed DNA cleavage mechanism of metal complex in the presence of MPA is illustrated in Figure 1.7.

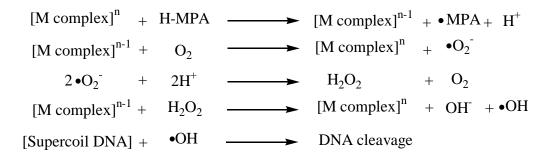
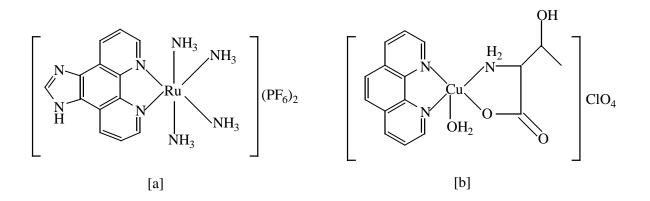
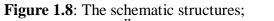




Figure 1.7: The proposed DNA cleavage mechanism of metal complex in the presence of 3-mercaptopropionic acid (MPA)

1.3.2 Oxidative DNA cleavage by metal complexes in the presence of ascorbic acid

 $[Ru^{II}(imidazo[4,5-f][1,10]phenanthroline)(NH_3)_4](PF_6)_2$ and $[Cu^{II}(L-$ Complexes threonine)(1,10-phenanthroline) (H_2O) (ClO₄) (Figure 1.8) can induce oxidative DNA cleavage in the presence of ascorbic acid [35, 36]. Similar to MPA, ascorbic acid also acts as the reduction agent in the DNA cleavage reaction. Complex [Ru^{II}(imidazo[4,5f[[1,10] phenanthroline)(NH₃)₄](PF₆)₂ can only induce single DNA scission by converting supercoil DNA to nicked form while complex [Cu^{II}(L-threonine)(1,10phenanthroline) (H_2O) (ClO₄) can induce both single and double DNA scissions by converting supercoil DNA to nicked and linear forms. In comparison, complex [Cu^{II}(Lthreonine)(1,10-phenanthroline) (H_2O) (ClO₄) appears to be a better DNA cleaver when compared to complex $[Ru^{II}(imidazo[4,5-f][1,10])$ phenanthroline) $(NH_3)_4$ (PF₆)₂ in the presence of ascorbic acid. In mechanistic studies, it is evident that the hydroxyl radical scavenger DMSO diminish significantly the nuclease activity of complex [Cu^{II}(Lthreonine)(1,10-phenanthroline) (H_2O) (ClO₄), which is indicative of the involvement of the hydroxyl radical in the cleavage process. The proposed DNA cleavage mechanism of metal complex in the presence of ascorbic acid is illustrated in Figure 1.9.

- a) [Ru^{II}(imidazo[4,5-f][1,10]phenanthroline)(NH₃)₄](PF₆)₂
 b) [Cu^{II}(L-threonine)(1,10-phenanthroline)(H₂O)](ClO₄)

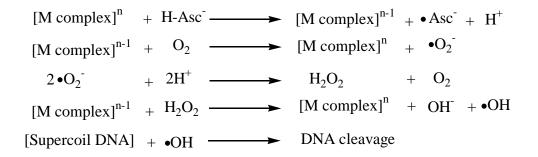
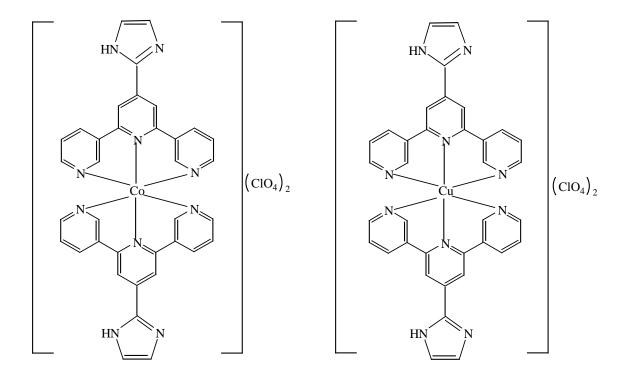



Figure 1.9: The proposed DNA cleavage mechanism of metal complex in the presence of ascorbic acid

