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PEMBENTUKAN OKSIDA TIUB NANO MELALUI KAEDAH 
PENGANODAN LOGAM “VALVE” 

 

8 ABSTRAK 

 

Penghasilan tiubnano TiO2 (TNTs), tiubnano ZrO2 (ZNTs) dan tiubnano 

bersegmen WO3 (WNTs) melalui penganodan logam-logam Ti, Zr dan W telah 

berjaya dibentuk di dalam elektrolit akueus dan organik yang berflorin. Bagi 

elektrolit akueus, 1 M Na2SO4 (pH 3). Gliserol dan glikol etilena yang mempunyai 

pH neutral telah diguna sebagai  elektrolit organik. Morfologi dan struktur bagi tiub 

nano beroksida yang terbentuk telah dikaji. Melalui penganodan, faktor-faktor utama 

yang mempengaruhi struktur tiub nano adalah jenis-jenis elektrolit, komposisi 

elektrolit, voltan penganodan yang dikenakan pada anod dan masa penganodan. 

Didapati TNTs dan ZNTs boleh dibentuk di dalam elektrolit akueus dan organik. 

Walau bagaimanapun, WNTs hanya boleh dibentuk di dalam elektrolit akueus. 

Morfologinya bukanlah tiub nano tetapi merupakan tiub nano bersegmen. Kedua-dua 

ZNTs dan TNTs adalah sangat tersusun, selaras dengan baik dan tumbuh secara 

menegak terhadap kerajang logam. TNTs yang terbentuk, mempunyai diameter 

purata berjulat 50-100 nm dan panjang sekitar 700 nm. Analisa terperinci terhadap 

TNTs selepas sepuhlindap menunjukkan pembentukan fasa berlaku pada suhu 350 

pada 450oC transformasi telah berlaku. Fasa rutile mendominasi pada suhu >600oC. 

Mekanisma pembentukan ZNTs telah dicadangkan di sini berdasarkan tiga proses 

utama pada peringkat awal penganodan; pembentukan ZrO2 beranodik, pembentukan 

liang, pembentukan lubang diikuti dengan proses pemisahan lubang pada tiub nano 

dalam keadaan seimbang. Morfologi ZNTs seterusnya boleh diklasifikasikan sebagai 

lapisan berkembar, lapisan tunggal, berkumpul dan mendakan di atas ZNTs. 
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Morfologi tersebut telah dibincangkan di dalam kajian ini. Di samping itu, 

penganodan ZNTs yang terbentuk di dalam elektrolit berakueus adalah sangat 

berhablur dengan modifikasi tetragonal/kubik tetapi kurang berhablur di dalam 

elektrolit berorganik. Penambahan agen pengoksidaan (H2O dan H2O2) di dalam 

elektrolit glikol etilena telah meningkatkan kadar pembentukan ZNTs. Di dalam 

glikol etilena dengan elektrolit H2O2 kadar pembentukan islah sebanyak 296.4 

nm/min (berbanding dalam etilena glikol tanpa agent pengosidaan: 200 nm/min). 

WNTs adalah amorfus dan sepuhlindap pada suhu 400oC selama 1 h mengubah 

amorfus WO3 kepada berhablur monoklinik. Pembentukan WNTs agak berbeza dari 

ZNTs dan TNTs disebabkan oleh pembentukan semula oksida di kawasan antara tiub 

dan juga di dalam tiub tersebut. Sifat photoluminasi dan fotopemangkinan oksida ini 

juga telah di kaji.  
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FORMATION OF NANOTUBULAR OXIDE BY ANODIZATION 
OF VALVE METALS  

 

9 ABSTRACT 

 

The formation of TiO2 nanotubes (TNTs), ZrO2 nanotubes (ZNTs) and 

segmented WO3 nanotubes (WNTs) by anodization of Ti, Zr, and W metal was 

successful in fluorinated aqueous and organic electrolyte. In aqueous electrolyte, 

acidic 1 M Na2SO4 (pH 3). Glycerol and ethylene glycol were the organic electrolyte 

with their neutral pH. The properties including morphology and structural of the 

nanotubular oxide formed were investigated. During anodization, the main factors 

effecting nanotubular structures are types of electrolyte, its composition, anodization 

voltage applied to anode and anodization time.  It was found that TNTs and ZNTs 

can be formed in both aqueous and organic electrolytes. However WNTs can only be 

formed in aqueous electrolyte. The morphology of WNTs also different such that 

they are not really nanotubular but in a form of segmented porous structure.  Both 

ZNTs and TNTs are highly ordered, well aligned and grow perpendicular to the 

metal foil. The TNTs formed, had the average diameter ranging from 50-100 nm and 

length of 700 nm. Detailed analysis of annealing on TNTs reveals that, phase 

formation to anatase occurred at 350oC at 450oC transformation happened. At 

temperature > 600oC rutile phase dominated. The mechanism of ZNTs formation is 

found to be based on three dominating process at the early stage of anodization; 

anodic ZrO2 formation, pits formation, pore formation followed by pore separation 

process to form nanotubes. The morphologies of ZNTs can be further classified as 

double layer, single layer, bundled and precipitates on ZNTs. The origin of these 

morphologies is discussed in this thesis. As-anodized ZNTs, formed in aqueous 
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electrolyte is highly crystalline with tetragonal/cubic modification.In organic 

electrolyte, the crystallinity seems poorer. The addition of oxidants (H2O and H2O2) 

in ethylene glycol electrolyte increased the rate of ZNTs formation. In ethylene 

glycol with H2O2 the rate of formation is 296.4 nm/min (compared to 200nm/min in 

ethylene glycol without oxidant). WNTs are amorphous and annealing at 400oC for 1 

h transformed the amorphous to crystalline of monoclinic WO3. The formation 

mechanism of WO3 is different from ZNTs and TNTs since regeneration of oxide 

occurs in between tubes as well as within tubes. The photoluminescence and 

photocatalyst properties of these oxides were also investigated. 
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1 CHAPTER 1 - 

INTRODUCTION 

 

1.1 Background  

Nanostructures are structures with at least one dimension in the range of 1-100 

nm. These structures have attracted increasing interest due to their fascinating unique 

characteristics allowing applications in various industries. The ability to produce 

materials with small structures (in nanoscale) has been seen as one of the most 

important aspect in modern science and technology. Once synthesized, there are 

large numbers of opportunities that these so-called nanomaterials can offer.  

