NOVEL SOFT SWITCHING ISOLATED DC-DC CONVERTERS TOPOLOGIES

by

CHANURI CHARIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

July 2013

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my supervisor Dr Shahid Iqbal for his guidance, assistance and support throughout my research studies. It was a great honour to me to work with him. I also would like to appreciate Associate Professor Dr Soib Taib for his assistance during my studentship. I would like to thank to all members of staff of School of Electrical and Electronic Engineering, Universiti Sains Malaysia, for their help and encouragement throughout my graduate studies.

I also would like to thank to my officemates Lee Sze Sing, Haryati, Wasana, Kia Qistina, Mohd Helmi, Qayum, Fatema, Farshad, Seye and all my friends for their help and support.

I would like to express my deepest gratitude and honour to my family especially my husband, Thanung, my lovely little princess, Cherly Thalicesara, my parents, Charin and Ee Puan, my brothers, Jeo Winai and King Jajon and my sister, Vanisha for their encouragement and their love showered upon me. Thank you to all of you and I appreciate it. I love all of you.

Finally, I would like to acknowledge the Universiti Malaysia Perlis for funding me through the Fellowship Scheme for 2 years and 6 months (December 2010 - June 2013). Additionally, the research was funded by incentive grant and short term grant with grant No.304/PELECT/60311002. These grants were used to purchase electronics components for experimentation and for the payment of conferences fees.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	XV
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER 1 : INTRODUCTION

1.1	General View and Motivation	1
1.2	Problem Statement	3
1.3	Objectives of Thesis	4
1.4	Scope and Limitations	5
1.5	Research Contribution	5
1.6	Structure of the Thesis	6

CHAPTER 2 : LITERATURE REVIEW

2.1	Introduction	7
2.2	Classifications of Isolated DC-DC Converters	7
2.3	Power Loss in DC-DC Converters	9
2.4	Soft Switching Techniques	11
	2.4.1 Zero Voltage Switching	12
	2.4.2 Zero Current Switching	12
2.5	Soft Switching Half-Bridge DC-DC Converters	13
2.6	Soft Switching Full-Bridge DC-DC Converters	18
2.7	Summary	28

CHAPTER 3 : METHODOLOGY

3.1	Introduction	29
3.2	Proposed Soft-switching Half-Bridge DC-DC Converter with Auxiliary Circuit 3.2.1 Circuit Description and Principle of Operation	29 29
	3.2.2 Steady-state analysis	33
3.3	Proposed Soft-switching Full-Bridge DC-DC Converter with Multilevel Inverter Leg	40
	3.3.1 Circuit Description and Principle of Operation	40
	3.3.2 Steady-state analysis	43
3.4	Proposed Soft-switching Full-Bridge DC-DC Converter with Auxiliary Circuit	49
	3.4.1 Circuit Description and Principle of Operation	49
	3.4.2 Steady-state analysis	51
3.5	Comparisons of the Topologies	57
3.6	Summary	59

CHAPTER 4 : DESIGN AND IMPLEMENTATION

4.1	Introduction	60
4.2	Simulation Model of the Proposed DC-DC Converters	60
	4.2.1 Simulation Model of the Proposed Half-Bridge DC-DC Converter	61
	4.2.1.1 Simulation Model of Proposed Half-Bridge DC-DC Converter with Auxiliary Circuit and Full-Bridge Rectifier	62
	4.2.1.2 Simulation Model of Proposed Half-Bridge DC-DC Converter with Auxiliary Circuit and Centre-tapped Transformer Rectifier	64
	4.2.2 Simulation Model of the Proposed Full-Bridge DC-DC Converter	65
	4.2.2.1 Simulation Model of Proposed Full-Bridge DC-DC Converter with Multilevel Inverter Leg	65
	4.2.2.2 Simulation Model of Proposed Full-Bridge DC-DC Converter with Auxiliary Circuit	66
4.3	Design of High Frequency Transformer	67
4.4	Selection of Flying Capacitor	69
4.5	Design of Signal Generation Circuit	70
	4.5.1 Soft-switching Half-Bridge DC-DC Converter	70
	4.5.2 Soft-switching Full-Bridge DC-DC Converter	71