1.3.3 Oxidative DNA cleavage by metal complexes in the presence of H₂O₂

Complexes $[Co^{II}(imidazole-terpyridine)_2](ClO_4)_2$ [Cu^{II}(imidazole and $terpyridine_2$ (ClO₄)₂ (Figure 1.10) can promote oxidative DNA cleavage in the presence of H₂O₂ [37, 38]. In contrast to MPA and ascorbic acid, H₂O₂ acts as oxidation agent in the DNA cleavage reaction. Complex $[Co^{II}(imidazole-terpyridine)_2](ClO_4)_2$ can only induce single DNA scission by converting supercoil DNA to nicked form while complex $[Cu^{II}(imidazole terpyridine)_2](ClO_4)_2$ can induce both single and double DNA scissions by converting supercoil DNA to nicked and linear forms. This indicates that the DNA cleavage efficiency of complex $[Cu^{II}(imidazole terpyridine)_2](ClO_4)_2$ is higher than the DNA cleavage efficiency of complex $[Co^{II}(imidazole-terpyridine)_2](ClO_4)_2$ in the presence of H_2O_2 . From the mechanistic studies, it is shown that the hydroxyl radical scavenger DMSO can reduce significantly the nuclease activity of complex $[Co^{II}(imidazole-terpyridine)_2](ClO_4)_2$ while the hydroxyl radical scavenger ethanol can [Cu^{II}(imidazole reduce significantly nuclease activity complex the of $terpyridine)_2 (CIO_4)_2$. This results reflect that the participation of hydroxyl radical in the cleavage process. The proposed DNA cleavage mechanism of metal complex in the presence of H_2O_2 is illustrated in Figure 1.11.

Figure 1.10: The schematic structures; a) [Co^{II}(imidazole-terpyridine)₂](ClO₄)₂ b) [Cu^{II}(imidazole terpyridine)₂](ClO₄)₂

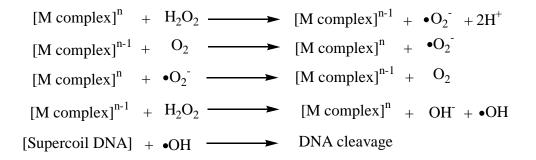


Figure 1.11: The proposed DNA cleavage mechanism of metal complex in the presence of H_2O_2

1.3.4 Photolytic DNA cleavage by metal complexes

[Cu^{II}(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H₂O)](ClO₄), Complexes $[Co^{III}]$ $[Ru^{II}(2,2)]$ $(\text{ethylenediamine})_2(\text{imidazo}[4,5-f][1,10]-\text{phenanthroline})]Br_3,$ bipyridine)₂(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO₄)₂ and $[Ni^{II}(naptho[2,3-a])]$ dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione)(1,10phenanthroline)](PF_6)₂ (Figure 1.12) can trigger photolytic DNA cleavage upon [Cu^{II}(ternary-S-methyl-Lirradiation [34. 39. 40. 41]. Complexes cysteine)(dipyridoquinoxaline)(H_2O)](ClO₄) and [Ru^{II}(2,2'-bipyridine)₂(5-methoxyisatino-[1,2-b]-1,4,8,9-tetraaza triphenylene)](ClO₄)₂ can induce both single and double DNA scissions by converting supercoil DNA to nicked and linear forms while $[Co^{III}(ethylenediamine)_2(imidazo[4,5-f][1,10]-phenanthroline)]Br_3$ complexes and $[Ni^{II}(naptho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione)(1,10-)$

phenanthroline)](PF_6)₂ can only induce single DNA scission by converting supercoil DNA to nicked form. In comparison, DNA cleavage efficiency of complexes [$Ru^{II}(2,2'-bipyridine)_2(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraazatriphenylene)](<math>ClO_4$)₂

