CHARACTERIZATION OF BANANA (<u>Musa acuminata</u> × <u>balbisiana</u> cv. AWAK) PSEUDO-STEM FLOUR AND ITS POTENTIAL IN THE DEVELOPMENT OF NOVEL FIBRE-RICH BREAD

HO LEE HOON

UNIVERSITI SAINS MALAYSIA

2013

CHARACTERIZATION OF BANANA (<u>Musa acuminata</u> × <u>balbisiana</u> cv. AWAK) PSEUDO-STEM FLOUR AND ITS POTENTIAL IN THE DEVELOPMENT OF NOVEL FIBRE-RICH BREAD

by

HO LEE HOON

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

July 2013

Dedicated to

My Beloved

Father and Mother,

(Mr. Ho Lían Kí and Mdm. Looí See Moey @ Moy)

Brothers and Sisters

(Lee Hwa, Leong Sua, Liang Huat,

Liang Heng, Lee Choo, Lee Lee and Liang Ee)

ACKNOWLEDGEMENTS

I would like to appreciate and praise to God Almighty for His' grace, blessings, and the strength granted to me to complete this study. I would like to express my sincere appreciation and gratitude to my supervisor Prof. Dr. Noor Aziah Binti Abdul Aziz and co-supervisor, Assoc. Prof. Dr. Rajeev Bhat for their guidance, ideas and suggestions, as well as their understanding, tolerance, and patience throughout in this study.

I wish to take this advantage acknowledge the Research University Grant granted by the Universiti Sains Malaysia (Grant no. 1001/PTEKIND/815055) and grateful for the fellowship awarded by the Universiti Sains Malaysia in financing support to enable me to complete this research.

I warmly thank Mdm. Wan Nadiah Binti Wan Abdullah and Assoc. Prof. Dr. Baharin Bin Azahari for their valuable advice and friendly assistance. Special thanks to all the staff from the Food Division, School of Industrial Technology, Universiti Sains Malaysia for providing technical support and assistance especially in handling materials and equipment during the laboratory phase of this research.

I will not forge the love, patience and spiritual support from my parents, brothers and sisters during the preparation of this study. I love you all.

In additions, I wish to express my special thanks to my laboratory mates, Ms. Sanaz Sarebanha, Ms. Boshra Varastegani, Mr. Reza Feili, Ms. Chye Shu Jin, Ms. Fairuz Binti Che Omar, Ms. Chong Woei Tyng, Ms. Li Ling Yun, Mr. Kiang Wei Seng, who helped me a lot during this research. Their supports have been of great value in this research. I would like to say a word thank you to my seniors Dr. Chong Li Choo, Dr. Tan Thuan Chew, Ms. Wong Lee Min, Mr. Chew Shio Hiong, Ms. Sim Sze Yin and Ms. Chan Hui Tin for their kind assistance during this research.

A special word of thank to my friend; Mr. Liew Seng Chee, Ms. Loh Ai San, Ms. Chin Huichi, Ms. Foong Chien Wei, Ms. Aw Cai Yun and Ms. Chang Li Ying for their help and supports.

For those who names may have inadvertently left out here, Thank you.

Once again thank you.

HO LEE HOON

July, 2013

TABLE OF CONTENTS

Page

8

ii
iv
xii
XV
xix
XX
xxiii
XXV

CHAPTER	ONE - INTRODUCTION	1
1.1	Background	1
1.2	Problem statements	2
1.3	Significance of study	5
1.4	Objectives	7

CHAPTER TWO - LITERATURE REVIEW

2.1	Botan	ical and Morphological Description of Banana	8
2.2	Nutri	tional Value and Uses of Banana Pseudo-stem	13
2.3	Mine	rals	17
2.4	Dieta	ry Fibre	21
	2.4.1	Soluble dietary fibre (SDF)	24
		2.4.1 (a) Pectins	25
		2.4.1 (b) Beta-glucans (β -glucans)	26
		2.4.1 (c) Other soluble polysaccharides	26
	2.4.2	Insoluble dietary fibre (IDF)	27

		2.4.2 (a) Cellulose	27
		2.4.2 (b) Hemicellulose	29
		2.4.2 (c) Lignin	30
	2.4.3	Health effects of non-starch polysaccharide (NSP) intake	31
2.5	Resist	tant Starch (RS)	35
	2.5.1	Physically inaccessible starch (RS ₁)	38
	2.5.2	Ungelatinized starch granules (RS ₂)	38
	2.5.3	Retrograded starch (RS ₃)	38
	2.5.4	Chemically modified starch (RS ₄)	39
2.6	Antio	xidant Compounds	41
2.7	Bread	1	45
	2.7.1	Bread introduction	45
	2.7.2	Bread market	47
2.8		I Ingredients and their Roles in Breadmaking at flour, water, yeast, sugar, salt, milk, improver and ming)	50
2.9	Comp	oosite Flour	55
	2.9.1	The potential of banana pseudo-stem used as composite flour	59
	2.9.2	Drying method	63
2.10	Hydro	ocolloids and its Roles in Bakery Industry	65
	2.10.1	Sodium carboxymethyl cellulose (Na CMC)	67
	2.10.2	Xanthan gum	70
2.11	Bread	Imaking Methods	73
	2.11.1	Mixing	74
	2.11.2	2 Yeast fermentation	76

	2.11.3 Dough proofing	77
	2.11.4 Knocking back	78
	2.11.5 Dividing and molding	78
	2.11.6 Final dough proofing	79
	2.11.7 Baking	80
2.12	Glycemic Index (GI)	82
2.13	Bread Quality Assessment	84
	2.13.1 Colour	84
	2.13.2 Volume	85
	2.13.3 Texture	87
	2.13.4 Sensory evaluation	88
2.14	Spoilage	90
	2.14.1 Bread staling	90
	2.14.1 (a) Moisture content	92
	2.14.1 (b) Starch retrogradation	93
	2.14.2 Water activity	94
	2.14.3 Microbiological quality evaluation	96

CHAPTER	THREE - MATERIALS AND METHODS	98
3.1	Study Outline	98
3.2	Sample Collection	101
3.3	Flour Processing	101
3.4	Bread Preparation	102
3.5	Proximate Analyses	106
	3.5.1 Determination of moisture content	106

	3.5.2 Determination of ash content	107
	3.5.3 Determination of crude fat	108
	3.5.4 Determination of crude fibre	109
	3.5.5 Determination of crude protein	110
	3.5.6 Determination of carbohydrate	111
	3.5.7 Determination of calorie	111
3.6	Mineral Determination	112
	3.6.1 Preparation of samples	112
	3.6.2 Determination of magnesium (Mg), iron (Fe), copper (Cu), zinc (Zn) and manganese (Mn)	113
	3.6.3 Determination of sodium (Na), potassium (K) and calcium (Ca)	114
	3.6.4 Determination of phosphorus (P)	114
3.7	Determination of Total Dietary Fibre (TDF), Insoluble Dietary Fibre (IDF) and Soluble Dietary Fibre (SDF)	115
3.8	Determination of Cellulose, Lignin and Hemicellulose	118
	3.8.1 Determination of acid detergent fibre (ADF)	118
	3.8.2 Determination of lignin	120
	3.8.3 Determination of neutral detergent fibre (NDF)	121
	3.8.3 (a) Working heat-stable α -amylase solution	121
	3.8.3 (b) Sample preparation	124
3.9	Total Sugars Determination	127
3.10	Pentosan Analyses	128
	3.10.1 Total pentosans	128
	3.10.2 Water-soluble pentosan	129

