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TOPOLOGI SUIS PENUKAR ARUS TERUS TERPENCIL YANG NOVEL 
 

ABSTRAK 
 

Penukar arus terus banyak digunakan di dalam pelbagai aplikasi seperti di 

dalam sistem penjanaan kuasa, aplikasi tenaga suria, aplikasi sistem tenaga yang boleh 

diperbaharui dan aplikasi industri. Walaubagaimanapun, masalah utama penukar arus 

terus adalah kehilangan pensuisan di mana kadar kecekapan dan kepadatan tenaga 

penukar arus terus turut dipengaruhi. Oleh yang demikian, di dalam thesis ini 

mengetengahkan pembaharuan pelancar suis penukar arus terpencil. Pembaharuan 

dibuat adalah untuk mengurangkan kehilangan pensuisan terhadap penukar arus terus. 

Tiga topologi penukar arus terus terpencil yang diketengahkan di dalam tesis ini, iaitu 

penukar arus terus terpencil separa dengan litar tambahan, penukar arus terus terpencil 

penuh dengan penyongsang bertahap dan penukar arus terus terpencil penuh dengan 

litar tambahan. Penukar arus terus terpencil separa dengan litar tambahan telah direka 

dan diuji dengan litar penerus titi gelombang penuh dan litar penerus gelombang penuh 

sadap tengah.Topologi-topologi yang deketengahkan direka dan diuji dari segi 

pelancaran suis. Operasi pelancar suis ini dikecapi melalui proses mengecas dan 

menyahcas kapasitor dan suis tambahan di dalam setiap topologi. Didapati kesemua 

suis beroperasi dalan pelancar suis. Oleh itu, kehilangan pensuisan dapat dikurangkan. 

Voltan keluaran litar adalah dikawal melalui pemodulatan lebar denyut. Keberkesanan 

topologi-topologi yang dikemukakan dinilai daripada hasil simulasi dan ujikaji yang 

diperolehi daripada prototaip yang berkala kecil. Hasil ujikaji didapati sama dengan 

hasil simulasi. Penukar arus terus terpencil dengan litar tambahan dan litar penerus 

gelombang penuh sadap tengah adalah yang terbaik di antara topologi-topologi yang 



 
 

dikemukakan kerana topologi ini mencapai kadar kecekapan 81% pada kuasa keluaran 

25W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 NOVEL SOFT SWITCHING ISOLATED DC-DC CONVERTERS 
TOPOLOGIES 

 
ABSTRACT 

 
 

DC-DC converters are widely used in many applications such as power 

supplies, PV system, renewable energy systems and industrial applications. One of the 

main problems in dc-dc converters is the switching loss which affects efficiency and 

also the power density of the converter. To alleviate the switching loss problem this 

thesis proposes novel soft switching PWM isolated dc-dc converters topologies. Three 

topologies of dc-dc converters are presented in this thesis. These are half-bridge dc-dc 

converter with auxiliary circuit, full-bridge dc-dc converter with multilevel inverter 

leg and full-bridge dc-dc converter with auxiliary circuit. The proposed half bridge dc-

dc converter with auxiliary circuit is designed and tested both with diode bridge 

rectifier and centre-tapped transformer rectifier. The proposed converters are designed 

and evaluated in term of soft switching. Soft switching operations are achieved by 

charging and discharging process of the flying capacitor. In proposed topologies, all 

the power switches operate under soft-switching conditions. Therefore, overall 

switching loss of the power switches is greatly reduced. The output voltages of the 

converters are varied by PWM control. The effectiveness of the new converters 

topologies is evaluated both by simulation and experimental results of a laboratory 

scale down prototype. The obtained experimental results are found in good agreement 

with the simulation results. The proposed half-bridge dc-dc converter with auxiliary 

circuit and centre-tapped transformer rectifier has highest efficiency among all the 

proposed topologies.  Its efficiency is 81% at the output power of 25W, so it is 

considered best among all the proposed topologies. 

 
 



 
 

CHAPTER 1 

INTRODUCTION 

1.1 General View and Motivation 

Power supplies come with different types of power ratings. The design of the 

power supplies are depending on their applications. For example in telecommunication 

system, industrial motor and welding machine require high ratings of power supplies 

(Jain, et al., 2002; Iannello, et al., 2002; Wu, et al., 2004). Meanwhile, in portable 

products and in computer system operate in low power and hence low power rating 

power supply is needed (Kaewarsa, et al., 2004; Panda, et al., 2009; Rodrigues, et al., 

2009). Commonly, few topologies are used in designing the power supply either non-

isolated or isolated converters. Nowadays, designing power supply has become a great 

challenge as the requirement of higher efficiency and power density of the power 

supply (Abedinpour, et al., 2001; Jain, et al., 2002; Wu, et al., 2004). 