Nanotubular materials as the subset of nanomaterials and their surface, 

structural and other properties highlight many important uses in various fields. 

Nanotubes of both organic and inorganic have been used for many applications in 

electronic industries, for energy generation and energy saving technologies, as 

catalysts, catalysts support, in sensor technology, in biomedical applications, as 

membrane, as absorbent materials and in purifications of contaminated water and air 

(Kumara et al., 2007). Nanotubes are typical examples of the so-called 1 dimensional 

(1D) nanostructures. The diameter of 1D nanomaterials has to be < 100 nm but the 

length can be > 100 nm. The length-to-diameter ratio (aspect ratio) is therefore can 

be significantly greater than unity (Spanier 2006). Research and development on the 

synthesis and applications of inorganic nanotubes especially oxide nanotubes have 

attracted much attention. This is because oxide nanotubes can be used in various 

applications, and the structure can be easily formed. Typically the formation of 

nanotubes can be produced by template based, hydrothermal and sol-gel method. The 

formation of self-ordering growth nanotubes by anodic oxidation has gained wide 

interest. This process resemble the example of electrochemical self-ordering which 
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was successfully done in forming ordered porous Al2O3 by anodization of Al. In this 

research, nanotubular ZrO2, TiO2 and WO3 were synthesized by anodic process on 

large area substrate making a three dimensional (3-D) network of aligned nanotubes 

film. These oxides are functional oxides with many desirable characteristics which 

allow them to be used in green technology. The thesis is focused mainly on 

optimizing anodic oxidation process for the formation of these oxides in nanotubular 

form and also on exploring some of the properties of the nanomaterials to be applied 

in green technology.  

Anodic oxidation is an electrochemical process to make thin oxide film on a 

metallic substrate. Two types of oxide layer can be formed by anodic process: 

compact and porous. Porous layer can be further classified as random porous and 

ordered porous. Ordered porous can either be in a form of connected pores or as 

nanotubular whereby the dissolving pore boundaries will formed discreet 

nanotubular structure.  The formation of pores is by the porosification process of 

barrier oxide. Fluoride is needed for this porosification to occur. In considering 

structure growth of anodic oxide with nanotubular structure, Ghicov & Schmuki 

(2009) had produced a comprehensive review on how nanotubes form. The review is 

however emphasizing on TiO2 nanotubes formation. Meanwhile applications of the 

TiO2 nanotubes have been reviewed by Grimes & Mor (2009). 

As mentioned electrochemical anodization would form oxide film.  In this 

present work, Ti was anodized to form TiO2, Zr forming ZrO2 and W forming WO3 

films. These oxides have many applications and many features of these oxide 

become of practical value if they are made in thin film form. When the film 

experienced porosification with continual pore boundaries dissolution, film will 

finally comprises of ordered nanotubular structure. Finally a 3-D network is said to 



3 
 

form. This structure has many advantages and applicable for solar cell, 

photoelectrochemical and photocatalysis.  

One interesting example is as photocatalyst. The nanosized structures of 

photocatalyst influence the specific surface area for reaction site. Hence, the use of 

nanotubular photocatalyst can create relatively large specific surface area thus more 

reactions can happen. Besides that, the thin tube wall can also increase the 

photocatalytic ability due to short distance of the excited electron and holes to travel 

to the surface, thereby reducing the probability of electron-hole recombination. The 

thin wall enables efficient charge transfer of photo-excited electrons and holes to the 

surface active sites. In addition by using anodic film as photocatalyst it is recyclable 

and can be reused as it is supported. The nanotubular supported film photocatalyst 

can overcome the problems encounter by nanoparticles photocatalyst such as TiO2. 

Whereby, using TiO2 nanoparticles, the aggregation of particles in suspension cause 

rapid loss in active sites and photocatalytic efficiency. The post separation that needs 

to be done on the photocatalytic system could be tedious and unpractical which 

consume more energy and time.  

 

1.2 Problem statement 

The synthesis of TiO2 nanotube arrays by anodization of Ti foil in the presence 

of fluorine ions have been vastly reported with two leading works reported by Roy et 

al.,(2011) and Rani et al.,(2010). The as-anodized TiO2 nanotubes are amorphous. 

For many applications crystallinity is desired. TiO2 comes in anatase (450oC) and 

rutile (600oC). For example, anatase is preferred in photocatalysis and catalysis 

whereas rutile is mostly used in gas sensors and dielectrics. However to the best of 

our knowledge no systematic study has been made to understand the crystallinity 
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formation of TiO2 nanotubes apart from the works of Varghese et al., (2003a) and 

Yang et al., (2008). The crystallinity of TiO2 nanotubes actually varies with synthesis 

technique. For anodic TiO2 it is important to examine the crystallization and phase 

transition of TiO2 nanotubes when the nanotubes are subjected to heat treatment. 