3.12	Resistant Starch and Digestible Starch Determination	131
3.13	In Vitro Starch Digestibility	133
3.14	Total Phenolic Contents, Total Flavonoids, Tannin Contents and Antioxidant Properties Determination	135
	3.14.1 Sample extract preparation	135
	3.14.2 Determination of total phenolic compounds (TPC)	135
	3.14.3 Total flavonoid (TF) assay	136
	3.14.4 Total tannins assay	137
	3.14.5 Determination of antioxidants activity	138
	3.14.5 (a) 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay	138
	3.14.5 (b) Ferric-reducing antioxidant potential (FRAP) assay	139
3.15	Biochemical Analyses	140
	3.15.1 Total titratable acidity (TTA)	140
	3.15.2 pH measurement	140
	3.15.3 Total soluble solids (TSS)	141
3.16	Water activity (a _w) measurement	141
3.17	Water holding capacity (WHC) and oil holding capacity (OHC)	142
3.18	Cellulose Isolated From Banana Pseudo-stem Flour (BPF)	143
	3.18.1 Preparation of the cellulose powder	143
	3.18.2 Fourier transform infrared spectroscopy (FTIR)	143
	3.18.3 X-ray diffraction	144
3.19	Flour Blends Study	145
	3.19.1 Flour blends preparation	145
	3.19.2 Dough mixing properties	145

	3.19.3	Pasting properties analysis	146
	3.19.4	Thermal profiles analysis	147
3.20	Physic	cal Analyses	148
	3.20.1	Bulk density	148
	3.20.2	Colour analysis	148
	3.20.3	Determination of volume, specific volume, density, weight loss and loaf height of bread	149
	3.20.4	Texture profile analysis (TPA)	151
	3.20.5	Scanning electron microscope (SEM)	152
3.21	Senso	ry Evaluation	152
3.22	Bread	samples preparation for storage analyses	154
	3.22.1	Bread crumb thermal properties	155
	3.22.2	Microbiological evaluation	156
3.23	Statis	tical Analyses	158
CHAPTER	R FOUR	- RESULTS AND DISCUSSION	159
CHAPTER 4.1		c - RESULTS AND DISCUSSION ical Analyses of Flour	159 159
-			
-	Chem	ical Analyses of Flour	159
-	Chem 4.1.1	ical Analyses of Flour Proximate compositions	159 159
-	Chem 4.1.1 4.1.2	ical Analyses of Flour Proximate compositions Mineral contents Total dietary fibre (TDF), insoluble dietary fibre (IDF)	159 159 162
-	Chem 4.1.1 4.1.2 4.1.3	ical Analyses of Flour Proximate compositions Mineral contents Total dietary fibre (TDF), insoluble dietary fibre (IDF) and soluble dietary fibre (SDF)	159 159 162 167
-	Chem 4.1.1 4.1.2 4.1.3 4.1.4	ical Analyses of Flour Proximate compositions Mineral contents Total dietary fibre (TDF), insoluble dietary fibre (IDF) and soluble dietary fibre (SDF) Cellulose, lignin and hemicellulose contents Total sugars, total pentosans and water-soluble	159 159 162 167 169

	4.1.8	Biochemical properties	180
4.2	Water (OHC	c holding capacity (WHC) and oil holding capacity	182
4.3	Physic	cal Analyses of Flour	184
	4.3.1	Bulk density, water activity (a_w) and colour measurement	184
	4.3.2	Microstructure of flours	189
4.4	Cellul	ose Extraction of Banana Pseudo-stem Flour	191
	4.4.1	Yield of raw BPF and cellulose	191
	4.4.2	Fourier transform infrared spectroscopy analysis	193
	4.4.3	X-ray diffraction	197
	4.4.4	Microstructure of extracted cellulose	200
4.5	Flour	Blends Study	204
	4.5.1	Dough mixing properties	204
	4.5.2	Thermal properties	208
	4.5.3	Pasting profiles	211
4.6	Chem	ical Analyses of Bread Samples	215
	4.6.1	Proximate compositions in bread samples	215
	4.6.2	Mineral compositions in bread samples	218
	4.6.3	Dietary fibre analyses in bread samples	220
	4.6.4	Total sugars, total pentosans and water-soluble pentosan in bread samples	222
	4.6.5	Total starch, resistant starch and digestible starch in bread samples	224
	4.6.6	Rate of starch hydrolysis in bread samples	228
	4.6.7	Hydrolysis index and estimated glycemic index of bread samples	230

	4.6.8	Relationship of estimated glycemic index with resistant starch or soluble dietary fibre of bread samples	232
	4.6.9	Total phenolics, tannin and antioxidant properties in bread samples	234
4.7	Physic	cal Analyses of Bread Samples	237
	4.7.1	Volume, specific volume, density, weight loss and loaf height of bread samples	237
	4.7.2	Texture profile analysis of bread samples	241
	4.7.3	Colour measurement of bread samples	246
	4.7.4	Scanning electron microscope of bread samples	251
4.8	Senso	ry Evaluation	263
4.9	Stora	ge Study	265
	4.9.1	Moisture content of bread samples during storage	265
	4.9.2	Water activity of bread samples during storage	268
	4.9.3	Texture analysis of bread samples during storage	271
	4.9.4	Thermal properties of bread samples during storage	275
	4.9.5	Microbiological analyses of bread samples during storage	279
	4.9.6	Sensory evaluation of bread samples during storage	284
			200
		- CONCLUSIONS	288
-		RECOMMENDATIONS FOR FUTURE WORK	292
REFEREN	CES		294
APPENDIC	CE		326
LIST OF P	UBLIC	CATIONS	328

LIST OF TABLES

		Page
Table 2.1	Biological classification of the banana plant	9
Table 2.2	The compositions of banana pseudo-stem	14
Table 2.3	Constituents of dietary fibre	23
Table 2.4	Suggested classification of materials according to the range of resistant starch content (% dry matter)	40
Table 2.5	Effects of composite flour on baked products obtained from previous studies	57
Table 2.6	Planted area and production of bananas statistics from year 2006-2011	60
Table 2.7	Classification of bakery products based on water activity and moisture content	95
Table 3.1	Formulations of BCtr, B10BPF, B10BPFXG and B10BPFCMC	103
Table 3.2	Operating conditions of the inductively coupled plasma optical emission spectrometer	113
Table 3.3	Determination of final standardized amylase working solution	123
Table 3.4	Parameters setting of texture analyzer	151
Table 4.1	Proximate compositions of commercial wheat flour and banana pseudo-stem flour	160
Table 4.2	Mineral contents of commercial wheat flour and banana pseudo-stem flour	164
Table 4.3	Total sugars, total pentosans and soluble pentosan of commercial wheat flour and banana pseudo-stem flour	172
Table 4.4	Total phenolics, total flavonoids, tannin contents and antioxidant activity in commercial wheat flour and banana pseudo-stem flour	177
Table 4.5	Mean value of pH, total soluble solid and total titratable acidity of commercial wheat flour and banana pseudo-stem flour	181

- Table 4.6Water holding capacity (WHC) and oil holding capacity183(OHC) of commercial wheat flour and banana pseudo-stemflour
- Table 4.7Physical characteristics of commercial wheat flour and185banana pseudo-stem flour
- Table 4.8The yield of raw BPF, unbleached and bleached cellulose192preparation obtained from BPF
- Table 4.9Farinograph data of the commercial wheat flour substituted205with banana pseudo-stem flour at 10% level and addedhydrocolloids
- Table 4.10Gelatinization parameters of the commercial wheat flour209substituted with banana pseudo-stem flour at 10% level and
added hydrocolloidsadded hydrocolloids
- Table 4.11Pasting profiles of the commercial wheat flour substituted213with banana pseudo-stem flour at 10% level and addedhydrocolloids
- Table 4.12Proximate compositions of BCtr, CWF substituted with 10%217BPF and hydrocolloid added breads
- Table 4.13Mineral compositions of BCtr, CWF substituted with 10%219BPF and hydrocolloid added breads
- Table 4.14Dietary fibre contents of BCtr, CWF substituted with 10%221BPF and hydrocolloid added breads
- Table 4.15Total sugars, total pentosans and water-soluble pentosan of
BCtr, CWF substituted with 10% BPF and hydrocolloid
added breads223
- Table 4.16Total phenolics and antioxidant properties of BCtr and CWF236substituted with 10% BPF and hydrocolloid added breads
- Table 4.17Volume, specific volume, density, loaf weight loss and loaf238height of BCtr, CWF substituted with 10% BPF andhydrocolloid added breads
- Table 4.18Texture profile analysis of BCtr, CWF substituted with 10%242BPF and hydrocolloid added breads
- Table 4.19Colour measurement of BCtr, CWF substituted with 10%247BPF and hydrocolloid added breads
- Table 4.20Changes of texture profile of BCtr, CWF substituted with27210% BPF and hydrocolloid added breads during storage

