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 ALGORITMA CARIAN BERDASARKAN LALAT BUAH UNTUK 

KERJASAMA SEKUMPULAN SISTEM ROBOTIK 

ABSTRAK 

 

Kepintaran kumpulan boleh digambarkan sebagai tingkah laku yang kompleks, terhasil 

daripada sejumlah besar ejen individu, yang mana setiap ejen mematuhi peraturan yang 

amat mudah. Ia sebenarnya di ilhamkan dengan memahami mekanisme berpusat bagi 

organisasi haiwan semula jadi seperti burung, semut, lebah, ulat cahaya, dan kelip-kelip. 

Pemerhatian tingkah laku biologi ini menghasilkan sekumpulan robotik yang berupaya 

untuk bekerja antara satu sama lain dalam kumpulan bagi mencapai keselarian, 

keteguhan dan keupayaan kolektif. Tingkah laku kolektif adalah strategi pergerakan 

seperti "sumber carian" dan "kesatuan" yang biasa dipamerkan oleh haiwan semasa 

mencari sumber makanan. Walaubagaimanapun, keadaan untuk robot adalah pergerakan 

bagi mencari punca bau, cahaya, dan bunyi. Dalam pada itu, terdapat minat yang 

meningkat, terutamanya dalam mencari lokasi yang paling dalam di tasik dan di 

empangan untuk sistem kajian batimetri. Kaedah yang sedia ada seperti “lawnmower” 

melibatkan kos yang besar dari segi masa, ketepatan dan kebolehpercayaan. Oleh itu, 

penggunaan sistem robotik berkumpulan dicadangkan. Di dalam tesis ini, rangka kerja 

yang ringkas dan kaedah dalam membangunkan algoritma bio-inspirasi telah 

dibangunkan untuk aplikasi koperasi sekumpulan robot. Strategi pergerakan lalat buah 

atau Drosophila Melanogaster mempamerkan beberapa kelebihan seperti kitaran 

strategik carian berkumpulan, corak pergerakan dengan pengedaran rawak Levi, 

perkongsian maklumat dalam masa nyata dan pengurangan parameter pengawal semasa 

pergerakan. Beberapa proses fungsi penanda aras telah dijalankan untuk menilai prestasi 

yang dicadangkan iaitu FOA (Fly Optimisation Algorithm). Pembentukan berkumpulan 
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kemudiannya diselakukan dengan perisian alat Netlogo. Strategi carian bio-inspirasi 

optima telah di aplikasikan kedalam sekumpulan kenderaan permukaan berautonomi 

kecil yang dinamakan Drosobots. Untuk mengesahkan prestasi sebenar sistem yang 

dibangunkan, platfom robotik yang baru ini di uji pada sebuah kolam renang bersaiz 

Olimpik. Dalam keadaan permukaan air tenang, kesilapan pelayaran ASVs dapat 

dikurangkan. Keputusan menunjukkan bahawa tingkah laku yang terbentuk dalam 

pergerakan lalat buah adalah sangat baik dengan menggunakan bilangan ejen yang kecil. 
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FRUIT-FLY BASED SEARCHING ALGORITHM FOR COOPERATIVE 

SWARMING ROBOTIC SYSTEM 

ABSTRACT 

Swarm intelligence can be described as a complex behaviour generated from a large 

number of individual agents, where each agent follows very simple rules. It is actually 

inspired by understanding the decentralized mechanisms in the organization of natural 

swarms such as the birds, the ants, the bees, the glowworms, and the fireflies. 

Observation of these biological behaviour has given birth to swarm robotics whereby 

robots have the capability to work with one another in a group to achieve the same kind 

of parallelism, robustness and collective capabilities. A collective behaviour movement 

strategy such as a “source search” and “aggregation” are commonly exhibited by the 

animals while finding their source of food. However, the situation for the robots is to 

find the source of odour, light, and sound. Meanwhile, there has been mounting interest, 

particularly for finding the deepest location in lakes and dams for bathymetric survey 

systems. Using the existing lawnmower methods incur substantial costs in terms of time, 

accuracy and reliability. Therefore, the usage of a swarming robotic system is proposed. 