Another important aspect is on the stability of nanotubes at high temperature. It is 

known that, nanoscale materials have high surface energy and with additional energy 

from the heating process, the materials can get sintered. This would destroy the 

nanotubular structure as the tube will get sintered and merged together. Structural 

stability of the TiO2 nanotubes at elevated temperature is important for their 

application and this need to be examined during the process of crystallization at 

elevated temperature. In this thesis the effect of temperature on phase transition of 

TiO2 nanotubes prepared by anodization of Ti in fluoride electrolyte as well as the 

stability of the nanotubular architecture of TiO2 nanotubes arrays at elevated 

temperature is investigated.  

ZrO2 on the other hand, is a unique ceramic oxide. ZrO2 can be formed in 

nanotubular form typically by template based, hydrothermal and sol gel method. This 

thesis is looking at the formation ZrO2 nanotubes by anodic process. Similar 

procedure was adopted to form ZrO2 nanotubes as that to TiO2 nanotubes. Due to the 

immaturity of ZrO2 nanotubes research, only a few groups are working on this 

material. Skeldon group’s and Schmuki group’s are the researchers who 

progressively reported on the formation of ZrO2 nanotubes by anodic oxidation. 

There are limited of data on the ZrO2 nanotubes properties available as not many 

works was reported on ZrO2 nanotubes. As will be explained further in this thesis, 

ZrO2 comes in three polymorphs, cubic, tetragonal and monoclinic. Whilst the cubic 

and tetragonal are high temperature phases, monoclinic is the room temperature 
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stable form of ZrO2.  However, doping of the oxide can be done to stabilize both 

tetragonal and cubic at room temperature. The question on what exactly the energy 

band gap of doped ZrO2 in cubic and tetragonal form has been aroused for decades 

now. Theoretical calculation for example by Chang and Doong (2007) pointed out 

that the band gap of monoclinic, tetragonal and cubic are in the range of 3.12-5.42, 

4.10-13.33 and 3.25-12.3 eV respectively. There is lack of information available on 

the luminescence properties of ZrO2 nanotubes especially those made by anodization 

process. The difficulty for obtaining pure ZrO2 phase without any doping has 

resulted in no accurate information for luminescence and as well as the band gap of 

this material. However using anodization, high stabilized phase was produced 

without having any foreign dopants and it is of interest to study the luminescent of 

the stabilized ZrO2. Moreover the nanotubular architecture has made it more 

interestingly to be investigated.  To date there is no works on the measured bandgap 

of pure ZrO2 cubic or tetragonal in nanotubes form. In this work, we attempted on 

performing photoluminescence studied. 

The use of anodization process is unique since it can form a high temperature 

stable cubic  or tetragonal ZrO2 phase as reported by Habazaki et al., (2000). The 

existence of cubic or tetragonal ZrO2 by anodic was found to be dependent on 

anodization condition. Here, a thorough study was done to produce the optimum 

ZrO2 nanotubes structures. Two electrolytes were used: organic and aqueous added 

with fluoride. This thesis looks at the morphology of ZrO2 nanotubes formed in both 

electrolytes. For anodization in organic electrolyte, contribution of oxidant needs to 

be considered. The lack of oxidant hinders the growth of ZrO2 nanotubes. So, we 

have attempted to test the presence of water and hydrogen peroxide as the oxidizing 
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agent to enhance the growth of ZrO2.The morphology of ZrO2 nanotubes produced 

by anodization is shown in Figure 1.1. 
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Figure 1.1: Typical morphology of ZrO2 nanotubes showing surface and cross section 

morphologies 

Works on photocatalytic properties of ZrO2 have been reported by Alvarez et 

al., (2007), Botta et al., (1999) and Karunakaran & Senthilvelan (2005). From these 

works ZrO2 is said to be a potential photocatalyst and exhibit a high activity. This 

characteristic of ZrO2 arises from its highly negative flat-band potential and wide 

band gap (Sayama & Arakawa 1996). There is no reported work on the 

photocatalytic properties of the ZrO2 nanotubular structures. The use of nanotubular 

structure would provide larger surface area. Furthermore, thin film containing 

nanotubes would be a better option as opposed to suspension of particles in solution. 
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WO3 is an indirect bandgap semiconductor (Feng et al., 2005) which has been 

extensively studied due to their application in electrochromic (Nah et al., 2008), 

photocatalytic (Baeck et al., 2003) and gas sensors (Li et al., 2004). The 

photoelectrochemical properties of WO3 have made it possible for these applications. 

Due to broad application of WO3, the formation of porous WO3 with high surface 

area has drawn great interest. The preparation of porous WO3 by anodization was 

first reported by Mukherjee et al., (2003) by galvanostatic anodization. Then, 

nanoporous WO3 by anodization of W was reported by Berger et al., (2006). 

However, none of these works reported neither on the detailed mechanism of 

nanoporous oxide formation nor the exact feature of the oxide.  

In this thesis WO3 was made in 3-D network on W foil. As to date, there are 

not many available reports on the formation of WO3 nanotubes. The most 

comprehensive study has however been done by Kalantar-zadeh et al., (2009) and 

Watcharenwong et al., (2008). WO3 nanotubes were then used as photocatalyst and 

their properties were evaluated. WO3 has a narrow band gap (2-2.8 eV) and hence 

can absorb visible light up to 500 nm. This makes WO3 attractive for the use of a 

photocatalyst (Kou et al., 2010) under visible light.  