Table 4.21	Thermal properties of BCtr, CWF substituted with 10% BPF	276
	and hydrocolloid added breads during storage	

- Table 4.22Aerobic plate count, and mold and yeast count of BCtr, CWF280substituted with 10% BPF and hydrocolloid added breads
during storage280
- Table 4.23Sensory evaluation of BCtr, CWF substituted with 10% BPF285and hydrocolloid added breads during storage

LIST OF FIGURES

Figure 2.1	Fragment (repeating units) of a cellulose chain	28
Figure 2.2 A	The structure of amylose	36
Figure 2.2 B	The structure of amylopectin	36
Figure 2.3	World market trends of bread export quantity and value from year 2001 to 2009	
Figure 2.4	Malaysia market trends of bread export quantity and value from year 2001 to 2009	49
Figure 2.5	World by-product production of banana pseudo-stem from year 2000 to 2009	61
Figure 2.6	Structural formula of sodium carboxymethyl cellulose	67
Figure 2.7	Structural formula of xanthan gum	71
Figure 2.8	Generalized diagram of relative deterioration rates of food spoilage mechanisms as a function of water activity	97
Figure 3.1	Flowchart of the overall study	100
Figure 3.2	Flow diagram of bread preparation by using sponge and dough method	105
Figure 3.3 A	Flow diagram of flour samples preparation by using acid digestion extraction method	112
Figure 3.3 B	Flow diagram of bread samples preparation by using acid digestion extraction method	112
Figure 4.1	Insoluble, soluble and total dietary fibre of commercial wheat flour and banana pseudo-stem flour	168
Figure 4.2	Insoluble fibre compositions of banana pseudo-stem flour	170
Figure 4.3	Total starch, resistant starch and digestible starch of commercial wheat flour and banana pseudo-stem flour	175
Figure 4.4 A	SEM microstructure of CWF Magnification = X1000	190
Figure 4.4 B	SEM microstructure of BPF Magnification = X1000	190

Figure 4.5	FTIR spectra of BPF, unbleached cellulose and bleached cellulose obtained from BPF	194
Figure 4.6	X-ray diffractogram of BPF, unbleached cellulose and bleached cellulose obtained from BPF	198
Figure 4.7 A	SEM microstructure of a raw particle of BPF Magnification = X500	201
Figure 4.7 B	SEM image of a unbleached cellulose obtained after alkaline treatment Magnification = X600	202
Figure 4.7 C	SEM image of a bleached cellulose obtained after alkaline treatment Magnification = X600	202
Figure 4.7 D	SEM image of a BPF pith obtained after alkaline treatment Magnification = X300 K	203
Figure 4.8 A	Total starch of BCtr, B10BPF, B10BPFXG and B10BPFCMC	225
Figure 4.8 B	Resistant starch of BCtr, B10BPF, B10BPFXG and B10BPFCMC	226
Figure 4.8 C	Digestible starch of BCtr, B10BPF, B10BPFXG and B10BPFCMC	227
Figure 4.9	<i>In vitro</i> starch hydrolysis (%) in commercial white bread (reference) and breads incorporated with BPF flour at 10% level and addition of hydrocolloids	229
Figure 4.10 A	Hydrolysis index of BCtr, B10BPF, B10BPFXG and B10BPFCMC	231
Figure 4.10 B	Estimated glycemic index of BCtr, B10BPF, B10BPFXG and B10BPFCMC	231
Figure 4.11 A	Correlation between resistant starch content and estimated glycemic index of bread samples (BCtr, B10BPF, B10BPFXG and B10BPFCMC)	233
Figure 4.11 B	Correlation between soluble dietary fibre and estimated glycemic index of bread samples (BCtr, B10BPF, B10BPFXG and B10BPFCMC)	233
Figure 4.12 A	SEM microstructure of dough BCtr Magnification = X40	252

Figure 4.12 B	SEM microstructure of dough B10BPF Magnification = X40	252
Figure 4.12 C	SEM microstructure of dough B10BPFXG Magnification = X40	253
Figure 4.12 D	SEM microstructure of dough B10BPFCMC Magnification = X40	253
Figure 4.12 E	SEM microstructure of dough BCtr Magnification = X1000	255
Figure 4.12 F	SEM microstructure of dough B10BPF Magnification = X1000	255
Figure 4.12 G	SEM microstructure of dough B10BPFXG Magnification = X1000	256
Figure 4.12 H	SEM microstructure of dough B10BPFCMC Magnification = X1000	256
Figure 4.12 I	SEM microstructure of BCtr Magnification = X35	258
Figure 4.12 J	SEM microstructure of B10BPF Magnification = X35	
Figure 4.12 K	SEM microstructure of B10BPFXG Magnification 2 = X35	
Figure 4.12 L	SEM microstructure of B10BPFCMC Magnification = 2 X35	
Figure 4.12 M	SEM microstructure of BCtr Magnification = X1000 2	
Figure 4.12 N	SEM microstructure of B10BPF Magnification = X1000	
Figure 4.12 O	SEM microstructure of B10BPFXG Magnification = 2 X1000	
Figure 4.12 P	SEM microstructure of B10BPFCMC Magnification = 20 X1000	
Figure 4.13	Average of the parameters on sensory evaluation of 20 BCtr, B10BPF, B10BPFXG and B10BPFCMC	
Figure 4.14 A	Moisture content of bread crust of BCtr, B10BPF, 20 B10BPFXG and B10BPFCMC during storage	
Figure 4.14 B	Moisture content of bread crumb of BCtr, B10BPF, B10BPFXG and B10BPFCMC during storage	267

- Figure 4.15 A Water activity of bread crust of BCtr, B10BPF, 269 B10BPFXG and B10BPFCMC during storage
- Figure 4.15 B Water activity of bread crumb of BCtr, B10BPF, 270 B10BPFXG and B10BPFCMC during storage

LIST OF PLATES

Plate 2.1	Banana plant	10
Plate 2.2	Cylindrical structure of banana pseudo-stems	
Plate 2.3	Cross-sectional view of banana pseudo-stem	
Plate 2.4	Banana flower covered by bract	
Plate 2.5	Banana fruits bunch arise from banana flower	
Plate 4.1 A	A Commercial wheat flour	
Plate 4.1 B Banana pseudo-stem flour		187
Plate 4.2 Bread crumb cross-sectional views from BCtr, B10BPF, B10BPFXG and B10BPFCMC		250