In this thesis, a simple framework and methodology in developing a bio-inspired 

algorithm for cooperative swarming robotic application has been developed. The fruit 

flies or Drosophila Melanogaster movement strategy offers some advantages such as 

strategic 'search-aggregation' cycle, distribution of moving patterns with Levy Random, 

information sharing  in real-time, and reduction of controller parameters during 

movements. A number of benchmark function processes were conducted to assess the 

performance of proposed FOA (Fly Optimisation Algorithm). The swarming formation 

is then simulated with the Netlogo simulation tool software. This optimal bio-inspired 
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searching strategy has been incorporated into the application of a swarm of mini 

autonomous surface vehicles (ASVs) named Drosobots. In order to verify the actual 

performance on the system developed, this new robotic platform is tested on an Olympic 

sized swimming pool. Under calm water surface conditions, the navigational error of the 

ASVs can be minimized. The results show that the emergent behaviour of fruit flies is 

very well organized involving a small number of agents. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In earlier years, the creation of robots are generally cylindrical in shape, having static 

hands, wheels like a car, with the purpose of assisting in the construction industry, 

manufacturing, and search and rescue operations. However, the development of bio-

mimetic (nature inspired) approaches in the early 1990s has caused researchers to 

shift their robotic design perception. In this perspective, each shape of the animals 

has its own specialty and role. In addition, the “thinking like an animal” has a place 

in the field of computer science and is used in programming or Soft Computing. In 

recent years, Swarm Intelligence (SI) and Adaptive Behaviour (AB) have garnered 

attention in the field of robotics and Artificial Intelligence (AI) applications. These 

are also known as Bio-inspired Algorithms. 

Two branches of applications which are frequently utilising bio-inspired algorithms 

or SI are;1) Optimisation and 2) Prediction and Forecasting. Swarming Robot (SR) is 

the one of the topic which included under optimisation. The overview of the 

optimisation, SR, and prediction and forecasting are explained in this part.  

Optimisation applications are very broad, traversing from one specific area and 

spreading into engineering design such as; 

i. Mechanical engineering design (Schwabacher et al., 1998; Coelho and 

Mariani, 2008; Kashan, 2011),  

ii. Process optimization (Egea et al., 2010; Joshi and Pande, 2011; Kwak and 

Kim, 2012),  
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iii. Scheduling system (Andersson et al., 2007; Frantzen et al., 2011; Skobelev, 

2011),  

iv. Routing and flow control in networks and networking (Madan et al., 2007; 

Shakkottai and Srikant, 2007; Minoux, 2010),  

v. Service oriented applications in finance (He et al., 2008; Leibfritz and 

Maruhn, 2009; Pennanen, 2011),  

vi. Healthcare system design (Harrell and Lange, 2001; Bagirov and Churilov,  

2003; Patriarca-Almeida et al.,  2011),  

vii. Bioinformatics (Hernandez and Kambhampati, 2004; Nebro et al.,  2008) 

 

For example, in the formulation of the scheduling system; optimisation algorithm can 

be used to determine the path of vehicle systems to the various destinations, 

determining the job schedules in factories, scheduling lectures at universities, 

creating multiple timetables, computer network design and planning strategies. 

 

 

Figure 1.1: Example applications of Bio-inspired Algorithms. 



3 

 

The searching strategies are also designed to accommodate different situations, 

which are determined by historical information, (i.e. to predict or to forecast)  ( Lou 

et al., 2011). Examples of such applications are; 

i. Housing market fluctuations (Azadeh et al., 2012), 

ii. Trend adjustment for electricity demand forecasting (Wang et al., 2011),  

iii. Short-term food price forecasting in China (Haofei et al., 2007),  

iv. Financial Forecasting (Kim, 2004),  

v. Short-time weather forecasting (Kilifarev et al., 2008),  

vi. The model of rainfall forecasting (Zhao and Wang, 2010),  

vii. Urban traffic forecasting model (Hong et al., 2007),  

viii. Forecasting output of integrated circuit industry (Pai et al., 2009),  

ix. Traffic safety forecasting (Gang and Zhuping, 2011),  

x. Simulating believable crowd and group behaviors (Huerre et al., 2010),  

xi. Tawaf simulation for Hajj training application (Rahim et al., 2011), 

xii. Crowd modeling and traffic simulation (Lin and Manocha, 2010).  

If viewed at random, natural life cycles that happen around people are actually 

closely aligned with each other. The movement of tens of thousands of birds and fish 

swarming produce shades and shapes of certain formations. Based on the natural life 

cycle, the weather conditions that occur prior to the moment in time could also be 

reenacted through computer simulations databases.  