and $[Cu^{II}(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H_2O)](ClO_4)$ is higher than the DNA cleavage efficiency of complexes $[Co^{III}(ethylenediamine)_2(imidazo)[4,5$ $f][1,10]-phenanthroline)]Br_3 and <math>[Ni^{II}(naptho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine 5,18-dione)(1,10-phenanthroline)](PF_6)_2 under photolytic DNA cleavage. In mechanistic$ $studies, DNA cleavage activity of complexes <math>[Ru^{II}(2,2'-bipyridine)_2(5-methoxy-isatino [1,2-b]-1,4,8,9-tetraazatriphenylene)](ClO_4)_2 and <math>[Cu^{II}(ternary-S-methyl-L-cysteine)$ (dipyridoquinoxaline)(H₂O)](ClO₄) can be inhibited by singlet oxygen inhibitor sodium azide which indicate the contribution of singlet oxygen in the cleavage process. The DNA cleavage mechanism of the complexes Co^{III}(ethylenediamine)₂(imidazo[4,5f][1,10]-phenanthroline)]Br₃ and [Ni^{II}(naptho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione)(1,10-phenanthroline)](PF₆)₂ is still under investigation. It is proposed that photon from the excitation source excites the metal complexes, which then transfers the energy to the ground state oxygen molecule (${}^{3}O_{2}$) and excites it to the ${}^{1}\Delta g$ state (${}^{1}O_{2}$). The proposed DNA cleavage mechanism of metal complex under irradiation is illustrated in Figure 1.13.

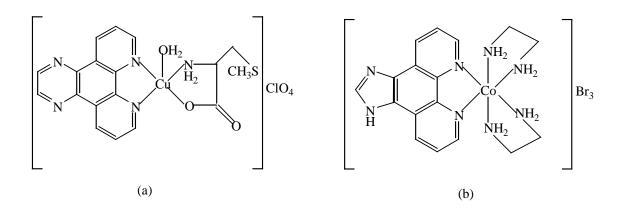
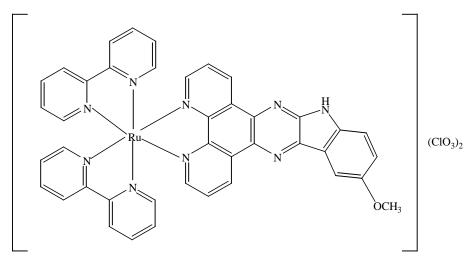
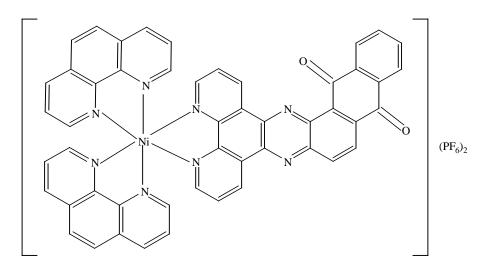




Figure1.12: The schematic structures; a) [Cu^{II}(ternary-S-methyl-L-cysteine)(dipyridoquinoxaline)(H₂O)](ClO₄) b) [Co^{III}(ethylenediamine)₂(imidazo[4,5-f][1,10]-phenanthroline)]Br₃

(c)

(d)

- Figure 1.12: Continued
 c) [Ru^{II}(2,2'-bipyridine)₂(5-methoxy-isatino-[1,2-b]-1,4,8,9-tetraaza triphenylene)](ClO₄)₂
 d) [Ni^{II}(naptho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione)(1,10-phenanthroline)](PF₆)

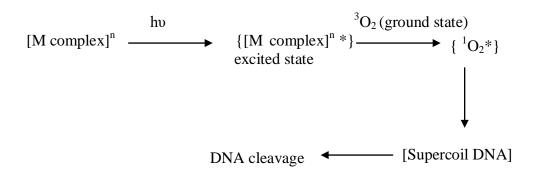
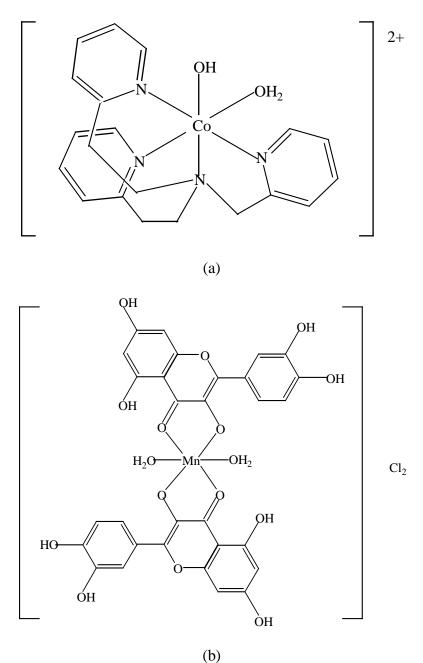
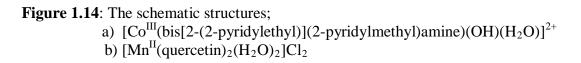




Figure 1.13: The proposed DNA cleavage mechanism of metal complex upon irradiation