4.6	Design of Inverter and Drive Circuit	72
	4.6.1 Soft-switching Half-Bridge DC-DC Converter	72
	4.6.2 Soft-switching Full-Bridge DC-DC Converter	75
4.7	Selection of Active Components	76
	4.7.1 Power Switches	76
	4.7.2 Rectifier Diodes	77
4.8	Design of Printed Circuit Board (PCB)	79
	4.8.1 Soft-switching Half-Bridge DC-DC Converters	79
	4.8.2 Soft-switching Full-Bridge DC-DC Converters	82
4.7	Summary	83

CHAPTER 5 : RESULTS AND DISCUSSION

5.1	Introduction	
5.2	Simulation Results	84
	5.2.1 Soft-switching Half-Bridge DC-DC Converter	84
	(a) With Full-Bridge Rectifier	85
	(b) With Centre-tapped Transformer Rectifier	89
	5.2.2 Soft-switching Full-Bridge DC-DC Converter	92
	(a) With Multilevel Inverter Leg	93
	(b) With Auxiliary Circuit	97
5.3	Experimental Results	100
	5.3.1 Soft-switching Half-Bridge DC-DC Converter	101
	(a) With Full-Bridge Rectifier	101
	(b) With Centre-tapped Transformer Rectifier	106
	5.3.2 Soft-switching Full-Bridge DC-DC Converter	110
	(a) With Multilevel Inverter Leg	110
	(b) With Auxiliary Circuit	116
5.4	Discussion of the Simulation and Experimental Results	120
5.5	Summary	121

CHAPTER 6 : CONCLUSION AND FUTURE WORKS

6.1	Conclusion	122
6.2	Future Works	124
REFI	ERENCES	
APPE	ENDICES	
LIST	OF PUBLICATIONS	

LIST OF TABLES

Table 2.1:	Comparison of the related works of half-bridge dc-dc converters	25
Table 2.2:	Comparison of the related works of full-bridge dc-dc converters	26
Table 4.1:	Specifications of IRG4PC30KDPbF	61
Table 4.2:	Specifications of TL494	70
Table 4.3:	Specifications of HCPL3140	73
Table 4.4:	The input specifications of the proposed dc-dc converter	77
Table 4.5:	Specifications of STTH1210	78
Table 5.1:	Measured input voltage V_{in} , input current I_{in} , output voltage V_0 and output current I_0 of half bridge dc-dc converter with full bridge rectifier	105
Table 5.2:	Measured input voltage V_{in} , input current I_{in} , output voltage V_o and output current I_o of half bridge dc-dc converter with centre-tapped transformer	110

LIST OF FIGURES

Figure 2.1:	Block diagram of isolated dc-dc converters (Daniel, 1997)	8
Figure 2.2:	Diagram of hard switching and soft switching	11
Figure 2.3:	Diagram of conventional half-bridge dc-dc converter (Daniel, 1997)	13
Figure 2.4:	Half-bridge converter with clamping circuit (Heldwein, 2000)	16
Figure 2.5:	The basic configuration of active-clamp half-bridge converter	16
Figure 2.6:	The basic configuration of half-bridge converter with saturable inductor	17
Figure 2.7:	Conventional full-bridge dc-dc converter (Daniel, 1997)	19
Figure 2.8:	Conventional resonant full-bridge dc-dc converter	20
Figure 2.9:	Basic diagram of the full-bridge converter with two diodes	21
Figure 2.10:	Diagram of the full-bridge converter with π -type and Y-type auxiliary networks	22
Figure 2.11:	Diagram of the full-bridge converter with basic active clamp circuit (Ahmed, 2011)	23
Figure 3.1:	Circuit diagram of the proposed soft-switching half- bridge dc-dc converter with full-bridge rectifier	30
Figure 3.2:	Circuit diagram of proposed soft-switching half-bridge dc-dc converter with center-tapped transformer rectifier	32
Figure 3.3:	Key steady state waveforms of the proposed soft- switching half-bridge dc-dc converter	33
Figure 3.4:	Equivalent circuits of soft-switching half-bridge dc–dc converter with full-bridge rectifier (a) mode 1 (t_0-t_1), (b) mode 2 (t_1-t_2), (c) mode 3 (t_2-t_3), (d) mode 4 (t_3-t_4), (e) mode 5 (t_4-t_5), and (f) mode 6 (t_5-t_6)	38