LIST OF SYMBOLS AND ABBREVIATIONS

%	Percentage
0	Degreee
⁰ C	Degree celsius
a*	Red/ green
$ABTS^{+\bullet}$	2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation
AD	Acid detergent
ADA	American Dietetic Association
ADF	Acid detergent fibre
APC	Aerobic plate count
AUC	Area under the curve
a _w	Water activity
b^*	Yellowness/ blue
B10BPF	BCtr substituted with 10% BPF
B10BPFCMC	B10BPF with sodium carboxymethyl cellulose addition
B10BPFXG	B10BPF with xanthan gum addition
BCtr	White wheat bread (control)
BD	Breakdown
BPF	Banana pseudo-stem flour
BU	Brabender units
С	Carbon
Ca	Calcium
CFU	Colony forming unit
CIE	Commission Internationale de I 'Eclairage
Co	Cobalt
CO_2	Carbon dioxide
Cu	Copper
CVD	Cardiovascular disease
CWF	Commercial wheat flour
DDT	Dough development time
DPPH [•]	DPPH radical (1,1'-diphenyl-2-picrylhydrazyl radical)
DS	Dough stability
DSC	Differential scanning calorimetry
e.g	Example
ERH	Equilibrium relative humidity
F10BPF	FCWF substituted with 10% banana pseudo-stem flour
F10BPFCMC	F10BPF with sodium carboxymethyl cellulose addition
F10BPFXG	F10BPF with xanthan gum addition
FCWF	Commercial wheat flour (control)
Fe	Iron
FeCl ₃	Ferric chloride
FeSO ₄ .7H ₂ O	Ferrous sulphate
FRAP	Ferric reducing antioxidant power
FTIR	Fourier transform infrared spectroscopy
FV	Final viscosity
g	Gram
h	Hour

H_2SO_4	Sulphuric acid
Ha	Hectare
HCl	Hydrochloric acid
HI	Hydrolysis index
HNO ₃	Nitric acid
HPC	Hydroxypropylcellulose
HPMC	Hydroxypropylmethylcellulose
I	Iodine
IDF	Insoluble dietary fibre
J/ G	
J/ (J K	Joule per gravitational Potassium
к KBr	Potassium bromide
Kcal	Kilocalories
KCl-HCl	Potassium chloride-Hydrochloric acid buffer
kg	Kilogram Dihydrogen orthonhognhote
KH ₂ PO ₄	Dihydrogen orthophosphate
KOH	Potassium hydroxide
L*	Lightness
M	Molarity
m MC	Meter
MC	Methylcellulose
MCC	Microcrystalline cellulose
Mg	Magnesium
mg	Miligram
mg/ L	Miligram per liter
min	Minute
mL mM	Mililiter Milimolar
mM Ma	
Mn Ma	Manganese
Mo	Molybdenum Mining tolorgage index
MTI	Mixing tolerance index
MYC	Mold and yeast counts
N Na	Normality
Na Na CMC	Sodium
Na CMC	Sodium carboxymethyl cellulose Sodium carbonate
Na_2CO_3	
NaOCl	Sodium hypochlorite
NaOH	Sodium hydroxide
ND NDE	Neutral detergent
NDF	Neutral detergent fibre Nanometer
nm	
np. NSP	No present
	Non starch polysaccharides
OHC P	Oil holding capacity
P PCA	Phosphorus Plata count agar
PCA PDA	Plate count agar Potato devtrose agar
	Potato dextrose agar Estimated glycemic index
pGI PT	Estimated glycemic index
PT PV	Pasting temperature pasting viscosity
T A	pusting viscosity

RDS RH rpm RS RS ₁ RS ₂ RS ₃ RS ₄ RVU S s.d SB SCFA SDF SDS Se sec SEM SOP Tc	Rapidly digestible starch Relative humidity Revolutions per minute Resistant starch Physical inaccessible starch Ungelatinized starch granules Retrograded starch Chemically modified starch Rapid visco units Sulphur Standard deviation Setback Short chain fatty acid Soluble dietary fibre Slowly digestible starch Selenium Second Scanning electron microscope Standard operating procedure
TDF	Conclusion temperature Total dietary fibre
TF	Total flavonoids
То	Onset temperature
Тр	Peak temperature
TPA	Texture profile analysis
TPC	Total phenolic compounds
TPTZ	2,4,6-tripyridyl-s-triazine
TSS	Total soluble solids
TTA	Total titratable acidity
v/v	Volume per volume
w/ v	Weight per volume
W/W	Weight/ weight
WA	Water absorption
WHC	Water holding capacity Gravity
x g XG	Xanthan gum
Zn	Zinc
ΔHg	Gelatinization enthalpy
$\lambda^{\mathcal{S}}$	Wavelength
μL	Microliter
·	

PENCIRIAN TEPUNG BATANG (PALSU) PISANG (<u>Musa acuminata</u> × <u>balbisiana</u> cv. AWAK) DAN POTENSINYA DALAM PEMBANGUNAN ROTI NOVEL KAYA-BERGENTIAN

ABSTRAK

Komposisi fiziko-kimia dan sifat-sifat berfungsi tepung batang (palsu) pisang (BPF) dibandingkan dengan tepung gandum komersial (CWF). Selulosa tidak terluntur dan terluntur telah disediakan daripada BPF. Pelbagai formulasi tepung campuran; CWF (FCWF), FCWF diganti dengan 10% BPF (F10BPF) dan F10BPF ditambah dengan 0.8% w/ w (berasas berat tepung) gam xanthan (XG) atau natrium karboksilmetil selulosa (Na CMC) masing-masing F10BPFXG atau F10BPFCMC disediakan. Formulasi tepung campuran disubjek kepada analisis pencampuran, pasting, dan profil terma. Roti novel komposit dengan penggantian-separa BPF kepada roti kawalan CWF (BCtr) pada peratusan 10% (B10BPF) dan B10BPF ditambah dengan 0.8% w/ w XG atau Na CMC (masing-masing B10BPFXG atau B10BPFCMC) disediakan. Roti tersebut dikaji dari segi sifat-sifat fiziko-kimia, pemakanan dan sensori. BPF mempunyai kandungan proksimat (lemak, abu, gentian kasar dan karbohidrat), unsur-unsur makro dan mikro, jumlah gentian dietari (TDF), gentian dietari tak larut (IDF), gentian dietari larut (SDF), jumlah gula, pentosans, jumlah fenolik, aktiviti antioksidan, pH, ⁰Brix, keasidan boleh titrat, kapasiti penyerapan air dan minyak yang lebih tinggi secara signifikan (p < 0.05) berbanding CWF. BPF mempunyai ketumpatan pukal, aktiviti air (a_w) dan nilai kecerahan yang rendah. Penurunan hasil dan peningkatan nilai penghabluran diperolehi daripada selulosa terluntur telah dipastikan daripada keputusan spektrosopi inframerah jelmaan fourier dan pembelauan sinar-X. Kesemua tepung komposit campuran menunjukkan peningkatan secara signifikan (p < 0.05) pada nilai penyerapan air dan

indeks toleransi pergaulan dengan penurunan perubahan penggelatinan entalpi (ΔHg) , darjah penguraian, kelikatan akhir dan nilai *setback*. Kesemua roti komposit menunjukkan lebih tinggi secara signifikan (p< 0.05) dalam kandungan lembapan, abu, gentian kasar, makro mineral yang penting, SDF (1.71-2.35%), IDF (6.78-7.35%), TDF (8.51-9.24%), jumlah gula (6.71-6.92%), jumlah pentosans, jumlah fenolik dan aktiviti antioksidan. Walau bagaimanapun, kandungan protein, lemak, karbohidrat dan nilai kalori didapati lebih rendah berbanding BCtr. Penambahan hidrokoloid (XG atau Na CMC) menyebabkan peningkatan kandungan kanji rintang dan memperlahankan kadar hidrolisis kanji dengan berikutnya merendahkan indeks hidrolisis dan anggaran indeks glisemik. Roti komposit menunjukkan warna krum yang gelap, isipadu rendah dan nilai kekerasan yang tinggi. Penambahan Na CMC memperbaiki isipadu dan kelembutan krum roti. Semasa dalam penyimpanan, lembapan dan a_w menunjukkan tren meningkat dan menurun masing-masing bagi krus dan krum roti. B10BPFCMC mempunyai krum yang paling lembut dikalangan semua roti. BCtr mempunyai nilai ΔHg yang lebih tinggi daripada roti komposit kecuali B10BPFCMC. Kesemua roti komposit menunjukkan tiada perbezaan signifikan (p> 0.05) dengan BCtr dari segi hitungan bakteria, kulat dan yis. Penilaian sensori menunjukkan roti B10BPFCMC mempunyai penerimaan keseluruhan yang paling tinggi.