 

1.3 Research objectives 

The main aim of this work is to form the nanotubular oxide and following are 

the list of objectives for this research: 

(1) To study the morphology of nanotubular TiO2 formed by anodization of Ti in 

fluoride electrolyte and the effect of heat treatment on the phase formation and 

transformation of TiO2.  
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(2) To investigate the morphology and characteristic (structural, luminescence and 

crystallinity) of the nanotubular ZrO2 and WO3 formed by anodization on Zr foil, 

in fluoride electrolytes. 

(3) To proposed appropriate mechanism and to compare the properties and 

mechanistic growth of the oxides (TiO2, ZrO2 and WO3) formed by anodization.  

 

1.4 Thesis outline 

This project was conducted to form the 3-D network of TiO2, ZrO2 and WO3 in 

the form of nanotubular structure. First, anodization process was performed in 

organic and aqueous bath containing NH4F to form the nanotubes. The photocatalytic 

ability of the formed oxides was then tested using methyl orange dye as the indicator 

by using UV light irradiation. This is to evaluate the ability of the produced 

nanostructures oxide as the photocatalyst.  

Chapter 1 is the overall introduction for the whole thesis. A brief introduction 

on the nanostructured materials and anodization process is in chapter 2, as well as the 

mechanism to form one dimensional (1-D) nanotubular metal oxide. The applications 

of the nanotubular oxide are presented in this part. Chapter 3 is on methods of 

experimental works for this research. Chapter 4 is the results and discussion for 

anodization of ZrO2, TiO2 and WO3 nanotubes as well as the photocatalytic 

application of the produced oxides. Chapter 5 is on the conclusion and suggestions 

for further studies on this work.  
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2 CHAPTER 2 -  

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews important topics related to this thesis. As several metal 

foils (valve metal) were anodized for nanotubular oxide formation, the subject of 

anodic process and nanotubes formation are reviewed in here. Literature survey on 

the characteristics and applications of the nanotubes formed are presented as well 

focusing on the structural, optical, morphological and photocatalytic properties of 

anodic TiO2, ZrO2 and WO3.  

 

2.2 Valve metal oxide 

Metals such as Ti, W, Zr, Hf, Ta and Nb belong to a class of so-called valve 

metals. It is possible to grow anodic oxide on valve metals with considerable 

thickness in aqueous electrolyte by anodic oxidation. Valve metals are mainly 

transition group metals. Transition metals are element whose atom has an incomplete 

d sub-shell, or which can give rise to cations with an incomplete d sub-shell (Cox 

2010). Oxides grown on transition metals are transition metal oxides (valve metal 

oxide) and it is well known that transition metal oxides have many interesting 

properties as shall be discussed in the next sub heading. 

 

2.2.1 Properties of transition (valve) metal oxide  

TiO2, ZrO2 and WO3 are transition metal oxides. TiO2 occurs as a mineral in 

the nature while pure mineral of ZrO2 is rare in nature and most of Zr occurs as 

zirconium silicate (ZrSiO4). Tungsten is found in nature only combined in chemical 

compounds. WO3 is obtained as intermediate in the recovery of W from its minerals. 

http://en.wikipedia.org/wiki/Cation�
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Many features of these valve metal oxides become useful and feasible if the material 

is in micro-or nanostructures specifically they exhibits a high surface area.  

Various research works are now focusing on the design and controlled thin film 

of transition metal oxides formation with nanostructures via innovative synthesis 

strategies. The nanostructured film of oxides can be synthesized by chemical 

approaches; the most typical ways are sol–gel and hydrothermal approaches or 

physical processed: vapor processes. The morphologies that can be produced include 

nanofilms or films with nanostructures: nanowires, nanorods and nanotubes or films 

comprising of nanocrystallites.  

Electrochemical process through anodic oxidation offers the formation of film 

comprising of aligned, ordered nanotubes covering the surface of metal foil 

homogeneously. Therefore regardless of the size of the metal foil, such 3-D network 

of nanotubes can be fabricated on the surface of the metal. Nonetheless, there are 

various parameters ought to be optimized in order to produce nanotubes with 

uniform diameter, that can cover the whole area of the metal foil uniformly and with 

the same length throughout.  In this work, anodization parameters were studied. 

Typical nanotubular structures formed by anodic oxidation of Ti, W, and Zr derived 

from this research are shown in Figure 2.1 (a), (b) and (c) respectively.  

 

50nm100nm 200nm

 

Figure 2.1: FESEM and TEM images showing morphologies of nanotubular anodic oxide (a) 

TiO2 (b) ZrO2 and (c) WO3  

(a) 

(c) 

SEM surface SEM cross section TEM 
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Figure 2.1: FESEM and TEM images showing morphologies of nanotubular anodic oxide (a) 

TiO2 (b) ZrO2 and (c) WO3 (continued) 

 

Having these structures in mind, this chapter will review some of the properties 

of these oxides, how these structures are formed, and what the applications of these 

structures are. More importantly as mentioned, anodization parameters are the key 

factors that allow the formation of this oxide. Therefore, works done by other 

researchers on the topic of nanotubes formation by anodization is reviewed here 

thoroughly. The introduction for these oxides will however be given first.  

 

2.2.1.1 Properties of TiO2 

TiO2 is a multi-functional oxide that obviously has numerous interesting 

applications. TiO2 is an inert material; biologically and chemically therefore it 

provides a good condition to be used especially in medical application (Brammer et 

al., 2008). It is a harmless material to human and chemically stable with respect to 

chemical corrosion. Thus it is widely used for orthopedic or dental implants.  