Figure 3.5:	Equivalent circuits of soft-switching half-bridge dc–dc converter with center-tapped transformer (a) mode 1 (t_0-t_1) , (b) mode 2 (t_1-t_2) , (c) mode 3 (t_2-t_3) , (d) mode 4 (t_3-t_4) , (e) mode 5 (t_4-t_5) , and (f) mode 6 (t_5-t_6)	40
Figure 3.6:	Circuit diagram of the proposed soft-switching full- bridge dc-dc converter with multilevel inverter leg	41
Figure 3.7:	Key steady state waveforms of the proposed soft- switching full-bridge dc-dc converter with multilevel inverter leg	44
Figure 3.8:	Equivalent circuits of soft-switching full-bridge dc–dc converter with integrated multilevel inverter leg (a) mode 1 (t ₀ –t ₁), (b) mode 2 (t ₁ –t ₂), (c) mode 3 (t ₂ –t ₃), (d) mode 4 (t ₃ –t ₄), (e) mode 5 (t ₄ –t ₅), (f) mode 6 (t ₅ –t ₆), (g) mode 7 (t ₆ –t ₇), (h) mode 8 (t ₇ –t ₈)	49
Figure 3.9:	Circuit diagram of the proposed soft-switching full- bridge dc-dc converter with auxiliary circuit	50
Figure 3.10:	Key steady state waveforms of the proposed soft- switching full-bridge dc-dc converter with auxiliary circuit	52
Figure 3.11:	Equivalent circuits of soft-switching full-bridge dc–dc converter with auxiliary circuit (a) mode 1 (t_0-t_1), (b) mode 2 (t_1-t_2), (c) mode 3 (t_2-t_3), (d) mode 4 (t_3-t_4), (e) mode 5 (t_4-t_5), (f) mode 6 (t_5-t_6), (g) mode 7 (t_6-t_7), (h) mode 8 (t_7-t_8)	57
Figure 4.1:	Pspice simulation diagram of the proposed half-bridge dc-dc converter with full-bridge rectifier diode	64
Figure 4.2:	Pspice simulation diagram of the proposed half-bridge dc-dc converter with centre-tapped transformer rectifier	65
Figure 4.3:	Pspice simulation diagram of the proposed full-bridge dc- dc converter with multilevel inverter leg	66
Figure 4.4:	Pspice simulation diagram of the proposed full-bridge dc- dc converter with auxiliary circuit	67
Figure 4.5:	Control signal generation circuit of half-bridge dc-dc converter	70
Figure 4.6:	Control signal generation circuit of full-bridge dc-dc converter	72

Figure 4.7:	Converter and drive circuit of half-bridge dc-dc converter	74
Figure 4.8:	Experimental set up of the proposed half-bridge dc-dc converter	74
Figure 4.9:	Converter and drive circuit of full-bridge dc-dc converter	75
Figure 4.10:	Experimental set up of the proposed full-bridge dc-dc converter	76
Figure 4.11:	Layout of the switching circuit of soft-switching half- bridge dc-dc converter	80
Figure 4.12:	Layout of the power circuit of soft-switching half-bridge dc-dc converter	80
Figure 4.13:	Layout of full-bridge rectifier with output filter circuit	81
Figure 4.14:	Layout of the center-tapped transformer with output filter circuit	81
Figure 4.15:	Layout of the switching circuit of full-bridge dc-dc converter	82
Figure 4.16:	Layout of the power circuit of full-bridge dc-dc converter	82
Figure 5.1:	Simulation waveforms of flying capacitor current I_{f} , current across switch I_1 , collector-emitter voltage $V_{ce(s1)}$ and gate-emitter voltage $V_{ge(s1)}$ of main switch S_1	86
Figure 5.2:	Simulation waveforms of flying capacitor current I_{f} , current across switch I_2 , collector-emitter voltage $V_{ce(s2)}$ and gate-emitter voltage $V_{ge(s2)}$ of main switch S_2	86
Figure 5.3:	Simulation waveforms of flying capacitor voltage V_{f} , flying capacitor current I _f , gate-emitter voltage $V_{ge(s3)}$ and gate-emitter voltage $V_{ge(s4)}$	87
Figure 5.4:	Efficiency of the proposed half-bridge dc-dc converter with auxiliary circuit and full-bridge rectifier diode	89
Figure 5.5:	Simulation waveforms of flying capacitor current I_f , current across switch I_1 , collector-emitter voltage $V_{ce(s1)}$ and gate-emitter voltage $V_{ge(s1)}$ of main switch S_1	90