1.3.5 Hydrolytic DNA cleavage by metal complexes

[Co^{III}(bis[2-(2-pyridylethyl)](2complex, Cis-aquahydroxo-tetraamine-cobalt(III) pyridylmethyl)amine)(CO₃)]ClO₄ and complex $[Mn^{II}(quercetin)_2(H_2O)_2]Cl_2$ (Figure 1.14) can induce DNA cleavage via hydrolytic pathway [42, 43]. Both of the complexes can induce DNA cleavage in the absence of co-factor and in the dark. The mechanistic aspects of the DNA cleavage reaction have been investigated with various inhibiting agents and the results show that hydroxyl radical and singlet oxygen scavengers cannot inhibit the DNA cleavage induced by both of the complexes. These observations indicate that hydroxyl radical and singlet oxygen species are not involved in the cleavage reaction. The DNA cleavage characteristics of complexes [Co^{III}(bis[2-(2-pyridylethyl)] $(2-pyridylmethyl)amine)(OH)(H_2O)]^{2+}$ and $[Mn^{II}(quercetin)_2(H_2O)_2]Cl_2$ support hydrolytic cleavage. Both of the complexes can induce single and double DNA scissions by converting supercoil DNA to nicked and linear forms. In hydrolytic cleavage, it is proposed that DNA cleavage occurs at the P–O bond in the phosphodiester of DNA. The proposed hydrolytic DNA cleavage mechanism by metal complex is illustrated in Figure 1.15.

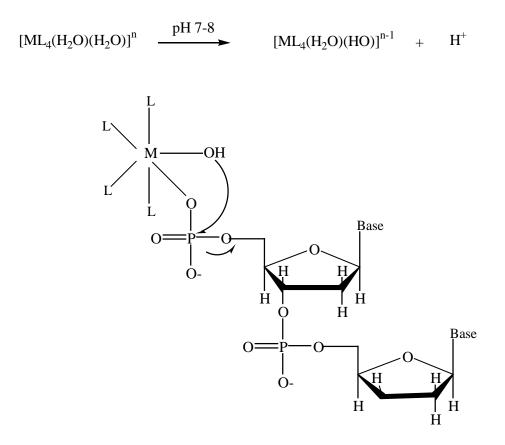
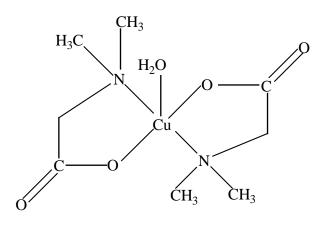
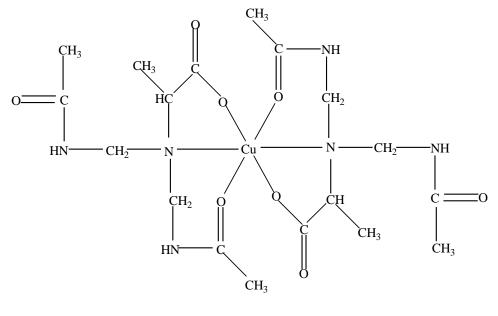



Figure 1.15: The proposed hydrolytic DNA cleavage mechanism by the metal complex


1.3.6 Oxidative DNA cleavage by copper(II) amino acid complexes in the presence of H₂O₂

Recently, Ng et al. have demonstrated that neutral Cu^{II} amino acid complexes such as $Cu^{II}(N,N-di-(N'-methylacetamido)-L-alaninato)_2$ and $Cu^{II}(N,N'-dimethylglycinato)_2$ (Figure 1.16) can induce oxidative cleavage of DNA in the presence of H₂O₂ [44, 45]. Both of the complexes can induce single and double DNA scissions by converting supercoil DNA to nicked and linear forms. Hydroxyl radical scavenger DMSO can inhibit significantly the cleavage reaction induced by complex Cu^{II}(N,N'-

dimethylglycinato)₂ which reflect the involvement of hydroxyl radical in cleavage reaction. The proposed DNA cleavage mechanism by complex $Cu^{II}(N,N'-$ dimethylglycinato)₂ is similar to the proposed DNA cleavage mechanism illustrated in Figure 1.11.

(b)

Figure 1.16: The schematic structures; a) Cu^{II}(N,N'-dimethylglycinato)₂ b) Cu^{II}(*N*,*N*-di-(*N*'-methylacetamido)-L-alaninato)₂