 

(c) 

(b) 
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Porous TiO2 films can be used as electrode in dye sensitized solar cell (DSSC) 

(Zukalova et al., 2005) and as electrode in photoelectrochemical cells (PEC) 

(Fujishima & Honda 1972). It is also a very well known oxide exhibiting 

photocatalytic property (Fjishima & Honda 1972) and also self-cleaning property 

(Roméas et al., 1999).  

TiO2 nanotubes formed by anodization are normally amorphous. But the 

polymorph of TiO2 exists in the form of anatase and rutile depending on the 

temperature and pressure at which the material is exposed to. TiO2 normally 

undergoes anatase to rutile phase transformation when the temperature is raised at 

least above 450oC (Tang et al., 2003). Anatase stabilization depends on synthesis 

conditions, but rutile can only be obtained at high temperature (Bokhimi et al., 

2001). For the case of phase transformation in TiO2 nanotubes, Varghese et al., 

(2003a) has suggested a model to explain the crystallization of amorphous TiO2 

nanotubes as schematically shown in Figure 2.2. They reported that the nucleation of 

anatase phase occur at temperatures between 230 and 280°C, Figure 2.2 (a). These 

crystallites grow in size with increasing temperature as shown in Figure 2.2 (b). As 

the crystallites grow some of the closely spaced crystallites coalesce to form larger 

crystallites while others establish grain boundary contacts. The size of the crystallites 

in the walls is restricted due to the constraints imposed by the walls. At temperatures 

around 430°C, rutile formation occurs specifically at the nanotubes Ti support 

interface region (Figure 2.2(c)) leaving the anatase crystallite in the walls unaffected. 

As the annealing was done at higher temperature between 480 and 580°C, both Ti 

and larger anatase crystals at the interface can be directly transformed into rutile. 

Smaller anatase crystallites grow at higher temperatures (~ 620°C), yielding a larger 

anatase grain size. Eventually, the anatase crystallites in the walls are consumed by 

http://en.wikipedia.org/wiki/Titanium�
http://en.wikipedia.org/wiki/Titanium�
http://en.wikipedia.org/wiki/Titanium�
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the developing rutile layer (Figure 2.2 (d)). Hence, a complete rutile phase can be 

seen for sample annealed at 680°C (Figure 2.2 (e)). 

 

Figure 2.2: Schematic representation of TiO2 nanotubes arrays crystallization: (a) nucleation 

of anatase crystals (~280°C) (b) growth of the anatase crystals at elevated temperatures (c) 

nucleation of rutile crystals (~430°C) (d) growth of rutile crystals at higher temperatures and 

(e) complete transformation of crystallites in the walls to rutile at temperature above 

approximately 620°C (Varghese et al., 2003a) 

 

Generally, crystallization or phase transformations take place through 

nucleation and growth processes (Kondo & Domen 2007). The mechanism of phase 

transformation in TiO2 from anatase to rutile has been studied especially for particles 

of TiO2. The process involves breaking two of the six Ti–O bonds to form new bonds 

with the transformation activation energy calculated to be (264 kJ/mol) for the 

oxygen annealed samples (Navrotsky & Kleppa 1967; Shannon & Pask 2006). The 

nucleation and growth of rutile from anatase can occur through different processes. 

Zhang & Banfield (2000) reported that the nucleation can take place (i) at the 

interface of two contacting anatase particles which results in transforming the anatase 

grains into rutile grain and (ii) in the bulk or on the surface of a large anatase grain. 

During the nucleation process of rutile, the crystallites may rotate and reorient if 
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sufficient volume is available (Gouma & Mills 2004). So if the volume is not 

sufficient, as in the case of nanoparticles with diameter < 14 nm then, transformation 

will not happen (Zhang & Banfield 2000). It is also anticipated that anatase to rutile 

transformation may not happen in nanotubes with wall < 14 nm. The growth of rutile 

occurs when (i) a rutile crystallite comes into contact with an anatase crystallite 

consuming it to form a larger rutile crystallite; or (ii) two rutile nuclei (or crystal) 

merging together (Zhang & Banfield 2000). In the case of temperature annealing of 

TiO2 nanotubes supported on Ti, as discussed by Varghese, the formation of rutile is 

also possible when Ti support is oxidized forming rutile crystals. The growth of these 

crystals will eventually thicken the wall of the nanotubes eventually destroying the 

nanotubular structure.    

The formation of crystalline TiO2 is important for both TiO2 in powdered form 

or nanotubes especially when the oxide is to be used as catalyst or photocatalyst and 

in solar energy generation devices like solar cell. Obviously the crystallinity of TiO2 

affects its electronic properties. The crystallinity of TiO2 can be investigated by XRD 

and Raman spectroscopy. Frequently (011) anatase and (110) rutile co-exist in 

nanostructured TiO2 as often shown from XRD pattern of TiO2. Raman spectroscopy 

can also be used to further investigate the crystallinity of nanostructured TiO2. 

According to Qian et al., (2005) there are 6 Raman active modes for anatase; A1g + 

2B1g + 3E1g which can be identified at 144 cm-1(Eg),  197 cm-1 (Eg),  399 cm-1 (B1g), 

513 cm-1 (A1g), 519 cm-1 (B1g) and 639 cm-1 (Eg).  Rutile TiO2 on the other hand have 

four Raman active modes; A1g, B1g, B2g, and Eg at 143, 447, 612 and 825 cm-1 

respectively.  