Figure 5.6:	Simulation waveforms of flying capacitor current I_f , current across switch I_2 , collector-emitter voltage $V_{ce(s2)}$ and gate-emitter voltage $V_{ge(s2)}$ of main switch S_2	91
Figure 5.7:	Simulation waveforms of flying capacitor voltage V_{f} , flying capacitor current I_{f} , gate-emitter voltage $V_{ge(s3)}$ and gate-emitter voltage $V_{ge(s4)}$	91
Figure 5.8:	Efficiency of the proposed half-bridge dc-dc converter with auxiliary circuit and centre-tapped transformer rectifier	92
Figure 5.9:	Simulation waveforms of the voltage and current of switch S_1	93
Figure 5.10:	Simulation waveforms of the voltage and current of switch S_2	94
Figure 5.11:	Simulation waveforms of the voltage and current of switch S ₆	94
Figure 5.12:	Simulation waveforms of the voltage and current of switch S_3	95
Figure 5.13:	Simulation waveforms of the voltage and current of switch S_4	96
Figure 5.14:	Simulation waveforms of the voltage and current of switch S_5	96
Figure 5.15:	Efficiency of the proposed full-bridge dc-dc converter with multilevel inverter leg.	97
Figure 5.16:	Simulation waveforms of the voltage and current of switch S_1	98
Figure 5.17:	Simulation waveforms of the voltage and current of switch S_6	98
Figure 5.18:	Simulation waveforms of the voltage and current of switch S_3	99
Figure 5.19:	Simulation waveforms of the voltage and current of switch S_5	99
Figure 5.20:	Efficiency of the proposed full-bridge dc-dc converter with auxiliary circuit.	100

Figure 5.21:	Experimental results of flying capacitor current I_{f} , current across switch I_{1} , collector-emitter voltage $V_{ce(s1)}$ and gate-emitter voltage $V_{ge(s1)}$ of main switch S_{1}	102
Figure 5.22:	Experimental results of flying capacitor current I_f , current across switch I_2 , collector-emitter voltage $V_{ce(s_2)}$ and gate-emitter voltage $V_{ge(s_2)}$ of main switch S_2	103
Figure 5.23:	Experimental results of flying capacitor current I _f , gate- emitter voltage $V_{ge(s3)}$, gate-emitter voltage $V_{ge(s4)}$ and voltage across flying capacitor V_f	103
Figure 5.24:	Experimental results of flying capacitor current I_f , flying capacitor voltage V_f , transformer primary voltage V_p and transformer primary current I_p	105
Figure 5.25:	Measured efficiency of the half bridge dc-dc converter with full-bridge rectifier	106
Figure 5.26:	Experimental results of flying capacitor current I_{f} , current across switch I_1 , collector-emitter voltage $V_{ce(s1)}$ and gate-emitter voltage $V_{ge(s1)}$ of main switch S_1	108
Figure 5.27:	Experimental results of flying capacitor current I_{f} , current across switch I_1 , collector-emitter voltage $V_{ce(s2)}$ and gate-emitter voltage $V_{ge(s2)}$ of main switch S_2	108
Figure 5.28:	Experimental results of flying capacitor current I_f , gate- emitter voltage $V_{ge(s3)}$, gate-emitter voltage $V_{ge(s4)}$ and voltage across flying capacitor V_f	109
Figure 5.29:	Experimental results of flying capacitor current I_f , flying capacitor voltage V_f , transformer primary voltage V_p and transformer primary current I_p	109
Figure 5.30:	Measured efficiency of the half-bridge dc-dc converter with center-tapped transformer rectifier	110
Figure 5.31:	Experimental waveforms of the voltage and current of switch S_1	111
Figure 5.32:	Experimental waveforms of the voltage and current of switch S_2	112
Figure 5.33:	Experimental waveforms of the gate-emitter voltage and collector-emitter voltage across switch S_6	113
Figure 5.34:	Experimental waveforms of the voltage and current of switch S_3	114