CHARACTERIZATION OF BANANA (<u>Musa acuminata × balbisiana</u> cv. AWAK) PSEUDO-STEM FLOUR AND ITS POTENTIAL IN THE DEVELOPMENT OF NOVEL FIBRE-RICH BREAD

ABSTRACT

The physico-chemical and functional properties of banana pseudo-stem flour (BPF) was compared with the commercial wheat flour (CWF). Unbleached and bleached cellulose were prepared from BPF. Various flour blends were formulated; CWF (FCWF), FCWF was substituted with 10% BPF (F10BPF) and F10BPF with added 0.8% w/ w (flour weight basis) xanthan gum (XG) or sodium carboxymethyl cellulose (Na CMC) (F10BPFXG or F10BPFCMC, respectively). The formulated flour blends were subjected to the mixing, pasting, and thermal profiles analyses. Novel composite breads by partially substituting BPF for control CWF bread (BCtr) at 10% level (B10BPF) and B10BPF added with 0.8% w/ w of XG or Na CMC (B10BPFXG or B10BPFCMC, respectively) were prepared and evaluated for the physico-chemical, nutritional and sensory. The proximate contents (fat, ash, crude fibre and carbohydrate), macro and micro elements, total dietary fibre (TDF), insoluble dietary fibre (IDF), soluble dietary fibre (SDF), total sugars, pentosans, total phenolics, antioxidants activity, pH, Brix, titratable acidity, water and oil holding capacities were significantly (p < 0.05) higher in BPF than in CWF. BPF had low bulk density, water activity (a_w) and lightness value. Low yield and high crystallinity were obtained from bleached cellulose as confirmed by the fourier transform infrared spectroscopy and x-ray diffraction results. All composite flour blends showed significantly (p < 0.05) high water absorption and mixing tolerance index with decreased in gelatinization enthalpy change (Δ Hg), breakdown, final viscosity and setback values. All the composite breads indicated significantly (p< 0.05) higher moisture, ash, crude fibre, essential macro minerals, SDF (1.71-2.35%), IDF (6.78-7.35%), TDF (8.51-9.24%), total sugars (6.71-6.92%), total pentosans, total phenolics and antioxidant activities. However, protein, fat, carbohydrate and calorie values were lower than the BCtr. Addition of hydrocolloids (XG or Na CMC) resulted in an increased resistant starch content, and slow starch hydrolysis rate with subsequent reduction of hydrolysis index and estimated glycemic index. Composite breads showed dark crumb colour, low loaf volume and high hardness values. The addition of Na CMC improved the bread volume and crumb softness. During storage, moisture and a_w showed an increasing and decreasing trend in the bread crust and crumb, respectively. B10BPFCMC had the softest crumb among all the breads. BCtr had higher Δ Hg value than composite breads (exception of B10BPFCMC). All composite breads were insignificantly (p> 0.05) different with the BCtr in terms of bacteria, mold and yeast count. Sensory evaluation indicated that the B10BPFCMC

CHAPTER ONE

INTRODUCTION

1.1 Background

Banana, which belongs to the Musaceae family, is native to the Indonesian-Malaysian region of Asia. Bananas are produced in large quantities in the tropical and sub-tropical regions of the world especially in developing countries due to the special climatic conditions needed for growth (Zhang et al., 2005). The crop is of major importance to the people living in the areas in which it grows because it provides a major portion of their annual income and their primary source of food. Today, bananas are the fourth most widespread fruit crop in the world. World production of banana was reported to be approximately 102 million tonnes in year 2010 (FAOSTAT, 2012).

Bananas are unique fruit with unique properties. It consists of carbohydrate, protein, fibre, minerals, vitamins and other essential nutrients. The fruit is either consumed ripe, due to its high sugar content, or unripe as in several indigenous dishes which require high starch content (Tate, 1999; Rodriguez-Ambriz et al., 2008; Haslinda et al., 2009). According to Happi Emaga et al. (2007), potassium (K) was the most abundant element in the peel of banana followed by phosphorus (P), calcium (Ca), and magnesium (Mg).

1.2 Problem statements

The production of bananas has considerable economic importance due to its availability throughout the year (Habari, 2008). However, this agricultural activity generates a large amount of waste, because after harvesting, a large amount of pseudo-stems which composed of concentric layers of leaf sheaths, a by-product of banana is left behind in plantation soil to be used as organic material. This is because the fruit constitutes only 12% by weight of the plant. The remaining parts become agricultural waste, causing environmental problems in banana farming regions (Elanthikkal et al., 2010). The agricultural by-products can be divided into non-fibrous and fibrous materials. The fibrous wastes (stems, bunches and leaves) represented 54.3% of the plant total weight (Gañán et al., 2004).

Since, the banana cultivation generates a considerable amount of lignocellulosic wastes, hence, these crops could and should find a more rational way of utilization, namely as a source of cellulosic fibres (Elanthikkal et al., 2010). These crops have been utilized as a source of fibre in the pulping industry, and their decomposition generates energy (Cordeiro et al., 2004; Oliveira et al., 2009). According to Cordeiro et al. (2004), and Oliveira et al. (2009), banana waste materials are rich in minerals and nutrients. The potential application of these pseudo-stems depends on their chemical compositions. Nowadays, little information on the chemical compositions of the pseudo-stem has been reported. Most researchers are focusing on the pulp and peels (Zhang et al., 2005; Happi Emaga et al., 2007). Several studies have been conducted to determine the chemical and functional properties of banana flour, banana starches and fibre-rich powder from

unripe banana flour (Bello-Perez et al., 1999; Mukhopadhyay et al., 2008; Rodriguez-Ambriz et al., 2008). There is a lack of information on the banana (*Musa acuminata* x *balbisiana* cv. Awak) pseudo-stem. The authors mostly focus on the chemical contents of the pseudo-stem such as: monosaccharides, fibre compositions, bioactive compounds and mineral contents (Cordeiro et al., 2004; Mukhopadhyay et al., 2008; Oliveira et al., 2009; Bhaskar et al., 2010; Bhaskar et al., 2011a, b, c; Saravanan and Aradhya, 2011).

There is an increasing problem in human health disease related to food intake such as high blood pressure, diabetes and cardiovascular (CVD) diseases. An estimated 17.5 million people died from CVDs in 2005 which represented 30% of all global deaths. WHO reported that by 2015 almost 20 million people will die from CVD (WHO, 2007). The CVD disease is associated with insufficient intake of dietary fibre in their diet or due to their unbalance lifestyle. The importance of functional ingredient (food fibres) has led to the development of large and potential market of fibre-rich products. Nowadays, there is a trend to find new sources of dietary fibre from agronomic by-products that was traditionally been undervalued. Several agriculture wastes such as rice straw, wheat bran, rice bran and sugarcane bagasse have been reported to have great potential to be utilized as a fibre ingredient in bakery products (Sidhu et al., 1999; Abdul-Hamid and Luan, 2000; Sangnark and Noomhorm, 2003; Sangnark and Noomhorm, 2004). However, further innovations in fibre food ingredient for designing new food systems are needed.

Dietary fibre is composed of edible parts of plants or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine. Dietary fibre includes polysaccharides, oligosaccharides, lignin, and associated plant substances. It promotes beneficial physiological processes, including laxation, blood cholesterol and blood glucose attenuation (AACC, 2001). The dietary fibre is composed of total dietary fibre (TDF), which includes both soluble (SDF) and insoluble dietary fibre (IDF). A high dietary fibre intake has been widely reported to have beneficial effects for human health such as preventing constipation and reducing colonic cancer risk (Guillon and Champ, 2000; Drzikova et al., 2005). According to the American Dietetic Association (ADA), the recommended daily fibre intake for all group aged is 20 to 35 g/ day for optimal body health benefits (Harland and Narula, 2001). Furthermore, the indigestible properties of resistant starch can be classified as dietary fibre component (Frei et al., 2003). According to Borderias et al. (2005), the IDF/ SDF ratio should be 3:1 for well-balanced diet.