The concept of SR system is adopted from nature; from the appearance of flocking 

birds, the movement of a school of fish, the ant colonies and swarming bees among 

others. This "emergent behavior" is the aggregation result of many simple 

interactions occurring within the animals themselves (Corner and Lamont, 2004). It 
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is a broad field of computational swarm intelligence and is applied in swarming 

robotics (Jevtic and Andina, 2007). Today, swarm robotics is one of the most popular 

research areas in robotic technology. SR brings together experts in artificial 

intelligence, control theory, robotics, systems engineering and biology with the goal 

of understanding swarming behaviours in nature and applications of biologically-

inspired models of swarm behaviors to large networked groups of autonomous 

vehicles.  

The basic criteria in designing the SR‟s hardware system are; mechanical design, 

dynamic and kinematic design, communication, sensory system and power 

management (Brambilla et al,. 2012). The design of the components is dependent 

upon the mission and the biological behavior itself. SI is also related to Metaheuristic 

Algorithm (MA) development. For many years, SI has focused more on the virtual 

simulation, where MA in applied on the agents in order to observe the aggregation 

behaviours. As far as MA is concerned, each animal inspired algorithm has its own 

strength and capability based on its natural behaviour.  

Some of the SR and bio-inspired project are working on a miniature platform where 

the mobile robots' agents are assigned to form aggregation behaviour within the field 

work with a camera based localisation technique (Arvin et al., 2009; Martínez et al., 

2010; Hereford and Siebold, 2010; Meng et al., 2011; Schmickl, 2011). The 

information is used to emulate the minimum/ maximum searching area or virtually 

named Artificial Potential Fields (APF). For the real situation, the particular location 

might be the most hazardous zone, highest peak on the ground or deepest part of the 

water column (i.e., the potential site that the system is searching for). 
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In underwater surveying expedition, finding the deepest part of the aquatic area such 

as oceans, lakes, dams, ponds and rivers are also considered as one of the most 

difficult task. This kind of mission requires a lot of efforts, and proper planning is 

necessary. One of the prime expeditions carried out at this particular moment in time 

is the one which involves locating the actual GPS position of Mariana Trench. Most 

of the voyages used multi-beam sonar and their movement is simple “lawn mower” 

formations to find the specific coordinate (Nishimura, 2011). For biologists, the area 

serves as keen interest as it may contain various new organisms and microorganisms. 

1.2 Problem Statement 

Today, bio-inspired algorithm for optimization applications is no longer restricted 

only to the computational and simulation problem, but has also been used in other 

fields such as swarming robotics system. Most of the studies conducted are either 

focusing on the optimisation capability and robustness of the algorithm or the 

capability of the algorithm or robotic platforms mimicking the animal‟s formation.  

For example, the collective movement of flocking birds and shoaling fish were 

successfully implemented on Nissan EPORO project for accident avoidance system 

and traffic congestion management for automatic car driving of the future (Nissan, 

2009). Another example is a Micro Air Vehicles (MAVs) that navigate through a 

dynamic grid composed of node-MAVs using pheromone based rules inspired from 

army ant foraging. MAVs maintain a virtual map of the pheromone, which is only 

possible with positioning information (Hauert et al., 2010). Maintaining the 

positional accuracy in a collective manner is the main task for the existing 

cooperative SR system (Levi and Kernbach, 2010, Valenti, 2007, Oung, 2010, 

Rubenstein, 2011).  
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In some situations, the bio-inspired algorithms are not necessarily applicable to all 

SR applications. According to Yang (2010), the bio-inspired algorithm is still widely 

open for different animal species. Each algorithm is not necessarily suitable for every 

case or situation. However, the framework and methodology of realizing the idea 

from animal‟s perception to the SR is too extensive. In general, it is a multi-

disciplinary in nature and it requires expertise from various fields such as biologists, 

system engineers, and experts on robotics, control system theory, and artificial 

intelligence (Kumar, 2010). Based on the existing SR development and applications, 

those strategies might not be suitable for other applications such as to locate the 

deepest part of the lakes and dam. This research area has triggered some interest and 

new challenges (Gutierrez et al., 2010). The use of existing bathymetric techniques 

involves a lot of efforts, time and money for scientists to plot and identify the deepest 

area using a survey vessel. Thus, for this application, the usage of SR is proposed 

with an optimised bio-inspired algorithm. By analyzing the performance of the 

existing bio-inspired algorithm particularly in collective motion behaviour, this study 

is expected to find a novel approach which is suitable for the suggested SR 

application. Finally, in order to experiment on the capability of the proposed 

algorithm, the actual robotics platform or the ASVs would be tested 

comprehensively.  
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1.3 Objectives 

The main goal of the research is to identify an appropriate bio-inspired fast searching 

algorithm whereby the secondary goal would be to use the algorithm for a suitable 

swarming robotics (SR) application. Specifically, in this study, the research 

objectives are: 

1. To investigate and develop a simple framework and methodology in 

developing a bio-inspired fast searching algorithm. 