Figure 5.35:	Experimental waveforms of the voltage and current of switch S ₅	115
Figure 5.36:	Experimental waveforms of the voltage and current of switch S_1	116
Figure 5.37:	Experimental waveforms of the voltage and current of switch S_6	117
Figure 5.38:	Experimental waveforms of the voltage and current of switch S_3	118
Figure 5.39:	Experimental waveforms of the voltage and current of switch S ₅	119

LIST OF ABBREVIATIONS

AWG	American Wire Gauge
DC	Direct Current
DCM	Discontinuous Current Mode
EMI	Electromagnetic Interference
HEX	Hexadecimal
IGBT	Insulated Gate Bipolar Transistor
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
PCB	Printed Circuit Board
PWM	Pulse Width Modulation
RC	Resistor-Capacitor
RF	Radio Frequency
ZCS	Zero Current Switching
ZVS	Zero Voltage Switching
ZVZCS	Zero Voltage Zero Current Switching

LIST OF SYMBOLS

А	Ampere
Ac	Core Cross-sectional Area
Ap	Area of Product
$A_{wp(B)}$	Primary Bare Wire Area
В	Flux Density
C_{f}	Flying capacitor
C_n	Capacitor
D_n	Diode
D _(max)	Maximum Duty Cycle
En	Emitter
f	Frequency
$\mathbf{f}_{\mathbf{s}}$	Switching Frequency
Hz	Hertz
I _{CC}	Supply current
Id	Current IGBT
Id(avg)	Diode Average Rated Current
I _{Dbn}	Current through Body Diode
I_{Epk}	Peak Current
I_{Erms}	Rated rms Emitter Current
I_{f}	Forward Current
I_{f}	Voltage across Flying Capacitor
IFAVM	Maximum Average Forward Current
I _{FLH}	Threshold Input Current Low to High
I _{F(on)}	Input Current (ON)
I _{in}	Input Current
In	Current
Io	Output Current
Ip	Transformer Primary Current
I _{RM}	Reverse Recovery Current
Irr	Reverse Recovery Current

I _{RRM}	Maximum Recovery Current
J	Current Density
k	Kilo (10 ³)
K_{f}	Constant of Proportionality
Ku	Winding Fill Factor
Lo	Output Inductor
Lr	Leakage Inductance
n	Transformer turn ratio
Np	Transformer Primary Turn
N_s	Transformer Secondary Turn
\mathbf{P}_{I}	Input Power Dissipation
\mathbf{P}_{in}	Rated Input Power
Po	Output Power Dissipation
\mathbf{P}_{off}	Off-state Power
Pon	On-state Power
Pt	Total power
R	Resistor
R _{DS(on)}	On-state Resistance
$R_{\rm L}$	Load Resistor
$\mathbf{S}_{\mathbf{n}}$	Switch
Т	Time
$t_{\rm f}$	Fall Time
$t_{\rm off}$	Off Time
t_{on}	On Time
t _r	Rise Time
T _{rr}	Reverse Recovery Time
T _P	Primary Transformer
Ts	Secondary Transformer
V	Voltage
V_{BD}	Breakdown Voltage
V_{cc}	Supply Voltage
VCE	Collector-emitter voltage
Vce(max)	Maximum Collector-Emitter Voltage

V_{Cf}	Voltage Across Flying Capacitor
V_{dc}	Direct Current Voltage
V_{DD}	Drain Voltage
V _{D(rr)}	Diode Reverse Recovery Voltage
V_{f}	Forward Voltage
\mathbf{V}_{f}	Voltage across Flying Capacitor
$\mathbf{V}_{\mathrm{FLH}}$	Threshold Input Voltage High to Low
V_{GE}	Gate-emitter voltage
\mathbf{V}_{in}	Input Voltage
$\mathbf{V}_{\mathrm{ITH}}$	Input Threshold Voltage
\mathbf{V}_{o}	Output voltage
\mathbf{V}_{p}	Primary Voltage
\mathbf{V}_{RM}	Maximum DC reverse voltage
$\mathbf{V}_{\mathbf{s}}$	Secondary Voltage
W	Watt
α	Regulation
η	Efficiency
%	Percentage