 

Looking back at the power supply technology in the early of fifties and late of 

sixties, linear regulator becomes a dominant core in power conversion. Linear 

regulator comes with ease of operation, simple and inexpensive (Simpson; Bu, 2007; 

Daniel, 2011; Saiful, 2011). However, there are some limitations of linear regulator in 

operating in high power (Bu, 2007; Saiful, 2011). Operating linear regulator in high 

power causes few drawbacks such as high power dissipation, low efficiency and bulky 

(Daniel, 2011; Saiful, 2011; Li, 2012). Power dissipation produced by linear regulator 

is high due to huge different of the input and output voltage, thus low efficiency is 

obtained when operating in high power (Rogers, 1999; Chava, et al., 2004).  

 



 
 

Linear regulator has become a main core in power conversion for a few decades. 

However, in the late of sixties the linear power supplies are replaced with high 

frequency switch mode power supplies. The introduction of the high voltage bipolar 

power transistor in the late of sixties has driven the replacement of the linear power 

supplies with switch mode power supplies (Jovanovic, 2012). Significantly, allows the 

reduction of the size and weight and higher efficiency power supplies (Jovanovic, 

2012; Li, 2004; Saiful, 2011).  

 

The size and weight reduction of the power supplies are mainly determined by the 

switching frequency as the switching frequency is inversely proportional to the size 

and the weight of the supplies (Carr, et al., 2009; Sugimura, et al., 2009; Ting, et al., 

2012). Thus, switch mode power supplies offer higher efficiency compared with the 

linear power supplies. However, the tradeoffs of the switch mode power supplies are 

between the switching frequencies and the losses such as switching loss and 

conduction loss (Sugimura, et al., 2009; Sivavara, et al., 2012; Songboonkeaw and 

Jangwanitlert, 2012).   

 

Earliest, the switch mode power supplies are limited to its switching frequencies 

to several kilohertz only with the implementation of the bipolar power devices 

(Jovanoic, 2012). Thus, with the debut of power MOSFET allows the switching 

frequencies go beyond hundreds-hertz even mega-hertz (Jovanovic, 2012). This will 

significantly allow more reduction of the size and weight of the power supplies 

(Abedinpour, et al., 2001; Carr, et al., 2009). Together with the advancement 

technology in the magnetic component allows further reduction of the size and weight 

of the power supplies (Chen and Ruan, 2005; Hu, et al., 2012). For an example, in 



 
 

computer voltage regulator with the advancement of the technology allows the 

switching frequency of the voltage regulator goes up to 1 Megahertz (Jovanovic, 

2012). Thus, smaller power supply of the computer is obtained. 

 

Until recent, the power supplies efficiency is depend on the power density. Thus, 

the optimizations of the design tradeoffs are needed in order to meet these 

requirements. The losses produced from the higher switching frequencies are the major 

drawbacks of the current power supplies (Sugimura, et al., 2009; Sivavara, et al., 2012; 

Ting, et al., 2012). In early of nineties, the governments of the most of the countries 

have urge power supplies to a better efficiency due to the environmental and economic 

concerns (Jovanovic, 2012; Abedinpour, et al., 2001; Sivavara, et al., 2012). Thus due 

to this requirement has given a great challenge to power supplies manufacturers and 

designers. 

 

1.2 Problem Statement 

There has been continuous effort to increase the power density and efficiency 

of the power supplies. Higher frequency operation of power supplies result in smaller 

size due to reduction of the size of magnetic component (Chen, et al, 2005; Zhang, et 

al., 2011; Hu, et al., 2012). However, the switching loss and conduction loss of the 

power devices are higher (Hong, et al., 2008). Thus, bigger heat sink is needed for 

each of the power devices. Moreover, operating at high switching frequency also 

agitate the overvoltage stress across the power devices (Ayyanar and Mohan, 2001; 

Iannello, et al., 2002; Wu, 2004; Uslu, 2006). This may cause damage to the 

component or higher rating component need to be used in the design. This indirectly 

will increase the cost of the power supplies. 
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