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PERWAKILAN KUADRATIK BEZIER NISBAH
MENGGUNAKAN ALGORITMA GENETIK, EVOLUSI
PEMBEZAAN DAN PENGOPTIMUMAN SEKAWAN
PARTIKEL

ABSTRAK

Perwakilan data adalah masalah yang mencabar dalam bidang seperti pembinaan semula fon,
imej perubatan dan imej yang diimbas. Teknik matematik langsung pada kebiasaannya mem-
berikan ralat terkecil tetapi kadang-kadangnya mengambil masa yang lebih lama untuk pe-
ngiraan. Sebagai alternatif, teknik aplikasi kecerdasan buatan digunakan secara meluas untuk
masalah pengoptimuman dengan masa pengiraan yang lebih pendek. Disamping itu, penggu-
naan kaedah kecerdasan buatan untuk perwakilan data menjadi semakin popular akhir-akhir
ini. Oleh itu, tesis ini didedikasikan untuk perwakilan lengkung dan permukaan. Tiga teknik
pengkomputeran lembut iaitu Algoritma Genetik (AG), Evolusi Pembezaan (EP) dan Pengop-
timuman Sekawan Partikel (PSP) digunakan untuk memanipulasi lengkung dan permukaan
yang diingini. Teknik-teknik ini telah digunakan untuk mengoptimumkan titik kawalan dan
pemberat dalam keterangan fungsi splin yang digunakan. Komponen pra-pemprosesan seperti
pengesanan bucu dan pemparameteran panjang perentas juga diterangkan dalam tesis ini. Bagi
setiap teknik pengkomputeran lembut yang dicadangkan, talaan parameter dilakukan sebagai
satu kajian penting. Hasil tambah ralat kuasa dua (HTRKS) digunakan sebagai fungsi objek-
tif. Maka, kajian ini juga adalah satu masalah peminimuman dengan nilai terbaik untuk titik
kawalan dan pemberat diperolehi apabila nilai HTRKS adalah minimum. Kuadratik Bézier
nisbah telah digunakan untuk perwakilan lengkung. Pembinaan semula permukaan telah di-
capai dengan melanjutkan kuadratik Bézier nisbah kepada pasangannya, dwi-kuadratik Bézier

nisbah. Kaedah lengkung dan permukaan yang kami cadangkan, dengan bantuan tambahan
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daripada teknik pengkomputeran lembut telah dugunakan untuk pengvektoran bentuk serta ob-
jek 2D dan 3D. Algoritma yang terperinci telah dirangka untuk menukarkan model digital 2D
dan 3D kepada bentuk pengvektoran. Pelbagai demonstrasi praktikal daripada pembinaan se-
mula fon yang mudah kepada perwakilan imej perubatan telah dibuat untuk menyokong hasil
kerja yang berjaya oleh algoritma yang telah direka. Satu kajian perbandingan skim yang di-
cadangkan dengan yang sedia ada telah dibuat sebagai satu bahagian yang perlu dalam kajian

ini. Perbandingan ini mengandungi kedua-dua bentuk, penglihatan dan berangka.
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REPRESENTATION OF RATIONAL BEZIER QUADRATICS
USING GENETIC ALGORITHM, DIFFERENTIAL
EVOLUTION AND PARTICLE SWARM OPTIMIZATION

ABSTRACT

Data representation is a challenging problem in areas such as font reconstruction, medical
image and scanned images. Direct mathematical techniques usually give smallest errors but
sometime take a much longer time to compute. Alternatively, artificial intelligence techniques
are widely used for optimization problem with shorter computation time. Besides, the usage
of artificial technique for data representation is getting popular lately. Thus, this thesis is ded-
icated for the representation of curves and surfaces. Three soft computing techniques namely
Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
are utilized for the desired manipulation of curves and surfaces. These techniques have been
used to optimize control points and weights in the description of spline functions used. Pre-
processing components such as corner detection and chord length parameterization are also
explained in this thesis. For each proposed soft computing technique, parameter tuning is done
as an essential study. The sum of squares error (SSE) is used as an objective function. There-
fore, this is also a minimization problem where the best values for control points and weights
are found when SSE value is minimized. Rational Bézier quadratics have been utilized for
the representation of curves. Reconstruction of surfaces is achieved by extending the rational
Bézier quadratics to their rational Bézier bi-quadratic counterpart. Our proposed curve and
surface methods with additional help from soft computing techniques have been utilized to
vectorize the 2D and 3D shapes and objects. Detailed algorithms have been devised to con-