TOPOLOGI SUIS PENUKAR ARUS TERUS TERPENCIL YANG NOVEL ABSTRAK

Penukar arus terus banyak digunakan di dalam pelbagai aplikasi seperti di dalam sistem penjanaan kuasa, aplikasi tenaga suria, aplikasi sistem tenaga yang boleh diperbaharui dan aplikasi industri. Walaubagaimanapun, masalah utama penukar arus terus adalah kehilangan pensuisan di mana kadar kecekapan dan kepadatan tenaga penukar arus terus turut dipengaruhi. Oleh yang demikian, di dalam thesis ini mengetengahkan pembaharuan pelancar suis penukar arus terpencil. Pembaharuan dibuat adalah untuk mengurangkan kehilangan pensuisan terhadap penukar arus terus. Tiga topologi penukar arus terus terpencil yang diketengahkan di dalam tesis ini, iaitu penukar arus terus terpencil separa dengan litar tambahan, penukar arus terus terpencil penuh dengan penyongsang bertahap dan penukar arus terus terpencil penuh dengan litar tambahan. Penukar arus terus terpencil separa dengan litar tambahan telah direka dan diuji dengan litar penerus titi gelombang penuh dan litar penerus gelombang penuh sadap tengah. Topologi-topologi yang deketengahkan direka dan diuji dari segi pelancaran suis. Operasi pelancar suis ini dikecapi melalui proses mengecas dan menyahcas kapasitor dan suis tambahan di dalam setiap topologi. Didapati kesemua suis beroperasi dalan pelancar suis. Oleh itu, kehilangan pensuisan dapat dikurangkan. Voltan keluaran litar adalah dikawal melalui pemodulatan lebar denyut. Keberkesanan topologi-topologi yang dikemukakan dinilai daripada hasil simulasi dan ujikaji yang diperolehi daripada prototaip yang berkala kecil. Hasil ujikaji didapati sama dengan hasil simulasi. Penukar arus terus terpencil dengan litar tambahan dan litar penerus gelombang penuh sadap tengah adalah yang terbaik di antara topologi-topologi yang

dikemukakan kerana topologi ini mencapai kadar kecekapan 81% pada kuasa keluaran 25W.

NOVEL SOFT SWITCHING ISOLATED DC-DC CONVERTERS TOPOLOGIES

ABSTRACT

DC-DC converters are widely used in many applications such as power supplies, PV system, renewable energy systems and industrial applications. One of the main problems in dc-dc converters is the switching loss which affects efficiency and also the power density of the converter. To alleviate the switching loss problem this thesis proposes novel soft switching PWM isolated dc-dc converters topologies. Three topologies of dc-dc converters are presented in this thesis. These are half-bridge dc-dc converter with auxiliary circuit, full-bridge dc-dc converter with multilevel inverter leg and full-bridge dc-dc converter with auxiliary circuit. The proposed half bridge dcdc converter with auxiliary circuit is designed and tested both with diode bridge rectifier and centre-tapped transformer rectifier. The proposed converters are designed and evaluated in term of soft switching. Soft switching operations are achieved by charging and discharging process of the flying capacitor. In proposed topologies, all the power switches operate under soft-switching conditions. Therefore, overall switching loss of the power switches is greatly reduced. The output voltages of the converters are varied by PWM control. The effectiveness of the new converters topologies is evaluated both by simulation and experimental results of a laboratory scale down prototype. The obtained experimental results are found in good agreement with the simulation results. The proposed half-bridge dc-dc converter with auxiliary circuit and centre-tapped transformer rectifier has highest efficiency among all the proposed topologies. Its efficiency is 81% at the output power of 25W, so it is considered best among all the proposed topologies.