2. To assess the performance of proposed FOA (Fly Optimisation 

Algorithm) on a number of benchmark functions. 

3. To develop a new swarming robot platform. 

This involves a large number of autonomous surface vessels systems made up of 

small robotic platforms, equipped with multiple sensors inspired by collective 

behaviour of animal species. 

1.4 Research Scope 

This research will focus on the related processes development that is necessary in 

finding suitable and appropriate bio-inspired algorithm which forages in a smart and 

efficient manner for an SR application. The research scopes are explained as below: 

1. Details formulation of the algorithm will be not cover comprehensively. This 

study is focusing more on the real application which is to analyze the 

performance of the collective behavior of the proposed animal for 

cooperative swarming robotic system. 

2. The performance and comparison are grouped into animal based algorithm 

only. Other bio-inspired algorithms such as Neural Networks, Genetic 

Algorithm, Intelligent Water Drops Algorithm and etc are not included.  



8 

 

3. Due to fieldwork accessibility, and minimizing the positioning error, an 

Olympic-size swimming pool is used as the test platform. The water surface 

is expected to be calm so that the disturbance of the ASV‟s prototype is 

tolerable. 

 

1.5 Thesis Outline 

Chapter One presents an overview about SI, SR system, suitable engineering 

application and problem statements. The main objectives of this research and 

research scope are also presented in this chapter.  

Chapter Two will discuss the existing diversity of algorithm and their applications 

towards optimisation, networking design, forecasting, prediction and swarming 

robots. An overview on the challenges of ASVs development for lakes and river 

mapping usage is also presented.  

 

Chapter Three will touch on the biological behaviour and the movement model of 

the fruit flies and its capability.  An extensive study of this animal species is 

formulated for the algorithm to suit the swarming ASV application.  

Chapter Four presents the major contribution of the study whereby the proposed 

algorithm is synthesized and tested using mathematical modelling and simulation. 

This includes the benchmark functions comparisons with Matlab™ and pattern 

behaviour analysis with NetLogo™. Chapter 4 also illustrate how simulation-based 

methods can be applied to analyse and evaluate the performance of the system under 

development.  
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Chapter Five is the experimental work towards realisation of the swarming robot 

application. It covers the ASV design requirements and all the development 

processes involved, the virtual robot simulator using Webots™, and the fieldwork 

trial.  

Chapter Six discusses and analyses the results obtained, and shows the viability and 

feasibility of the FOA as an optimised searching algorithm. 

Chapter Seven concludes the research and also provides some future research 

recommendations to enhance the proposed FOA performance.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

Any natural system that congregate as a result of some form of collective intelligence 

of nature is known as Swarm Intelligence (SI). This metaphor inspires a variety of 

techniques to solve in most cases, the problem of calculating optimisation problems. 

It has sparked interest amongst numerous scientists ( Chu et al., 2011; Martens et al., 

2011; Panigrahi et al., 2011; Sudholt, 2011). Optimisation is one of the techniques in 

seeking ideal values of variables that lead to the best possible value of the function 

where the perfection is not necessarily important for the particular problem (Yang, 

2008).  

Recent approaches in the optimisation techniques are mostly based on natural 

phenomenon and behavioral observation. Genetic algorithms (GA)(Glover, 1994) 

and evolutionary algorithms (EA) (Thomas, 1996), generate solutions to optimisation 

problems using techniques inspired by natural evolution, such as inheritance, 

mutation, selection, and crossover. Harmony Search (HS) (Geem et al., 2001) is 

inspired by the improvisation process of musicians. Intelligent Water Drops 

algorithm (IWD) (Duan et al., 2009) is a nature-inspired optimisation algorithm, 

which is based on the natural flow of rivers in finding almost optimal paths to their 

destination. Gravitational search algorithm (GSA) (Rashedi et al., 2009) is 

constructed based on the law of gravity and the motion of mass interactions. On the 

other hand, techniques related to behavioral observation include the Ant colony 

optimisation (ACO) (Dorigo et al., 2006), which is a class of optimisation algorithms 

modeled on the actions of an ant colony. Artificial immune systems (AIS) are 



11 

 

computational systems inspired by the principles and processes of the vertebrate 

immune system. Particle swarm optimisation (PSO) (Poli and Kennedy., 2007) is 

inspired by the social behavior of bird flocking or fish schooling. Photosynthetic 

algorithm (PA) (Murase, 2000) utilises the darkening reaction rules governing the 

transfer of carbon molecules from one substance into another in the Calvin–Benson 

cycle and photorespiration. Galaxy-based search algorithm (GbSA) (Shah-Hosseini, 

2011) imitates the spiral arm of spiral galaxies in searching for its surroundings.  