vert the 2D and 3D digital models into vectorized form. Various practical demonstrations from
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simple fonts reconstruction to medical images representation have been made to support the
successful working of the devised algorithms. Comparative study of our proposed schemes
with the existing ones has been made as an essential part of this study. The study includes both

visual and numerical comparison.
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CHAPTER 1

INTRODUCTION

Traditionally, the data fitting problem is solved using direct methods such as data linearization
and least squares method. However, nonsystematic and big amount of data are difficult to be
solved directly. Consequently, the soft computing methods are increasingly accepted as an
option to solve this kind of problem. Soft computing technique does not only provide a good
solution but is computationally efficient. This is important in the regeneration of data process
that requires fast computation. This thesis reviews some of the soft computing methods used

in this field.

Soft computing refers to a fusion of methodologies that mainly bring together neural net-
works, fuzzy logic and evolutionary algorithms (Dubois and Prade, [1998). There are many
techniques in soft computing and they have been used to solve many problems in engineering.
Some of the soft computing techniques are Genetic Algorithm (GA), Ant System, Simulated
Annealing (SA), Simulated Evolution (SE), Particle Swarm Optimization (PSO), Tabu Search

and Harmonic Search.

Curve fitting is the process of constructing a curve or mathematical function that has the
best fit to a series of data points that are possibly subjected to constraints. Curve fitting can
involve either interpolation where an exact fit to the data is required or smoothing in which a
’smooth’ function is constructed that approximately fits the data. Fitted curves can be used as
an aid for data visualization to infer values of a function where no data are available and to

summarize relationships among two or more variables.



Over the last two decades, soft computing methods are gaining attention in the field of
Computer Aided Geometric Design (CAGD). The study focused on data representation have
also been carried out. Some study has given good results but did not show positive results.
Among the findings that gave result was the study using Genetic Algorithm (GA), Differential
Evolution (DE) and Particle Swarm Optimization (PSO). The previous method using DE was
not carried out very well but studies that used GA and PSO gave a very good result. In this
regard we would like to solve the problem of data representation using these three techinques.

All the selected method certainly converges as described in the literature.

A Genetic Algorithm (GA) is a search heuristic that mimics the process of natural evo-
lution. This heuristic is routinely used to generate useful solutions in optimization and search
problems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which
generate solutions to optimization problems using techniques inspired by natural evolution,
such as inheritance, mutation, selection, and crossover. Choosing the best parameter is impor-

tant to ensure convergence.

Inspired by a proposed method by [Jones et al.| (1993), Huyer and Neumaier| (1999) pre-
sented a global optimization algorithm based on multilevel coordinate search. It is guaranteed
to converge if the function is continuous in the neighbourhood of a global minimizer. By start-
ing a local search from certain good points, an improved convergence result is obtained. They

discussed implementation details and gave some numerical results.

Particle Swarm Optimization (PSO) is an optimization technique proposed by Kennedy and
Eberhart by means of particle swarm (Weise), 2009). PSO incorporated swarming behaviours
that were observed in flocks of birds, school of fish, swarm of bees and even social behaviour,
from where the idea was emerged. PSO is a population-based optimization tool which could be

implemented and applied easily to solve various function optimization problems or problems



that can be transformed to function optimization problems. To apply PSO successfully, one
of the key issues is to find that how to map the problem solution into the PSO article which

directly affect its feasibility and performance.

Storn and Price| (1997) propose a new floating point encoded evolutionary algorithm for
global optimization and called it Differential Evolution (DE) owing to a special kind of differ-
ential operator, which they invoke to create a new offspring from parent chromosomes instead
of the classical crossover or mutation (Das et al., 2008)). Easy methods of implementation and
negligible parameter tuning made the DE algorithm quite popular. Donor vector selection is

essential in DE as the vector ensures convergence.