White bread is popularly consumed food but it is poor in nutritional quality. Therefore to meet the dietary fibre requirement, the development of enriched bread with a higher dietary fibre content is the best way to increase the fibre intake. Increasing awareness on the health benefits of fibre has led to increase in demands of fibre from various sources. Toward this goal, an increasing number of study on enhancing the nutritive value of bread has been developed from a variety of different sources to fulfill the increasing demands of modern dietary habits (nutritious and convenient) with consideration on the products' nutritional contents (protein, mineral, vitamin and fibre) (Škrbić and Filipćev, 2008). Partial substitution of high fibre ingredient in food lacking in dietary fibre is necessary in order to increase the dietary fibre intake in the diet (Dreher, 2001). Many works were conducted on

partial replacement of wheat flour by fibre rich sources such as rice straw, barley, oat, rye and whole wheat (Sangnark and Noomhorm, 2004; Sabanis et al., 2009; Rosell and Santos, 2010; Ragaee et al., 2011) for the production of composite breads.

1.3 Significance of study

Agricultural by-products with nutrient rich contents (fibre, ash and minerals) are utilized as value added food ingredient for development of healthy bakery food products (Sangnark and Noomhorm, 2004; Škrbić et al., 2009). The banana pseudostem could be considered as a new source of dietary fibre to be utilized into bakery products. Hence, the production of the banana pseudo-stem flour (BPF) is necessary in order to substitute wheat flour with BPF to value add the wheat-based bakery product in terms of dietary fibre, resistant starch and reduced glycemic index.

However, partial substitution of non-wheat flour for wheat flour is often associated with gluten dilution and hence modify the consistency (reduce tolerance to over-mixing) and rheological property (reduced extensibility) which resulted in the handling problems (viscosity and stickiness) during processing of product and subsequently influence the volume, texture and impair the sensory characteristics of the finished products (Gelroth and Ranhotra, 2001). Therefore, application of additive such as hydrocolloids is needed as gluten substitutes in composite bakery products (Urlacher and Dalbe, 1992; Friend et al., 1993; Guarda et al., 2004; Gambuś et al., 2007; Sim et al., 2009). Xanthan gum (XG) and sodium carboxymethyl cellulose (Na CMC) are commonly used in food industry at low concentrations to provide good storage stability, water binding capacity and aesthetic appeal. The XG is known to be compatible with many food components, such as protein, salts and acids. It exhibits significant viscoelasticity property even at low concentrations (Gambuś et al., 2007). XG has pseudoplastic behaviour which is important in bakery products, especially during dough preparation, such as kneading and molding. It also prevents lump formation during kneading and improves dough homogeneity. The Na CMC increases dough viscosity, and improves extensibility and elasticity in flour doughs (Cota et al., 2004). It also increases loaf volume by promotes and uniformity air cells size in baked goods (Nussinovitch, 1997; Sworn, 2000; Mikuš et al., 2013). The Na CMC has high ability to hold water as moisture binder during baking and storage. This characteristic reduces staling and moisture loss during storage and resulted in positive effects on the crumb (Friend et al., 1993; Collar et al., 2001; Sciarini et al., 2012).

Banana pseudo-stem flour could be a potential source in providing a novel fibre in foods especially in bread. This is because the application of BPF in foods industries especially in bakery products has not been investigated. Hence, based on these, the present study was conducted to develop new composite breads incorporated with BPF. BPF was used as partial substitute for wheat flour at 10% level in breadmaking so as to improve the nutritive value of the bread which has health benefits to consumers. In addition, hydrocolloids (XG and Na CMC) were added in the bread formulation to improve the quality of the fresh bread.

Based on the facts as discussed above, the availability and the nutritional values of the banana pseudo-stem have potential to be utilized in food industry. However, limited information is available on the utilization of banana pesudo-stem in bakery products. Thus, this study was conducted with objectives as stated in the next section (section 1.4).

1.4 Objectives

The overall objective of this study was to develop a healthy bread by incorporating a novel fibre ingredient processed from banana pseudo-stem. The specific objectives include:

- 1. To study the physico-chemical and functional properties of banana pseudostem flour (BPF).
- 2. To compare the functional properties (mixing properties, pasting profiles and thermal characteristics) of different prepared flour blends.
- 3. To study the effects of breads incorporated with BPF (at 10% level) with addition of hydrocolloids (XG or Na CMC) in terms of the physico-chemical and sensory attributes of the fresh breads.
- To study the quality attributes (moisture content, water activity, texture, thermal characteristics, microbiological and sensory evaluation) of breads during storage.

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Botanical and Morphological Description of Banana

Banana with all the species, varieties or hybrids belong to the genus *Musa*, order Zingiberales, family Musaceae (Table 2.1) (Simmonds, 1962; Benítez et al., 2013). Banana plants are large, perennial, monocotyledonous herbs with subterranean rhizomes called a corm which is the true stem of the banana plant (Plate 2.1). The corm produces aerial shoots which is called a pseudo-stem without hard tissues and not a true stem. It is composed of large overlapping leaf stalk bases which are tightly rolled round each other forming a clustered, cylindrical structure with almost 48 cm in diameter, and tightly clasping and slightly swollen at the base (Samson, 1980; Mukhopadhyay et al., 2008; Benítez et al., 2013) (Plate 2.2 and Plate 2.3). The pseudo-stem grows to a height of 2-9 m depending on the variety and conditions. After the bunch of fruit has ripened, no more are produced and the stem is usually cut down. The suckers develop around the base of the old plant and these are used for propagation purpose (Allen, 1967; Pillay and Tripathi, 2007).

The leaves stand in a spiral and new leaves arise from an underground true stem or rhizome (Samson, 1980; Pillay and Tripathi, 2007). Each banana plant produces 35-50 leaves in its growth cycle. When the banana plant has formed an average of 40 leaves (within 8 to 18 months), the terminal bud of the corm develops directly into the inflorescence which is carried up on a long smooth unbranched stem through the centre of the pseudo-stem emerging at the top in the centre of the leaf cluster (UNCST, 2007). The inflorescence is a compound spike of female and male flowers arranged in groups. Groups of flowers are protected by bracts (red or purple bracts), which fall off as the flowers develop (Allen, 1967; Pillay and Tripathi, 2007) (Plate 2.4).

Table 2.1 Biological classification of the banana plant

Taxonomic hierarchy	
Kingdom	Plantae
Subkingdom	Tracheobionta
Superdivision	Spermatophyta
Division	Magnoliophyta
Class	Liliopsida
Subclass	Zingiberidae
Order	Zingiberales
Family	Musaceae
Genus	Musa
Botanical name	Musa acuminata x balbisiana cv. Awak
Local name	Pisang Awak
(Bahasa Malaysia)	

(Source: USDA, 2011)

Plate 2.1 Banana plant

Plate 2.2 Cylindrical structure of banana pseudo-stems

Plate 2.3 Cross-sectional view of banana pseudo-stem

Plate 2.4 Banana flower covered by bract

The female flowers, which develop into the fruits, are further back, towards the main stem. The female inflorescences develop into fingers that constitute the bunch. Banana bunches possess 4 to 12 groups on a thick stalk; each group is called a hand, each with at least 10 fingers or an individual fruits (Plate 2.5). The fruits differ from cultivar to cultivar in characteristics such as shape, size, colour of skin and flavour, each of which may have many local names. The cultivated bananas are divided into two groups: those producing fruits which are usually eaten raw, and those which are cooked before eating due to it having a poor or unpleasant flavour in their raw state (Allen, 1967; Samson, 1980; Pua, 2010).