Most of Animal-based Metaheuristic Algorithms are also related to swarm 

intelligence. Swarm intelligence has gathered enormous research interest in related 

fields in recent years. Swarm intelligence is defined as „„Any attempt to design 

algorithms or distributed problem-solving devices inspired by the collective behavior 

of social insect colonies and other animal societies.‟‟ (Bonabeau et al., 1999). 

Swarming behavior is one of the sub chapters under biological based or bio-mimicry 

or bio-inspired algorithm concept. It is a concept adopted from collective activities 

shown by a group of people or animal aggregating and forming an emergent behavior 

naturally. 

2.2 Animal Inspired  Algorithm (Swarming AI Design and Approach) 

Some examples of animal inspired metaheuristics adopted are: Ant Colony 

Optimisation (ACO)(Dorigo, 1992), Particle Swarm Optimisation (PSO) (Eberhart 

and Kennedy, 1995), Monkey Search (Mucherino and Seref, 2007), Bee Algorithm 

(BA) (Nakrani and Tovey, 2004), Firefly algorithm (FA) (Yang, 2008), Artificial 

Bee Colony Algorithm (ABC) (Karaboga and Basturk, 2008), Glowworm Swarm 

Optimisation (GSO)(Krishnanand and Ghose, 2008) and Cuckoo Search (CS)(Yang, 

2010).   
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2.2.1 Ant Colony Optimisation (ACO)  

The Ant Colony Optimisation algorithm (ACO) was introduced by Dorigo (1992) in 

his PhD thesis. ACO is a probabilistic technique for solving computational problems, 

which can be reduced by finding good paths through graphs. According to Dorigo et 

al.(1996), the collective behavior that emerges is a form of autocatalytic behavior 

where the more member of ants following a trail, the more attractive that trail 

becomes for other to follow. 20 years after the founding of the algorithm, as of today, 

the ACO has become well-established and complicated because of the 

hybridisation‟s evolvement. However, the basic concept and algorithm can be easily 

understood as follows (Figure 2.1): 

       a)                                                b)                                           c) 

Figure 2.1: An example with real ants (Dorigo et al. 1996). 

 

a) Ants follow a path between points A and E. 

b) An obstacle (H – C) is interposed; ants can choose to go around it 

following one of the two different paths with equal probability. 

c) After sometime, the shorter path is where there exist more pheromones 

laid down, which is at C. 
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Pseudo-code and formulas published by Marco Dorigo is as below: 

 

Algorithm 1 The Ant Colony Optimisation Metaheuristic 

Set parameters, initialise pheromone trails  

 while termination condition not met do 

  ConstructAntSolutions 

  ApplyLocalSearch(optional) 

  UpdatePheromones  

  Endwhile       

 

Figure 2.2: Pseudo-code of ACO ( Dorigo et al., 1996). 

In general, the kth ant moves from state x to state y with probability 

   
   

(   
 )    

 
 

∑(   
 )    

 
 
                                                        (2.1) 

Where τxy is the amount of pheromone deposited for transition from state x to y, 0 ≤ α 

is a parameter to control the influence of τxy, ηxy is the desirability of state transition 

xy (a priori knowledge, typically 1/ dxy, where d is the distance) and β≥ 1 is a 

parameter to control the influence of ηxy. When all the ants have completed a 

solution, the trails are updated by  

            
       

                                                (2.2) 

Where   
 is the amount of pheromone deposited for a state transition xy, ρ is the 

pheromone evaporation coefficient and     
 is the amount of pheromone deposited, 

typically given for a TSP problem (with moves corresponding to arcs of the graph) 

by 

    
  {

 

  
                                  

           
                      (2.3) 

Where Lk is the cost of the kth ant's tour (typically length) and Q is a constant. 
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2.2.2 Particle Swarm Optimisation (PSO)  

PSO is originally attributed to (Kennedy and Eberhart, 1995). A stylised 

representation of the movement of organisms in a bird flock or fish school is 

simplified based on the simulation done by Reynolds (1987). The algorithm was 

observed to demonstrate optimisation. He had proposed a behavioral model in which 

each agent follows three rules: Separation- Each agent tries to move away from its 

neighbours if they are too close. Alignment- Each agent steers towards the average 

heading of its neighbours. Cohesion- Each agent tries to more towards the average 

position of its neighbours. An individual agent should change its heading or direction 

and velocity based on the positions and velocities of its nearby neighbours. 