Functional networks are a generalization of the standard neural networks in the sense that
the weights are now replaced by neural functions which can exhibit, in general, a multivariate
character (Iglesias et al., 2004). In addition, while working with functional networks they are
able to connect different neuron outputs with convenience. Furthermore, different neurons can
be associated with neural functions from different families of functions. As a consequence, the

functional networks exhibit more flexibility than the standard neural networks (Castillol [1998)).

Artificial Immune System (AIS) is a model of the immune system that can be used by im-
munologists to explain, experiment and predict activities that would be difficult or impossible
in "wet-lab" experiments (Garrett, [2005)). This is also known as "computational immunology".
AIS is also an abstraction of one or more immunological processes. Since these processes pro-
tect us on a daily basis from the ever-changing onslaught of biological and biochemical entities

that seek to prosper at our expense. It is also a reason why they may be computationally useful.

In metallurgy and material sciences, annealing is a heat treatment of material with the goal

of altering its properties such as hardness. Metal crystals have small defects, dislocations of



ions which weaken the overall structure. By heating the metal, the energy of the ions and hence,
their diffusion rate is increased. Then the dislocations can be destroyed and the structure of the
crystal is reformed as the material cools down and approaches its equilibrium state. When
annealing a metal, the initial temperature must not be too low and the cooling must be done
sufficiently slow so as to avoid the system getting stuck in a meta-stable, non-crystalline state

representing a local minimum of energy (Weise, 2009).

1.1 Curve Fitting using Soft Computing Techniques

In this section, some of the soft computing techniques used for curve fitting have been dis-

cussed.

1.1.1 Genetic Algorithm (GA)

Raza and Sarfraz (2001) investigated the use of GA to perform curve fitting. They use Akaike’s
information criterion as an objective function. They use the Arabic fonts "Ali" and "Pound"
sign as examples. Their method determines an appropriate number and location of knots au-
tomatically and simultaneously. This research is one of the earliest soft computing technique
used to solve the curve fitting problem. It can be seen that no parameter tuning had been done

in this research.

Singh et al.| (2003) proposed a method to approximate digital planar curves with line seg-
ments and circular arcs using GA. Breakpoints on the digital curve were located in such a
manner that when line segments and circular arcs were appropriately fitted between all pairs
of adjacent breakpoints, an approximating error (i.e. an integral square error) was minimized.
They used four digital test curves (i.e. chromosome-shaped curve with 60 points, figure-of-
eight curve with 45 points, leaf-shaped curve with 120 points and curve with four semicircles

with 102 points) as their test cases.



Sarfraz et al.| (2010) presented an algorithm to capture outlines of bitmap characters. A
cubic function with one shape parameter was used. GA was applied to find values of the shape
parameter. Their procedure in capturing outlines consisted of the steps: boundary detection,
detection of corner points, break points and fitting the curve. They used "Pound" and "Lambda"

signs as their examples.

1.1.2 Simulated Annealing (SA)

Sarfraz et al.|(2006) developed a non-deterministic evolutionary approach to approximate out-
lines of planar shapes. Non-uniform rational B-splines (NURBS) had been utilized as underly-
ing approximating curves. SA was used to optimize the weight and knots simultaneously. The
optimized NURBS model had been fitted over contour data of planar shapes for the ultimate

and automatic outputs.

SA was also employed to optimize knots (Sarfraz and Riyazuddin, 2006) and weights
(Sarfraz et al., |2000), separately. Then, Sarfraz (2008b)) proposed a new technique to cap-
ture outlines of generic shapes. SA was used to optimize shape parameters in the generalized
cubic spline. All of the research using SA was conducted by Sarfraz and his co-researchers.
Their study gave quite good results and for their examples they used the symbols like "Pound"”,

"Lambda" and "Plane".

1.1.3 Functional Networks (FN)

Iglesias and Galvez| (2001)) used functional networks to fit the given set of data from tensor
product parametric surfaces. The performance of this scheme was illustrated for the case of
Bézier surface. First, they built the simplest functional network representing such a surface
and then they used it to determine the degree and coefficients of bivariate polynomial that fit

given data. They calculated mean and root mean squared errors for different degrees of the



approximating polynomial surface, which were used as their criterion of a good fitting.