Plate 2.5 Banana fruits bunch arise from banana flower

2.2 Nutritional Value and Uses of Banana Pseudo-stem

Banana pseudo-stem has been reported to contain 15.1% moisture, 2.5% protein, low fat (1.7%) content, and 28.8% of total dietary fibre. Furthermore, Cordeiro et al. (2004), and Mukhopadhyay et al. (2008) have reported banana pseudo-stem has a good amount of several important macro minerals [potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] which is important to maintain body health. Additionally, the pseudo-stem was reported to be rich in non-starch polysaccharides or commonly referred as dietary fibres, which include cellulose (31.27%), hemicelluloses (14.98%) and lignin (15.07%) (Cordeiro et al., 2004; Mukhopadhyay et al., 2008). According to Cordeiro et al. (2004), the outer covering of pseudo-stem is mostly cellulosic material while core or pith is rich in non-starch polysaccharides but lower in lignin content. The carbohydrate composition of banana pseudo-stem was found to be rich in low molecular weight sugars; glucose (87.0%) is present as the predominant sugar followed by xylose (8.3%) and arabinose (4.5%) (Bhaskar et al., 2011a) (Table 2.2).

Banana pseudo-stem is a by-product of the banana plant has potential for providing profitable products such as food source for human consumption. Recent studies have been shown that it possesses a commercial importance as a dietary source in the diet especially after processing. The tender core of the banana pseudostem located in the centre (core) of the banana stem is an edible and consumed as vegetables in many countries especially in India and Malaysia (Mohapatra et al., 2010). In Malaysia, it is commonly boiled before cooking to soften the texture of the stem.

Nutritional value (%)	
Moisture	15.1
Protein	2.5
Fat	1.7
Total dietary fibre	28.8
Ash	14
Potassium	33.4
Calcium	7.5
Magnesium	4.3
phosphorus	2.2
Cellulose	31.27
Hemicellulose	14.98
Lignin	15.07
Starch	27.3
Total sugar	87.8
Glucose	87.0
Arabinose	4.5
Xylose	8.3

 Table 2.2 The compositions of banana pseudo-stem

(Source: FAO, 1990; Cordeiro et al., 2004; Mukhopadhyay et al., 2008; Bhaskar et al., 2011a)

The banana plants (fruits, leaves, roots and stalks) have been in use for long time to treat many types of diseases. In Ayurveda medicine from India, different parts of the banana plant such as banana flower and banana pseudo-stem are known to be used in traditional medicine for reducing diabetic complications by ameliorate lysosomal enzyme activities of intestinal and renal disaccharides, thereby, regulates the reduction of blood glucose levels in diabetic patient (Pellai and Aashan, 1955; Sampath Kumar et al., 2012). Furthermore, according to available documents recorded in folkloric medicine, other parts of the banana plant such as fruits, leaves, stalks and roots have been used mostly to cure common illnesses such as fevers, diarrhea, wounds healing and to recover skin-related disease such as skin inflammation (Coe and Anderson, 1999; Pillay and Tripathi, 2007; Sampath Kumar et al., 2012). Several bioactive compounds, such as dopamine, N-acetyl-serotonin, noradrenaline, antihyperglycemic factors, and isochronal-4-one derivative have been identified in different parts of the banana plant (Waalkes et al., 1958; Qian et al., 2007; Bhaskar et al., 2011c). Bhaskar et al. (2011c) reported that the extracted bioactive compounds from banana plant have a potential as a phytochemical ingredient to be utilized in many areas of industries such as food, pharmaceuticals, and medicine.

Several studies have been shown that banana pseudo-stem is a good source of antioxidant compounds and also anti-diabetic properties (Bhaskar et al., 2010; Bhaskar et al., 2011b, c; Saravanan and Aradhya, 2011). Clinical study conducted by Bhaskar et al. (2010) showed that diabetic rats fed with banana pseudo-stem extracts at 5% level significantly reduced blood glucose levels and ameliorate the diabetic condition. The bioactive compounds of banana pseudo-stem extracts are able to promote glucose uptake into cells, which could be beneficial for consumers with diabetes (Bhaskar et al., 2010).

Recent research indicated that juice extracted from banana pseudo-stem (*Musa Cavendish*) has the potential to be process into isotonic drink due to the presence of high mineral content especially potassium (Feriotti and Iguti, 2011). Results on the compositions of pseudo-stem showed its potential in providing better nutrition and prevention of diseases.

Several researches; Noeline et al. (2005), Anirudhan et al. (2006), and Elanthikkal et al. (2010) reported that the banana pseudo-stem has high content of polysaccharide such as cellulose which could be extracted and produced several cellulose derivatives food gum: sodium carboxymethyl cellulose (Na CMC) and microcrystalline cellulose which can be used in food, cosmetic and medical industries and absorbents for waste water treatments. Isolation of cellulose from Cavendish banana pseudo-stem (*Musa cavendishii* LAMBERT) to produce cellulose derivatives (Na CMC) was conducted by Adinugraha et al. (2005). They found that approximately 98.63% purity of Na CMC can be produced from the banana pseudostem.

16

2.3 Minerals

Minerals are inorganic compounds that function in regulating body metabolisms. Minerals play an important role in maintaining proper function and good health in the human body (Bhat et al., 2010). According to Hendricks (1998), and Korstanje and Hoek (2001), approximately 98% of the Ca and 80% of the P in the human body are found in the skeleton. Inadequate intake of minerals in the diet is often associated with metabolic and physical disorder as well as increased susceptibility to infectious diseases due to the weakening of the immune system (Chaturvedi et al., 2004; UNCST, 2007). Plants (fruits, vegetables, cereals and grains) and drinking water are important sources of essential elements. Daily diets intake of fruits and vegetables in small quantity with balance consumptions can provide optimum essential minerals required to maintain body health (Chaturvedi et al., 2004).

Minerals can be divided into two basic groups based on their requirement; macro element and micro element (trace element). The macro elements such as Ca, Mg, sodium (Na), K and P are required in fairly substantial amounts for maintaining proper function and good health in the human body (Bhat et al., 2010). An average adult requires an intake of more than 100 mg/ day of macro minerals (Hendricks, 1998). Whereas, micro elements such as zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co), molybdenum (Mo) and iodine (I) are needed in a small amount with recommended daily intake within microgram range to maintain specific functions in the body (Hendricks, 1998). Sodium is the main extracellular cation which has been confirmed to result in arterial pressure with excessive of consumption. In contrast, K which is the intracellular cation has been found to have capability in controlling pathogenesis of hypertension and cardiovascular disease (Adrogue and Madias, 1997). Good sources of K may help the body to maintain normal fluid and electrolyte balances in the cells (FDA, 2000). Study was performed by D'Elia et al. (2011) regarding the influence of regular K intake on incidence of stroke, coronary heart disease and cardiovascular disease. They had found that the participants who had consumed more than 1.64 g or 42 mmol/ day of K in their daily diet has potential to reduce the risk of stroke (21% reduction), with a trend towards lower risk of coronary heart disease and cardiovascular disease. This result suggests that higher consumption of potassium-rich foods is beneficial to prevent vascular disease.