The photocatalysis degradation of various organic systems on irradiated TiO2 is 

well documented in literature (Aguedach et al., 2005; Khataee et al., 2010) and 
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indeed has been related to the percentage of anatase and rutile phases within the 

oxide. Photocatalysts TiO2 can be activated by irradiating the oxide with appropriate 

light and due to this; excitation of electrons from the valance band of the oxide can 

happen leaving holes in the conduction band. The generation of electron and hole 

pair leading to the formation of hydroxyl radical (●OH) and superoxide radical (O2
●-) 

ions. These radicals are the primary oxidizing species in the photocatalytic oxidation 

process or termed Advance Oxidation Process (AOP). The mechanism for the 

process is shown by Fujishima et al., (2000). The oxidative reactions would result in 

the degradation of the pollutant and the efficiency of the degradation will depend 

upon the oxygen concentration, which determines the efficiency with which the 

conduction band electrons are scavenged and the electron-hole recombination is 

prevented. TiO2 is obviously an important material for the degradation of various 

pollutants hence can be used in waste treatment process for instance.  

TiO2 is also an anti-bacteria material which is known to be a good material in 

killing bacteria like E. Coli strains which can be obtained from soil and sewage 

samples. In the event of nanotechnology, TiO2 in nanotubular structures have been 

experimented as photocatalyst material in degradation of organic compounds such as 

dyes and phenolic as well as anti-microbial in treating water.  

Typically in the experiment to investigate the photocatalytic properties of TiO2, 

the nanotubes structures was formed by anodic oxidation of Ti forming ordered and 

align nanotubes then the nanotubes will be placed in a reactor containing known 

amount and concentration of methyl orange or other dye.  The decomposition of the 

dye will be investigated by UV-Vis spectroscopy.    

The formation of pure anatase and rutile or a mixture of anatase and rutile TiO2 

is important because the photocatalytic ability of TiO2 is depended on its 
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modification. Anatase TiO2 have a band gap of 3.2 eV, corresponding to UV 

wavelength of 385 nm. Pure anatase exhibits lower rates of recombination of electron 

and holes in the oxide in comparison to rutile due to its 10-fold greater rate of hole 

trapping (Riegel & Bolton 1995). Rutile has a smaller band gap of 3.0 eV with 

excitation wavelengths that extend into the visible at 410 nm. The efficiency of most 

photocatalysts is determined to a large degree by recombination rates. Despite the 

fact that the photoactivity of rutile extends into the visible light range, pure phase 

rutile is photocatalytically inactive. It has been established that rutile exhibits high 

rates of recombination in comparison to anatase (Hurum et al., 2005). Moreover the 

adsorptive affinity of anatase for organic compounds is higher than that of rutile 

(Stafford et al., 1993). 

In rutile and anatase TiO2, the position of the valence band is deep, and the 

resulting positive holes show sufficient oxidative power. However, the conduction 

band is positioned near the oxidation-reduction potential of the hydrogen, indicating 

that both types are relatively weak in terms of reducing power. It is known that the 

conduction band in the anatase type is closer to the negative position than in the 

rutile type. Therefore, the reducing power of the anatase type is stronger than that of 

the rutile type. Due to the difference in the position of the conduction band, the 

anatase type exhibits higher overall photocatalytic activity than the rutile type. This 

is also supported by several authors whereby they agreed that anatase is better for 

this application (Hirakawa et al., 2007; Malinger et al., 2011).  

 

2.2.1.2 Properties of ZrO2 

Zirconium dioxide (ZrO2) is a technologically important material that can be 

used not only in structural ceramics but also in advanced application. For instance 
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ZrO2 has been used as catalyst and catalyst support because of its good 

physicochemical properties, surface acidity and reactivity (Yamaguchi 1994). ZrO2 is 

also known to have high ionic conductivity hence is useful as oxygen conductor.  It 

has been used in solid oxide fuel cell and as oxygen sensor (Tan & Wu 1998). It is 

also stable under a reducing atmosphere and photo irradiation. These properties make 

ZrO2 the most suitable candidate as a refractory material and as catalyst or catalyst 

support for hydrogenation and isomerisation reactions compared with other ceramic 

oxides (TiO2, SiO2 and Al2O3).   

ZrO2 can exist as three polymorphs: monoclinic (M), tetragonal (T) and cubic 

(C). Theoretically, the valence band of ZrO2 is formed mainly by O 2p states with 

some admixing of Zr 4d states, and the conduction band is constructed primarily of 

Zr 4d states admixed with some O 2p states (French et al., 1994). The Zr 4d states in 

the conduction band split into two sub-bands upon the increasing symmetry of the 

crystal structure from the monoclinic to the tetragonal and to the cubic form (French 

et al., 1994). Based from calculation, the bandgap of monoclinic, tetragonal and 

cubic ZrO2 are computed to be 3.12-5.4 eV, 4.10-13.3 eV and 3.2-12.3 eV 

respectively (Chang & Doong, 2007). The bandgap of ZrO2 obtained from 

experimental technique is still controversial because of different microstructures, 

method of formation and chemical composition of ZrO2 obtained give different 

values.   

Cubic ZrO2 is stable from 2370oC to the melting point (2680±15oC). It has a 

fluorite type crystal structure in which each Zr is coordinated by eight equidistant 

oxygens and each oxygen is tetrahedrally coordinated by four Zr atoms. Tetragonal 

ZrO2 is stable between about 1170oC and 2370oC and monoclinic is stable at all 

temperatures below 1170oC (Subbarao 1981). Monoclinic is the room temperature 
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phase. This phase, however do not have many interesting properties in electronic, 

electrochemical or photochemical applications hence the cubic or tetragonal ZrO2 

must be stabilized at room temperature.  

To investigate the energy gap of ZrO2 experimentally, two techniques are often 

used: photoluminescence and UV-Visible spectroscopy. Berlin et al., (2012) 

described three kinds of processes responsible for the luminescence of ZrO2: (i) band 

to band recombination (ii) recombination at impurity levels and (iii) recombination at 

intrinsic defects. From the band to band luminescence band gap of ZrO2 can be 

determined.  