CHAPTER 1

INTRODUCTION

1.1 General View and Motivation

Power supplies come with different types of power ratings. The design of the power supplies are depending on their applications. For example in telecommunication system, industrial motor and welding machine require high ratings of power supplies (Jain, et al., 2002; Iannello, et al., 2002; Wu, et al., 2004). Meanwhile, in portable products and in computer system operate in low power and hence low power rating power supply is needed (Kaewarsa, et al., 2004; Panda, et al., 2009; Rodrigues, et al., 2009). Commonly, few topologies are used in designing the power supply either non-isolated or isolated converters. Nowadays, designing power supply has become a great challenge as the requirement of higher efficiency and power density of the power supply (Abedinpour, et al., 2001; Jain, et al., 2002; Wu, et al., 2004).

Looking back at the power supply technology in the early of fifties and late of sixties, linear regulator becomes a dominant core in power conversion. Linear regulator comes with ease of operation, simple and inexpensive (Simpson; Bu, 2007; Daniel, 2011; Saiful, 2011). However, there are some limitations of linear regulator in operating in high power (Bu, 2007; Saiful, 2011). Operating linear regulator in high power causes few drawbacks such as high power dissipation, low efficiency and bulky (Daniel, 2011; Saiful, 2011; Li, 2012). Power dissipation produced by linear regulator is high due to huge different of the input and output voltage, thus low efficiency is obtained when operating in high power (Rogers, 1999; Chava, et al., 2004).

Linear regulator has become a main core in power conversion for a few decades. However, in the late of sixties the linear power supplies are replaced with high frequency switch mode power supplies. The introduction of the high voltage bipolar power transistor in the late of sixties has driven the replacement of the linear power supplies with switch mode power supplies (Jovanovic, 2012). Significantly, allows the reduction of the size and weight and higher efficiency power supplies (Jovanovic, 2012; Li, 2004; Saiful, 2011).

The size and weight reduction of the power supplies are mainly determined by the switching frequency as the switching frequency is inversely proportional to the size and the weight of the supplies (Carr, et al., 2009; Sugimura, et al., 2009; Ting, et al., 2012). Thus, switch mode power supplies offer higher efficiency compared with the linear power supplies. However, the tradeoffs of the switch mode power supplies are between the switching frequencies and the losses such as switching loss and conduction loss (Sugimura, et al., 2009; Sivavara, et al., 2012; Songboonkeaw and Jangwanitlert, 2012).

Earliest, the switch mode power supplies are limited to its switching frequencies to several kilohertz only with the implementation of the bipolar power devices (Jovanoic, 2012). Thus, with the debut of power MOSFET allows the switching frequencies go beyond hundreds-hertz even mega-hertz (Jovanovic, 2012). This will significantly allow more reduction of the size and weight of the power supplies (Abedinpour, et al., 2001; Carr, et al., 2009). Together with the advancement technology in the magnetic component allows further reduction of the size and weight of the size and weight of the power supplies (Chen and Ruan, 2005; Hu, et al., 2012). For an example, in

computer voltage regulator with the advancement of the technology allows the switching frequency of the voltage regulator goes up to 1 Megahertz (Jovanovic, 2012). Thus, smaller power supply of the computer is obtained.

Until recent, the power supplies efficiency is depend on the power density. Thus, the optimizations of the design tradeoffs are needed in order to meet these requirements. The losses produced from the higher switching frequencies are the major drawbacks of the current power supplies (Sugimura, et al., 2009; Sivavara, et al., 2012; Ting, et al., 2012). In early of nineties, the governments of the most of the countries have urge power supplies to a better efficiency due to the environmental and economic concerns (Jovanovic, 2012; Abedinpour, et al., 2001; Sivavara, et al., 2012). Thus due to this requirement has given a great challenge to power supplies manufacturers and designers.

1.2 Problem Statement

There has been continuous effort to increase the power density and efficiency of the power supplies. Higher frequency operation of power supplies result in smaller size due to reduction of the size of magnetic component (Chen, et al, 2005; Zhang, et al., 2011; Hu, et al., 2012). However, the switching loss and conduction loss of the power devices are higher (Hong, et al., 2008). Thus, bigger heat sink is needed for each of the power devices. Moreover, operating at high switching frequency also agitate the overvoltage stress across the power devices (Ayyanar and Mohan, 2001; Iannello, et al., 2002; Wu, 2004; Uslu, 2006). This may cause damage to the component or higher rating component need to be used in the design. This indirectly will increase the cost of the power supplies.