Iglesias et al.| (2004) extended their work to B-spline surface used in surface reconstruction.
A careful analysis of errors mades it possible to determine the number of B-spline surface fitting
control points that best fit the data points. This analysis included the use of two sets of data

(training and testing data) to check overfitting which does not occur here.

Iglesias and Galvez (2008) introduced the RBS functional networks which is a new type
of functional networks based on weighted B-spline basis functions that reproduces functional
networks to curve fitting problem. This study did not seem to proceed further in this field.
There was no latest study since 2008. The authors have moved on to study GA and PSO later

which has been explained in the next section.

1.1.4 Particle Swarm Optimization (PSO)

Delint et al.|(2009) discussed an alternative solution for curve fitting based on PSO by generat-
ing randomly the weight and control points of the NURBS curve, which are used to calculate
NURBS points. |Delint et al.| (2010) then implemented PSO on NURBS curve approximation
where the weights of the curve can be adjusted accordingly. The experiments were conducted

on various parameterization methods for approximating the curves.

Cobo et al.| (2007) combined least-squares and PSO in fitting 3D data points through free-
form parametric curves. They used Bézier curve for their implementation. The sum of squared
errors was used as fitness function. The small number of data points had been used in the
research and simple examples were used. They also did not show the application of their

proposed method.



1.1.5 Simulated Evolution (SE)

Sarfraz et al.[(2005) presented an application of SE to the curve fitting problem using NURBS.
They described a mapping scheme of the problem to SE followed by a proposed algorithm’s
outline with the result. The error and computation time were not reported. This research can

be a good start on understanding SE to solve curve representation.

1.1.6 Multilevel Coordinate Search (MCS)

Sarfraz and Naelah| (2009) proposed MCS for an outline capture of planar images. The overall
technique had various phases including extracting outlines of images, detecting corner points
from the detected outline and curve fitting. The idea of MCS was used to optimize shape
parameters in the description of the generalized conic spline. The spline method produced op-
timal results for the approximate vectorization of the digital contour obtained from the generic
shapes. This was the only one data fitting problem which is employed in Multilevel Coordinate
Search. The error was not informed nevertheless the examples of data fitting gave a good visual

result.

1.1.7 Differential Evolution (DE)

Priza et al.| (2010) proposed an alternative solution for Bézier curve fitting using Differential
Evolution (DE) algorithm. DE algorithm was conducted randomly to generate control points
of a Bézier curve. These generated control points were used to calculate Bézier curve points.
A fitness function of the DE algorithm was computed in order to search for minimum errors.
Simply the data points had been used and there were no actual examples in this study. Although

there were a good results shown but it is yet not relevant.



1.2 Surface Fitting using Soft Computing Techniques

Soft computing techniques used for surface fitting include genetic algorithm (GA), simulated
annealing (SA), functional networks (FN), particle swarm optimization (PSO), artificial im-

mune system (AIS) and hybrid techniques.

1.2.1 Genetic Algorithm (GA)

Galvez et al.| (2012) introduced a method for surface reconstruction from clouds of noisy 3D
data points. Their method applied the GA paradigm iteratively to fit given cloud of data points
by using strictly B-spline polynomial surfaces. GA was applied in two steps: determine para-
metric values of data points; followed by computing surface knot vectors. Fitting surface was
calculated using least-squares method either by SVD (singular value decomposition) or LU
methods. The method yielded very accurate results even for surfaces with singularities, con-
cavities, complicated shapes or nonzero genus. Most of the results obtained were of a good
value. It was carried out by researchers from University of Cantabria, Spain which involve
Iglesias and Galvez. Even some said that Genetic Algorithm does not give good results but
Galvez has proven GA is also able to give a very fine result in his research. Furthermore, he

used such hard examples to set or fix for data fitting on it. The error given is very good.

1.2.2 Simulated Annealing (SA)

Wen et al.|(2006) solved surface fitting problem by creating fair ship hull surface using NURBS.
He developed an optimized NURBS ship hull fitting approach using SA as well as evaluated
and analysed (in term of accuracy, fairness and speed of processing) according to their proposed
approach. The quantity of data points and amount of runtime were not reported which shows

that the whole research was not well explained.