High temperature phases of cubic and tetragonal ZrO2 can be stabilized at room 

temperature either by adding suitable dopants (Garvie 1965) or by reducing the 

particle size into the nanometer regime. The stabilization of cubic or tetragonal in 

spherical ZrO2 powder with diameter in nanoscale has attracted considerable interest 

in recent years. Chraska et al., (2000) found that any coarsening above a certain 

critical size results in particle transformation of stabilized high temperature phases to 

the monoclinic phase. The critical size, up to which the tetragonal phase is stable, is 

reported to be around 18 nm in diameter.  Shukla & Seal (2005) have provided a 

comprehensive review on the effect of the size of ZrO2 nanoparticles on the 

stabilization of tetragonal (T) or cubic (C) phase. According to Shukla & Seal the 

critical size to stabilized T or C is below 10 nm. Various explanation have been 

proposed for the observed stabilization of high temperature T or C phase in ZrO2 

particles at room temperature and controversy still exist in the elucidation of the 

mechanism for  such stabilization.   

Similar to TiO2, determination on the phases in ZrO2 has been done by XRD 

method. However when ZrO2 is in nanoscale, XRD has a limitation since peaks from 
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the XRD of nano-sized particles are very broad.  Raman spectra can be used to 

investigate ZrO2 nanoparticles. Raman shifts for T-ZrO2 are reported at 147, 270, 

314, 480 and 642 cm-1. Broad band of 177-188 cm-1 the characteristic for M- ZrO2 

and peaks at 350 and 470cm-1 also belong to M-ZrO2. Raman shift for C-ZrO2 is at 

633cm-1 (Kontoyannis & Orkoula, 1994) and several authors reported that C-ZrO2 

has a rather amorphous-like Raman spectrum with broad band at approximately 530-

670 cm-1.  This is due to the symmetry of cubic phase. HRTEM has also been used to 

investigate the crystallinity of nanoparticles of ZrO2 (Tahir et al., 2007).  

Crystallinity can be identified by looking at lattice fringes in the HRTEM image.  

The lattice fringes can provide information of the d spacing (dhkl) of the phase (Lee et 

al., 2006; Tahir et al., 2007) .  

Similar to TiO2, ZrO2 as photocatalysts can be applied in environment 

purification as it can decompose toxic and organic compounds in polluted water and 

air. Sayama & Arakawa (1993) reported on the successful photocatalytic 

decomposition of water and the photocatalytic reduction of CO2 on ZrO2. They 

claimed that the oxide semiconductor has a wide band gap and highly negative flat-

band potential which is adequate in water splitting process.  

The photocatalytic mechanism of ZrO2 is summarized by Botta et al., (1999) 

for oxidative degradation of nitrate and EDTA and the reduction of Cr (IV). The 

mechanism are similar to that of TiO2 whereby, the oxide need to adsorb water, 

splitting it then the hydroxyl ion (OH-) will need to react with  holes to produce the 

radicals. Works on splitting of water on ZrO2 has been carried out by Reddy et al., in 

2003b. According to Reddy, T and M-ZrO2 can successfully split water with 

contribution of T-ZrO2 is slightly better compares to M-ZrO2.  
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Work on ZrO2 as photocatalyst was also reported by Karunakaran & 

Senthilvelan in 2005 for the oxidation of aniline. Nanocrystalline ZrO2 for 

degradation of Rhodamine dye was done by Zheng et al., (2009). Both works used 

ZrO2 in particles form. Whilst, for ZrO2 nanotubes, there are not many has been done 

apart from Zhao et al., (2011) and Wang et al., (2012) for the degradation of MO and 

alcohol respectively.   

 

2.2.1.3 Properties of WO3 

Tungsten trioxide (WO3) is used for many purposes in everyday life. It is 

frequently used in industry to manufacture tungstates for x-ray screen phosphors, for 

fire proofing fabrics and in gas sensors. Due to its rich yellow colour, WO3 is also 

used as pigment in ceramics and paints. In recent years, WO3 has been employed in 

the production of electrochromic windows, or smart windows. These windows are 

electrically switchable glass that change light transmission properties with an applied 

voltage (Deb 2008). This allows the user to tint their windows, changing the amount 

of heat or light passing through. WO3 is an n-type, indirect band gap semiconductor 

with a band gap of 2.6 eV (Yang et al., 2009).  

WO3 has been extensively studied as electrochromic materials because they 

exhibit high coloration efficiency and high cyclic stability compared to other 

transition metal oxides. Moreover, WO3-based devices exhibit low power 

consumption, hence provide the basis of their applications in smart windows, 

reflectance variable mirrors and information displays (Nah et al., 2008). Similar to 

both TiO2 and ZrO2 the crystal structure of WO3 is temperature dependent. It is 

tetragonal at temperatures above 740°C, orthorhombic from 330 to 740°C, 

monoclinic from 17 to 330°C, and triclinic from -50 to 17°C. The most common 

http://en.wikipedia.org/wiki/Tungstate�
http://en.wikipedia.org/wiki/X-ray�
http://en.wikipedia.org/wiki/Phosphor�
http://en.wikipedia.org/wiki/Fireproofing�
http://en.wikipedia.org/wiki/Electrochromic�
http://en.wikipedia.org/wiki/Smart_windows�
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structure of WO3 is monoclinic with space group P21/n. Pure single crystals WO3 will 

transform from tetragonal to orthorhombic to monoclinic to triclinic then to 

monoclinic again as the temperature is lowered from 900 to 189°C (Granqvist 1995). 