Figure 2.3 (a) is an illustration of an individual agent where the visibility range is the 

variable angle where how far each agent can see or sense from its position is defined; 

while the movement span is a set of maximum angles that are available for the agent 

to change its direction either to the left or right. Figure 2.3 shows three basic 

strategies of Reynolds' flocking rules. The circles indicate sensing range for the boids 

in the centre. This means that the boid in the centre of the circle can see or sense 

other boids within the radius angle. Figure 2.3(a) representation of an individual 

agent and Figure 2.3 (i to iii) illustrates Reynolds's basic flocking steering strategies. 

The circle indicates the neighbourhood range of the agent's in the centre of the circle. 

(i) shows cohesion, (ii) shows separation, and (iii) shows alignment strategy 

respectively (Othman, 2009). 
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    (a)                        (i)                         (ii)                         (iii)   

Figure 2.3: Reynolds's basic flocking steering strategies.  

 

i. The boid feels the urge to steer towards the average position of its 

flockmates in its vicinity, resulting in the boids staying close to one 

another. 

ii. This strategy is to ensure that the boid is maintaining a safe distance from 

its flockmates and encourages the boid population to avoid crowding the 

neighbourhood.  

iii. The alignment strategy which sometimes is referred to as the velocity 

matching strategy. This rule encourages the boid to move with a similar 

heading and velocity as its neighbours.  

The motion is based on their position known in the search space and the position of 

swarm around the best-known position. When a better position is found it will then 

guide the movement of the swarm. This process is repeated and thus it is expected, 

but not guaranteed, that a satisfactory solution will eventually be found. 
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2.2.3 Bee Algorithm (BA)  

From literature review, it seems that the Bee Algorithm was first formulated around 

2001 by Abbass (2001) where a colony contains a single queen with multiple 

workers. The model is used to solve a special class of propositional satisfiability 

problems (SAT) known as 3-SAT, where each constraint contains exactly three 

variables. Then in 2004 Nakrani and Tovey (2004) from Oxford University studied a 

method to allocate computers among different clients and web-hosting servers (Bee 

Algorithm). In 2005, Haddad et al. (2005) presented a Honey Bee Mating 

Optimisation (HBMO) algorithm to solve their reservoir modeling and clustering. 

Yang (2008) also formulated the algorithm to solve numerical optimisation problem 

and named it as the Virtual Bee Algorithm (VBA). In 2008, Karaboga and Basturk 

(2008) reformulated the algorithm and named it as the Artificial Bee Algorithm. In 

the ABC algorithm, the colony of artificial bees contains three groups of bees: 

employed bees, onlookers and scouts. The first half of the colony consists of the 

employed artificial bees while the second half includes the onlookers. For every food 

source, there is only one employed bee. In other words, the number of employed bees 

is equal to the number of food sources (Karaboga and Basturk, 2008).  

The main steps of the algorithm are given below (Figure 2.4): 

 Bee Algorithm 

Initialise 

REPEAT 

-Move the employed bees onto their food sources and 

determine their nectar amounts. 

-Move the onlookers onto the food sources and 

determine their nectar amounts. 

-Move the scouts for searching new food sources. 

-Memorise the best food source found so far. 

UNTIL (requirements are met) 

Figure 2.4: Pseudo-code of Bee Algorithm. 
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Each cycle of the search consists of three steps: moving the employed and onlooker 

bees onto the food sources and calculating their nectar amounts and determining the 

scout bees and then moving them randomly onto the possible food sources. 

A detailed Pseudocode of the ABC Algorithm proposed by Karaboga and Basturk 

(2008) is as follows; 

Initialise the population of solutions      

Evaluate the population 

cycle=1 

repeat 

Produce new solutions (food source positions)      in the 

neighborhood of     for the employed bees using the formula 

                            (k is a solution in the neighborhood of 

i,   is a random number in the range [-1,1] )and evaluate 

them. 