1.2.3 Functional Networks (FN)

Functional networks are used to fit a given set of data of a tensor product parametric surface
(Iglesias and Galvez,[2001). The performance of this method has been illustrated for the case of
Bézier surface. First, they built the simplest functional network representing such a surface and
then they used it to determine the degree and coefficients of the bivariate polynomial surface
that fits the given data better. They calculated the mean and the root mean squared errors for
different degrees of the approximating polynomial surface which were used as their criterion
of a good fitting. In addition, FN provided a procedure to describe parametric tensor product
surface in terms of families of chosen basis functions. This new approach was very general
and can be applied not only to Bézier but also to any other interesting family of tensor product

surfaces.

Iglesias et al.| (2004) also used B-spline surface for surface reconstruction. A careful anal-
ysis of the errors made it possible to determine the number of B-spline surface fitting control
points that best fit data points. This analysis also includes the use of two sets of data (training
and testing) to check for overfitting. Even though the quantity of data points was stated, but

there is no runtime reported. However the error obtained was quite reliable.

1.2.4 Particle Swarm Optimization (PSO)

Galvez et al.|(2008) used PSO for Bézier surface reconstruction. They presented a simple but
illustrative example to discuss performance of their proposed method. Sum of squared errors
was used as fitness function. (Galvez and Iglesias| (2012) applied PSO approach to reconstruct
a NURBS surface of certain order from a given set of 3D data points. Their surface recon-
struction technique consists of two main tasks, surface parameterization and surface fitting.
Their method allows users to obtain relevant surface data (such as parametric values of data

points, knot vectors, control points and their weights) without a requirement for pre-/post-



processing. It yielded very good results even in the presence of problematic features, such as
multi-branches, high-genus surfaces and real world scanned objects. The outcome given was
very good and latest. Moreover, the examples used in the researches were very relevant to the

problem.

1.2.5 Artificial Imnmune System (AIS)

Ulker and Isler| (2007) presented a surface fitting problem solution using AIS based on B-
splines. Their method can determine appropriate number and locations of knots automatically
and simultaneously. They compared their proposed method to GA. All the given data points,

runtime and error were good. For the examples the test function was just merely used.

1.2.6 Hybrid Metaheuristic

Fadni and Shamsuddin| (2008) proposed a method for surface reconstruction based on hybrid
soft computing techniques of Kohonen Network and Particle Swarm Optimization (PSO). Ko-
honen network learns sample data through mapping grid that can grow. The implementation
was executed by generating Kohonen mapping framework of data subsequent to the learning
process. Consequently, the learned and well represented data became the input for surface fit-
ting procedure. Their algorithm are applied on different types of curves and surfaces to observe

its ability in reconstructing objects while preserving its original shape.

Artificial intelligence techniques considered by |Galvez et al.| (2007) were for the curve/-
surface parameterization where the use of genetic algorithm was proposed and for functional
constraints problems, where functional networks scheme was applied. Both approaches were
combined with least squares approximation method in order to yield a suitable method for

Bézier surface fitting.
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1.3 Thesis Objectives

The first objective of this research is to use soft computing techniques in solving curve and
surface fitting problems. Soft computing has become a common techniques that is used to
solve the problem in engineering and optimization cases. However, in the past two decades
soft computing method is gaining attention in the field of CAGD. For that reason, we have

used this method specifically to solve curve and surface representation.

The second objective is to assess the ability of soft computing techniques in reconstructing
curves and surface for CAGD. Curve that we have used is rational quadratic Bézier. Soft
computing techniques optimize parameter control point and weight which consist in the rational
quadratic equation. As the two piecewise rational quadratic used, the smoothness between
these two curves has been taken into consideration. This work is extended to two surfaces.
Four patches of rational quadratic have also been used and as always the control points and
weight has been optimized. This means that all type of curves in CAGD can use soft computing

techniques.

The third objective is to generate alternative technique of solving fitting problem that are
computationally efficient. Apart from direct technique, these methods can be used for solving
data fitting problem. This shows that all optimization methods in soft computing can also be

applied. We hoped that we can develop a technique that is robust and fast.