Calcium plays a vital role in maintaining functions of heart, nerve and muscle. Calcium ions are important in vascular contraction, nerve transmission and blood coagulation. The calcium ions can be absorbed, excreted, secreted and stored in the bone where these mechanisms are regulated by hormones to maintain the concentration of ionized calcium in the plasma. Ca is secreted from the bone during insufficient intake from daily diet. Pregnant or lactating women needed greater intake of calcium (Korstanje and Hoek, 2001). Lacking of Ca in human body is associated with the disease of osteoporosis which is a condition of reduction in bone mass and later resulted to the brittle or fragile bones that are more susceptible to fracture. Study showed that dietary supplementation with Ca can increased the rate of gain in skeletal mineral (Ca) (increase the bone mineral density) of children whose dietary Ca intake is approximately 1000 mg/ day. Johnston et al. (1992) recommended that persists gain in bone mineral would probably resulted in an increase in peak bone mass which will be lower the incidence of osteoporotic fractures in their future life (Korstanje and Hoek, 2001). Aggarwal et al. (2012) conducted a study on the correlation between Ca and the risk of rickets in children. The result showed that the low intake of dietary Ca ($204 \pm 129 \text{ mg/ day}$) had significantly developed rickets as compared to the control (healthy subject) with intake of dietary Ca at concentration $453 \pm 234 \text{ mg/ day}$. According to Korstanje and Hoek (2001), the recommended intake of total Ca per day varies from 800 to 12,000 mg.

Chaturvedi et al. (2004) reported that the functions of Mg and Zn are to prevent muscle degeneration, cardiomyopathy, growth retardation, dermatitis, alopecia, immunologic dysfunction, bleeding disorders, gonadal atrophy, impaired spermatogenesis and congenital malformations. Mg is important in regulating active Ca transport and it influences both matrix and mineral metabolisms in bone. Lacking of Mg resulted in similar effects as reported in Ca such as decreased activities of osteoclastic and osteoblastic, osteopenia, bone fragility (osteoporosis) and retardation of growth (Korstanje and Hoek, 2001). Clinical study showed that dietary Mg intake was associated with reduced risk of sudden cardiac death in women (Chiuve et al., 2011). The suggested daily dietary intake of Mg is between 220 and 400 mg/ day (Korstanje and Hoek, 2001). Zn has antioxidant membrane stabilizer properties, which has the ability to scavenge harmful free radicals because of its antioxidant membrane (Korstanje and Hoek, 2001). Recent study showed that, Zn supplementation to food has beneficial effects to the patients with diabetes mellitus. Jayawardena et al., (2012) reported Zn treated subjects showed reduction in

post-prandial blood sugar. They also found that, Zn was able to reduce the lowdensity lipoprotein cholesterol in the Zn treated group. The recommended dietary intake of Zn is average 9-12 mg/ day (Korstanje and Hoek, 2001).

Fe is an important intrinsic component of cytochrome, hemoglobin, and myoglobin (Hemalatha et al., 2007; Yaday and Chandra, 2011). The most common disease associated with Fe deficiency is anemia. Anemia is related with increased cell prophyrin, where it inhibits ferrochelatase enzyme; this can then further inhibit synthesis of heme. The decreased in hemoglobin synthesis which resulted from Fe deficiency is susceptible to the anemia disease (Yaday and Chandra, 2011). Study demonstrated that the daily supplementation of Fe led to significant improvement in the hemoglobin, serum ferritin, and free erythrocyte protoporphyrin in the Fe treated group (Beasley et al., 2000; Zavaleta et al., 2000). Thus, this can prevent or lower the risk of anemia. Korstanje and Hoek (2001) reported that the general recommended intake of Fe is 15 ± 5 mg/ day. However, a pregnant woman requires higher amount than the recommended amount.

2.4 Dietary Fibre

Carbohydrates are composed of the elements carbon, hydrogen and oxygen with form a hierarchy of structures begin with the simple sugars, monosaccharides (e.g. glucose and fructose), these units can be joined together in pairs to form disaccharides (e.g. sucrose and maltose), followed by oligosaccharides (e.g. cyclodextrin) which contain up to nine monosaccharide units and polysaccharides may contain up to several hundred thousand (e.g. starch and cellulose) (Annison et al., 1993; Gurr and Asp, 1994). They are classified into water soluble and water insoluble carbohydrates and some carbohydrates are digestible while others are not. The digestible polysaccharides such as starch are a major source of physiological energy (Annison et al., 1993).

According to AACC (2001), dietary fibre is defined as the edible parts of plants or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine. Fibre is not a nutritionally, chemically, or physically uniform material, which adds another dimension of complexity (Van Soest et al., 1991). Dietary fibre is generally recognized as the low-calorie bulking ingredients (Annison et al., 1993).

Dietary fibre components consist mainly of polysaccharides (complex polymers of sugar units). The main components of dietary fibre are non-starch polysaccharides (NSP). NSP include cellulose, hemicelluloses (arabinoxylans and arabinogalactans), pectins, modified celluloses, fructans (oligomers and polymers of fructose: inulin), gums, and mucilages. Oligosaccharides, such as oligofructan is a low molecular weight analogue of the digestion-resistant polysaccharide (AACC, 2001). The constituents of dietary fibre are summarized in Table 2.3.

Dietary fibre can be found in the human diet through a wide variety of plantbased food sources, such as vegetables, fruits, legumes and both raw and processed cereals. However, the different compositions of dietary fibre (SDF, IDF and TDF) vary with the types of plant variety (Dhingra et al., 2012). For example, bran and whole grain cereals are rich in hemicelluloses, cereal and vegetables have good source of cellulose. Whereas, fruits with edible seeds (strawberries) and mature vegetables (root vegetables or carrots) were reported to be high in lignin. Dried bean and oats have high content of SDF and fruits such as oranges and apples contain a good source of pectin. Furthermore, the amount (%) of the different dietary fibre constituents is dependent on the growing stages of the plants. For example, in the plant cell walls, the amount of ash, cellulose and lignin tend to be higher in mature than immature plants. In contrast, the percentage of non-cellulosic polysaccharides (hemicellulose, polyfructoses, galactooligosaccharide, pectin, gums and mucilages) tend to be lower in mature than in immature plants. Other than the maturity of plants, the ripening and the portion of the plant consumed as well as storage of plant foods may also influence the compositions of dietary fibre (Dreher, 2001; Elleuch et al., 2011).

Table 2.3 Constituents of dietary fibre

Non-starch polysaccharides and resistant oligosaccharide	Non-starch	h polysaccharide	es and resistant	oligosaccharide
--	------------	------------------	------------------	-----------------

Cellulose Non-cellulosic polysaccharides Hemicellulose - Arabinoxylans

- Arabinogalactans

Polyfructoses

- Inulin

- Oligofructans

Galactooligosaccharides Gums

Mucilages

Pectins

Analogous Carbohydrates

Indigestible dextrins

- Resistant maltodextrins (from corn and other source)
- Resistant potato dextrins

Synthesized carbohydrate compounds

- Polydextrose
- Methyl cellulose
- Hydroxypropylmethyl cellulose

Indigestible (resistant) starches

Lignin

Substances associated with the non-starch polysaccharide and lignin complex ir plants

Waxes			
Phytate			
Cutin			
Saponins			
Suberin			
Tannins			

(Source: AACC, 2001)

Total dietary fibre is the analytical term for dietary fibre that includes both SDF and IDF. SDF consists of non-cellulosic polysaccharides (pectin, mucilages, and gums) which can be found in fruits, barley, legumes and oats, whereas IDF consists mainly of cell wall components such as hemicelluloses, cellulose and lignin which present mainly in wheat, vegetables and most grain products. Approximately 75% of the dietary fibre in foods is found in insoluble fraction (Dreher, 2001; Elleuch et al., 2011; Dhingra et al., 2012).

2.4.1 Soluble dietary fibre (SDF)

SDF is soluble in aqueous enzyme systems and can be precipitated upon addition of 4 parts alcohol to the aqueous mixture. Examples of SDF are pectin, β glucan, gum and inulin (Ang, 2005; Elleuch et al., 2011). The SDF plays a vital role in the digestive and absorptive processes. SDF is indigestible fibre, hence it can help to control blood glucose levels and slowing the glucose absorption process in patient who has diabetes mellitus disease. Some studies showed that subject with food intake rich in SDF diet (low-cholesterol and low-fat) helped lower blood cholesterol in those individuals with elevated blood cholesterol levels (Dreher, 2001; Dhingra et al., 2012; Schoenaker et al., 2012).