Apply the greedy selection process between xi and υi 

Calculate the probability values    for the solutions    by 

means of their fitness values using the equation (2.4): 

    
    

∑     
  
   

                           (2.4) 

In order to calculate the fitness values of solutions we 

employed the following equation (2.5): 

     {

 

    
        

              
}                 (2.5) 

 

Normalise   values into [0,1] 

Produce the new solutions (new positions)    for the onlookers 

from the solutions  , selected depending on   , and evaluate 

them 

Apply the greedy selection process for the onlookers between 

xi and    

Determine the abandoned solution (source), if exists, and 

replace it with a new randomly produced solution    for the 

scout using the equation (2.6) 

                               )                 (2.6) 

Memorise the best food source position (solution) achieved so 

far. 

cycle=cycle+1 

until cycle= Maximum Cycle Number (MCN) 
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2.2.4 Monkey Search (MS)  

According to Mucherino and Seref (2007), when climbing up a tree for the first time, 

the monkey only chooses the branches of the tree in a random way. This is because it 

does not have any previous experience on that particular tree. However, when it 

climbs up the tree again, it tries to follow the paths that will lead it to good food. This 

practice allows the monkey to discover a set of connected branches of the tree in 

which there are good food resources. Like the chimpansee, memorisation is also very 

important for the monkey. Subsequently, the monkey leaves some kind of “marker” 

to the branches to be used later, while returning to the ground. The monkey chooses 

among the several branches based on the marks it left before. Based on this high 

probability in finding better solution, Mucherino and Seref (2007) proposed a 

Monkey Search (MS) Algorithm for global optimisation inspired by the behavior of a 

monkey climbing trees looking for food.  

Figure 2.6 gives a graphic representation of the monkey behavior and its algorithm. 

In Figure 2.6(a), the monkey climbs a new tree for the first time. At each step, two 

new solutions are generated and placed on two nodes of the tree. The dashed arcs are 

the ones the monkey rejects, and all the others form a path on the tree. Every new 

path is considered as additional weights (w). When the top of the tree is reached 

(level = maxlevels), the monkey climbs the chosen arcs in the opposite direction and 

marks them (the weights w are modified with the best improvement available in the 

direction of the corresponding arc). At a certain point, the monkey restarts climbing 

up (see the node marked by a blue square in Figure 2.6(b). Then, new solutions are 

generated and one of them is chosen, until the top of the tree is reached again. 



19 

 

 

Figure 2.5: Two representations of the monkey behavior. The monkey climbs a tree 

for the first (a) and the second (b) time. (Mucherino et al., 2009). 

 

The MS procedure is based on a set of parameters, which influences the convergence 

of the algorithm. The height of the trees is the total number of branches that the 

monkey can climb from the root to the top. The number of paths the tree contains is 

represented by the number of times the monkey starts climbing up the same tree. 

Two other parameters deal with the memory of the Monkey Search heuristic. In 

order to avoid local minima, a predetermined number of best solutions found on each 

specific tree are kept in memory. In fact, every time the monkey stops climbing a tree 

because it has reached the allowed total number of paths, it starts climbing a new tree 

from a different root solution. The best solutions are kept in memory, so that the 

monkey can select either one of the best solutions or a combination of them as the 

root of a new tree. The Monkey Search procedure stops when all the solutions in 

memory are sufficiently close to one another. A detailed implementation of this 

algorithm is described in (Mucherino and Seref, 2007). 

Rejected path 

New path 

Restart node 

Node 
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2.2.5 Firefly Algorithm (FA)  

Firefly Algorithm (FA) was developed by Yang (2008) at Cambridge University in 

2007. It uses the following three idealised rules:  

1) All fireflies are unisex so that a firefly will be attracted to other fireflies 

regardless of their sex;  

2) Attractiveness is proportional to their brightness; thus for any two 

flashing fireflies, the less bright will move towards the brighter one and 

they both decrease as their distance increases. If there is no brighter 

firefly than a particular one, it will move randomly;  

3) The brightness of a firefly is affected or determined by the landscape of 

the objective function. For maximisation problem, the brightness can 

simply be proportional to the value of the objective function. Other forms 

of brightness can be defined in a similar way to the fitness function in 

genetic algorithm. 