1.4 Thesis Outline

This thesis has been organized as follows: Chapter [2]presents the pre-processing stage in solv-
ing data fitting problem using soft computing techniques. It contains general algorithm for data
representation, corner detection and chord length parameterization. Some example for corner

detection algorithm has also been presented.
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Then, the curve and surface scheme that is used for data representation has been discussed
in Chapter |3} The objective function that has been used in the optimization process is also
explained in this chapter. Chapter |4 which deals with Genetic Algorithm procedure and its
usage for data fitting. GA has been explained in details and some simple examples have been
used to understand GA better. GA has been then used for data fitting and parameter tuning has

also been done.

Then, in Chapter [5] we have explained Differential Evolution in details and DE has been
used for data representation. The parameter tuning for curve fitting has also been done. The

third method which is Particle Swarm Optimization has then been presented in Chapter [6]

The comparative study which is based on these three methods has been done in Chapter [7]
The comparison includes visual and numerical comparison. This chapter compares which one
is the best method among the proposed three soft computing techniques. The comparison has

also been made with the existing techniques. Finally , the conclusion has been given in Chapter

Bl
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CHAPTER 2

GENERAL ALGORITHM, CORNER DETECTION AND
CHORD LENGTH PARAMETERIZATION

This chapter discusses general algorithm and pre-processing stage in solving curve and surface
approximation. This section is organized as follows: General algorithm for data approximation
is explained in Section In Section corner detection method is explained. Corner
detection is important to detect the edge of the boundary. As parameterization is important for

data representation, Section [2.3]explains chord length parameterization.

2.1 General Algorithm for Data Representation

The understanding of the general algorithm gives a brief overview of how the data representa-
tion process is done. Our curve representation method starts with the reading of the 2D data
points. For curve representation, sets of 3D data point have been read using Matlab. If the
raw data is an image, the boundary is extracted using Matlab image processing toolbox. Note
that we have used Matlab R2012b for implementation. After the boundary has been extracted,
corner detection has been done on the extracted boundary. We have used SAMO06 method for
corner detection. The details of the algorithm have been presented in Section [2.2] Then, for
each segmented boundary, curve fitting has been done using soft computing techniques. The

general algorithm is given in Figure [2.1]

For surface representation, first we got 3D data points from a function. Then we have
determined the control points poo, po2, Po4, P20, P22, P24, P40, P42 and p44 based on the edge
and middle location of the data points(poo, pos, P20, P24, P40, and pas4 are the endpoint and the

rest are middle points). Our soft computing scheme has optimized control points pg1, p1o, P11,
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Get digitized image
Boundary extraction
l

Corner detection

¥
Curve representation using
GA, DE and PSO

Figure 2.1: General curve representation algorithm

P12, P14, P21, pa1 and the only weight wi;. We have optimized the parameter that gives the

smallest error (see Figure 2.2)).

| Get 3D data points

Determine end controf points (P, P PP and middle
control points based on location of data points (pa, Die Das.

Pai Pasl

Optimization of control points (pee, Pie. Dig, P, Pl and
weight (wy,] using GA, DE and PSO

Generate approximated surface

Figure 2.2: General surface representation algorithm

2.2 Corner Detection

In this algorithm, the detection of corner points is based on calculation of distances from the
straight line joining two contour points on two sides of that corner. This algorithm is known as

SAMOG6 explained in (2008a).The algorithm is robust, simple to implement, efficient
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and performs well on noisy shapes as well. The algorithm is divided into two passes. Cor-
ner point candidates are detected in the first pass and corner point superfluous candidates are

discarded in the second pass.

2.2.1 First Pass

Any contour point, P; is a corner point candidate if it satisfies two conditions. First, P; (located
between two contour points P; and P) is at maximum perpendicular distance from the straight
line joining these two contour points. Second, the maximum perpendicular distance is greater
than the given threshold value D. For the contour point P, where 1 <i < and n is the number
of contour points in a closed loop, the contour point P, is given as:

Py, if (i+L)<n,
P = 2.1)