Basically at room temperature WO3 manifest itself as a monoclinic oxide.   

As photocatalysts WO3 has to be in crystalline phase as reported by Wang et 

al., (2002) as well as nanoporous structures which has high specific surface area. 

Whilst, Xin et al., (2009) reported that monoclinic phase displayed the best 

photocatalytic activity for O2 evolution. Such crystalline structures can be obtained 

by anodization process and the crystalline phases can be produced by annealing the 

obtained structures in air at 400oC. The annealing is needed to form the crystalline 

phase because the anodized WO3 is amorphous (Nah et al., 2008).    

WO3 is potentially in photocatalytic degradation of organic compounds 

including a large fraction of environmental toxins. Many efforts have been done to 

improve the efficiencies of WO3 photocatalyst. Metal incorporation or doping is one 

of the metal-semiconductor modification methods used to improve the photocatalytic 

ability (Hameed et al., 2004; Dhananjeyan et al., 1997; Seery et al., 2007; Kim et al., 

2010). 

 The formation of ●OH in the presence of WO3 is reported by two paths 

(Sánchez Martínez et al., 2011). The first is by reductive path with the participation 

of electron in the conduction band of WO3 or by direct oxidation of hydroxide ions 

by the holes of WO3 which generated in the valence band during the charge 

separation. Both mechanisms can operates simultaneously in an aqueous dye solution 

with the presence of WO3. Hence the photocatalytic property of the WO3 is much 

depended on the formation of the ●OH as discussed before.  

http://en.wikipedia.org/wiki/Space_group�
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The photocatalytic properties of WO3 mostly reported using nanoparticles and 

nanoporous structures. The nanoporous WO3 is normally formed by anodizing 

method. Watcharenrong et al., (2008) and Guo et al., (2007) reported on the 

formation of nanoporous WO3. Hydrothermal method is also used by Zhao et al., 

(2008) to produced WO3 with nanoporous-walled. The photocatalytic of WO3 can be 

used to treat many organic compounds such as dyes and phenol.  

 

2.2.2 Anodic oxidation of transition (valve) metal oxides 

When a noble metal is exposed to a solution, it will not oxidized. For a 

nonnoble metal, it may oxidize depending on the environmental condition it is 

exposed to. The environmental condition can favor dissolution (solvation) of the 

oxidized metal cation (active corrosion) or a film will form, usually an insoluble 

protective cover on the metal (passivation). Passivation reactions involve 

electrochemical steps and typically resulted in formation of anodic oxide layer.  

Passivation can reduce corrosion of the underlying metal and this phenomenon has 

been seen as one of the most important aspect in metal protection. Recently 

passivation of metal has been manipulated to fabricate thin film oxide.  The oxide 

structures formed may be classified into two types according to the morphology of 

the anodic layer: compact oxide and porous oxide.  Based on the thermodynamics 

and electrochemical studies, the formation of compact and porous metal oxide can be 

explained by the reaction free energy balance between the anodization of the metal 

and the chemical dissolution of the anodic oxide in the electrolyte (Wang et al., 

2011). Works defining fundamental of passivation process have been reported by 

many authors. For examples Sato (1990) defined the passivation of metals results 
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from the formation of continuous oxide layer on the metal surface and Schmuki 

(2002) reviewed on the underlying mechanism of metal passivation.  

During anodization process, the morphology of the anodic oxide layer depends 

upon the chemical composition of the anodizing electrolyte and the chosen condition 

of the electrolysis process. Some electrolyte has little or no dissolving action on the 

oxide layer so that the anodic process will soon stop, leaving a thin film usually 

referred as a barrier type oxide. If the electrolyte has some dissolve action, then a 

porous film is formed and the oxidation process can continue leading to the 

production of relatively thick oxide. In Figure 2.3 possible morphologies of anodic 

layer formed by anodization is shown. The compact oxide is shown in Figure 2.3 (a), 

the disordered/random and ordered porous is shown in Figure 2.3 (b) and (c) 

respectively. Also the ordered tubular structure is shown in Figure 2.3 (d). The fact 

that anodization can be done in many different kinds of electrolytes, then the formed 

anodic oxide will obviously have morphologies dependent on the electrolyte itself. 

Porous layer can be in highly organized with connected pores or as nanotubular 

structure i.e. the pore boundaries are dissolved forming discreet nanotubular 

structure. To get the desired morphology the right electrolyte needs to be selected. 

Generally, electrolyte containing fluoride and/or very acidic will induce chemical 

dissolution producing porous oxide in the form of random porous, self-organized 

porous or self-organized nanotubular structure. Figure 2.4 is a flow chart showing 

several possible structure of oxide formed by anodization. Passivation of metal 

surface obviously resulted in the formation of passive film. Passive film is formed 

from the metal itself when the surface atoms are reacting with the environment 

components (oxygen and water). The passivation can happen by currentless process 

both in air or water or anodically in oxidizing electrolyte under application of 
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external field; this is anodic process. Anodic process required an anode (metal to be 

oxidized) and a counter electrode (platinum or carbon).  

 

Figure 2.3: Morphologies which can be obtained by electrochemical anodization of metal 

oxide (a) a compact oxide film (b) a disordered/random nanoporous layer (c) a self-ordered 

nanoporous layer and (d) a self-ordered nanotubes layer 
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Figure 2.4: Flow chart of metal passivation 

 

It is well documented that the nature of the anodizing process is based upon the 

electrochemical principle that when current is passed through an electrolyte in which 

(a) (b) 

(d) (c) 
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