Algorithm 3   Firefly Algorithm 

begin 

Objective function f(x), x=(x1,....,xd)T 

Generate initial population of fireflies xi (i=1,2,...,n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficient γ 

while (t<MaxGeneration) 

for j=1: d loop over all d dimensions 

if (Ij > Ii), Move firefly i towards j;  

end if 

Attractiveness varies with distance r via exp[-γ r] 

Evaluate new solutions and update light intensity 

end for j 

end for i 

Rank the fireflies and find the current best 

end while 

Postprocess results and visualisation 

end 

Figure 2.6: Pseudo code of the Firefly Algorithm (FA). 
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By assuming the attraction of a firefly is determined by its brightness; the variation 

of light intensity and formulation of the attraction is associated with the encoded 

objective function. 

In the simplest case for maximum optimisation problems, the brightness, I of a firefly 

at a particular location x can be chosen as I(x) α f(x). However, the attractiveness β is 

relative; it should be seen in the eyes of the beholder or judged by other fireflies. 

Thus, it will vary with the distance rij between firefly j. A detailed implementation of 

this algorithm is described in (Xin-She Yang, 2008). 

 

2.2.6 Glowworm Swarm Optimisation (GSO)  

The Glowworm Swarm Optimisation (GSO) algorithm was developed by 

Krishnanand and Ghose (2006). Agents in the GSO are regarded as glow worms that 

carry the quantity called luciferin luminescence with them. Glowworms encode the 

suitability of their current location, which are evaluated using the objective function, 

into the luciferin that they broadcast to their neighbors. Glowworms identify their 

neighbors and calculate the movements to exploit an environment that can be 

modified, which is bounded above by the various sensors. Using a mechanism of 

probabilities, each glowworm chooses the neighbor which has a value higher than 

their own luciferin and moves toward it. 

In GSO, a swarm is composed of   agents called glowworms. A state of a 

glowworm, i at time, t can be described by the following set of variables: a position 

in the search space        , a luciferin level        and a neighbourhood range 

       . GSO algorithm describes how these variables change over time. Initially, 

agents are randomly distributed in the search space. Other parameters are initialised 



22 

 

by predefined constants. Each time, the next iteration is composed of three phases: 

luciferin level update, glowworm movement and neighbourhood range update. 

To encode the fitness of the current position of a glowworm i in the luciferin level, 

the following formula is used: 

(     )                                                      (2.7) 

Where    is the luciferin decay constant,   is the luciferin enhancement constant and 

  is an objective function.Then, each glowworm tries to find its neighbours. In GSO, 

a glowworm j is a neighbour of a glowworm i only if the distance between 

glowworms i and j is shorter than the neighbourhood range       and additionally, 

glowworm j has to shine brighter than              . If one glowworm has multiple 

neighbours, it chooses one at random with a probability that is proportional to the 

luciferin level of this neighbour. Finally, the glowworm moves one step in the 

direction of the chosen neighbour. The step size is constant and is equals s. 

In the last phase, the neighbourhood range       is updated in order to limit the range 

of the communication in an ensemble of agents. The following formula is used: 

           {      [             | 
    | ]}                 (2.8) 

where:    is a sensor range (a constant, which limits the size of the neighbourhood 

range),    is a desired number of neighbours, |     | is a number of neighbours of a 

glowworm i at time  , and   is a model constant. 

The whole GSO group algorithm is shown in the form of flowchart in Figure 2.7. It 

is understood that the core of the algorithm is relatively simple and consists of boxes 

marked with thick lines. 
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2.2.7 Cuckoo Search (CS)  

Cuckoo is one of the birds‟ species, which exhibit a unique behavior for survival. 

They have also known to be a solitary bird and engage in severe brood parasitism; by 

laying their eggs in the nests of other host birds (Payne, 2005). Cuckoo Search 

algorithm was proposed by Yang and Deb (2009), using the following three idealised 

rules: 

1) Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest; 

2) The best nests with high quality of eggs (solutions) will carry over to the next 

generations; 

3) The number of available host nests is fixed, and a host can discover an alien 

egg with a probability   ∈ [0, 1]. In this case, the host bird can either throw 

the egg away or abandon the nest so as to build a completely new nest in a 

new location. 

For simplicity, this last assumption can be approximated by a fraction    of the  

nests being replaced by new nests (with new random solutions at new locations). For 

maximisation problems, the quality or fitness of a solution can simply be 

proportional to the objective function. Other forms of fitness can be defined in a 

similar way to the fitness function in genetic algorithms. 

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be 

summarised as the pseudocode shown in Figure 2.8. 

When generating new solutions  
     

 for, say cuckoo  , a Levy flight is performed 

  
     

    
   

                                                     (2.9) 

where      is the step size which should be related to the scales of the problem of 

interest. In most cases, use          is used. The product   means entry-
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