Pir oy, otherwise,
where L is a length parameter whose default value is 14. The perpendicular distance of all
contour points between P, and P, is calculated from the straight line joining these contour
points. Point P; is the point with maximum perpendicular distance as shown in Figure 2.3} P;
is selected as a candidate corner point if its perpendicular distance (d;) from the straight line is
greater than the parameter D and the distance d is assigned to P; . The perpendicular distance
d; of point P;(x,y) from the straight line joining the point P;(x,y) and P(x,y) can be calculated

as (Sarfraz, |2008a):

|Pjx— Pyl if my =0,
4= |Pjy—mP; +mP; .—P, | 22
Py— ix+ —P. .
= m\;;ZLnI” =1 otherwise,
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Figure 2.3: The contour point P; at maximum perpendicular distance from the straight line
PPy

where

my _ Py — By (2.3)

m = = .
Ny Pk,x - Pi,x

The next candidate corner point is detected for a new straight line by incrementing both i and
k. The process continues for i = 1 to n. For one straight line, there can be only one candidate
corner point or no candidate corner point at all. More than one straight line may respond to
the same point P; as shown in Figure @a) and @Kb). In this case, the higher value of d; is

assigned to P;.

2.2.2 Second Pass

Sometimes the corners to be detected are not the sharp angle points and we may detect su-
perfluous candidate corner points in the first pass, as shown in Figure 2.4] These superfluous
points have been discarded in the second pass. The candidate corner point is superfluous if any
other candidate with higher value of d; is in the range R. The default value of parameter R is
equal to parameter L. Therefore for any candidate point to be selected as a corner point, it must
have its highest value of d; among the R number of points on both sides. Three different points

have been detected as candidate corner points in Figure [2.4(a), 2.4(b) and 2.4(c). P; of Figure
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(a) (b) (c)

Figure 2.4: Superfluous candidate corner point P; in (a) and (c).

2.4(a) and 2.4(c) are discarded as P; of Figure [2.4(b) has higher d; , which is in the range R.

2.2.3 Parameters

The algorithm needs three external parameters L, D and R, as given above. The length of the
straight line PP, is fixed as per length parameter L throughout the corner detection process.
Thus, the straight line always joins the two contour points, L points apart. The default value
of L is 14. This parameter takes care of object scaling and resolution. The default value
assigned to L suits the size of all test shapes demonstrated in Section [2.2.1] Corners are the
high curvature points which are recognized by their local sharpness and opening angle. It used
the distance parameter D as a substitute for the sharpness and opening angle, to check their

validity as a corner point.

Any point whose distance from the straight line PP, goes beyond parameter D can be
selected as a valid corner point. The default value of D is 2.6. This is an important parameter
to control false selection of corners due to noise and other irregularities in a curve. Higher
values of D may miss some valid corners and lower values may hit the wrong corners as well.
For noisy shapes, accurate corners can be detected by adjusting this parameter (see Figure
[2.3(a)). Sometimes the local sharpness of a corner is not high enough, but a global view of

shape identifies it as a valid corner (Figure [2.4). Such corners are also detected successfully
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with this method at the cost of some additional invalid (superfluous) corners. These invalid
corners have been removed in the second pass by fixing the domination range R. Only the most
dominant corner (with highest d; ) in the range R is selected as a valid corner and all others
have been discarded. The default value of R is equal to L but it must be given lower value to

enable detection of closely located corners.

2.2.4 Demonstration

In this section SAMOG6 corner detection method has been used on several images, given in

Figure

2.3 Chord Length Parameterization

If an interpolating curve follows very closely to the data polygon, the length of the curve
segment between two adjacent data points would be very close to the length of the chord of
these two data points. The length of the interpolating curve would also be very close to the total
length of the data polygon (Shene, |2010). In Figure each curve segment of an interpolating
polynomial is very close to the length of its supporting chord, and the length of the curve is
close to the length of the data polygon. Therefore, if the domain is subdivided according to
the distribution of the chord lengths, the parameters will be an approximation of the arc-length

parameterization.

Suppose the data points are Dy, Dy, ..., D,. The length between D;_; and D; is |D; — D;_|,

and the length of the data polygon is the sum of the lengths of these chords:

L=Y|D;,—D;_|

n

i=1

Therefore, the ratio of the chord length from data point Dy to data point Dy, denoted as Ly, over
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Figure 2.5: Corner detection examples using SAMO06



Figure 2.6: Chord length parameterization

the length of the data polygon is

Yr  |Di—Di ]

L, =
k L

If we prefer to have an arc-length parameterization of the interpolating curve, the domain has
to be divided according to the ratio L;. More precisely, if the domain is [0, 1], then parameter

t, should be located at the value of L;:

tp=0
1 k
=7 Y IDi—Diy| | k=1,2,...n—1
i=1

t, =1

where L is the length of the data polygon. In this way, the parameters divide the domain into

the ratio of the chord lengths.

As an example, suppose we have four data points (n = 3): Dy =< 0,0 >, D; =< 1,2 >,
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Dy, =< 3,4 > and D3 =< 4,0 >. The length of each chord is

Dy — Do| = V/5 = 2.236,
Dy —Dy| =2v2=2.828,

D3 — Dy| = V17 = 4.123

and the total length is

L=+54+2vV2++/17=9.8176

Finally, we have the corresponding parameters:

t():(),
|D1 — Dy
H=——=0.2434
1 L 3
D1 —D D>, —D
l2:’ 1= Dol + D> 1‘:0.5512,
L
3 =1.

Figures and show the data points and the parameter distributions of the uniformly

spaced and chord length methods.

The chord length method is widely used and usually performs well. Since it is known that
polynomial curves cannot be parameterized to have unit speed (i.e., arc-length parameteriza-
tion), the chord length can only be an approximation. Sometimes, a longer chord may cause
its curve segment to have a projection bigger than necessary. In Figure[2.8] the black and blue
curves both interpolate 7 data points. As you can see, both curves have very similar shape,

except for the last segment, and the one computed with chord length method wiggles a little.
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Figure 2.7: A uniformly spaced vs chord length parameterization

The last curve segments are very different and the curve using the chord length method has a
large bulge and twists away from the black curve produced by the uniformly spaced method.

This is a commonly seen problem with the chord length method.

chord length

n:nfjbrm{r spered

Figure 2.8: Uniform spaced vs chord length parameterization curves

22



CHAPTER 3

DATA FITTING WITH RATIONAL QUADRATIC BEZIER

This chapter discusses the type of curve and surface that we want to use for data representation.
It also discusses how the data points are fitted using the presented curve and surface scheme.
This section is organized as follows: in Section [3.1] conics curve is presented. This type of
curve is used for curve representation. The minimization of sum square error function is also
explained in the same section. Blending bi-quadratic rational Bézier surface is explained in
Section[3.2] Finally, the objective function of optimizing surface fitting will be presented in the

same section.

3.1 Conic Curve

A standard form of conics is given by |Yang|(2003) and |[Farin| (1989):

B3(t)bo +wB3(t)by + B3(t)b2
B3 (1) + wB}(1) + B3 (1)

r(t) = ,t €[0,1] (3.1

2\ . ‘
where B? = <z> t'(1 —1)>7" are basis functions and b;(i = 0,1,2) are control points and w is

the middle weight. Here we have listed some useful properties of conics:

1. For 0 < w < 1, we obtain an ellipse; w = 1, a parabola; and w > 1, a hyperbola.

2. The straight line segments [bg,b;| and [b;,b,] are tangents directions to r at r(0) = by

and r(1) = by, respectively.
3. When w > 0, the curve segment (3.1) lies in the convex hull of the control polygon.

4. The point s = r(1/2) of a conic segment in its standard form is called the shoulder point.
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Figure 3.1: A rational quadratic curve with shoulder point s and tangent through g¢ and ¢;

It can be computed from

1 +1
s= = —
2610 2611,
where
_ bo+wby _ wb + by
qo = 1+W y 41 = 1+W )

are the characteristic points. The tangent is spanned by ¢g¢ and ¢;. Note that shoulder

tangent is parallel to [bg,b,]; see Figure As a consequence,

_ lls=mll

b1 —s]|

where m is the midpoint of by and b;.

5. The curvature x of r at the endpoints is given by:

K(O):L K !

w2p?’ (l)zm (3.2)

where T denotes the area of the triangle formed by the control polygon; i. e. 7T =
Ldet(by —bg,by —by), p = ||by —bo|| and A = ||b, — by ||. Note that k denotes the signed

curvature, since T may be positive or negative.
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