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PENGLIBATAN PROTEIN HIPOTESIS Avin_16040 Azotobacter vinelandii 

DALAM PELEKAPAN KEPADA AKAR Oryza sativa 

 

ABSTRAK 

Dalam kajian ini, perubahan dinamik ke atas proteom Azotobacter vinelandii 

ATCC 12837 sebagai tindakbalas kepada Oryza sativa L. cv. MR 219, varieti beras 

tempatan, telah diteliti. Analisis 2DE MS/MS mendedahkan beberapa bintik protein 

yang menunjukkan kehadiran berbeza apabila A. vinelandii ATCC 12837 ditumbuh 

dalam media yang diperkaya nitrogen (+N) atau bebas nitrogen (-N). Persediaan 

eksperimen yang sama juga digunakan untuk mengkaji profil proteom apabila strain 

bakteria ini didedah kepada akar. Protein intrasel yang menunjukkan kehadiran 

berbeza telah dikenalpasti melalui analisis MALDI-TOF/TOF and ini termasuk 

protein yang terlibat dalam pengangkutan dan penyimpanan ion logam, respirasi, 

tindak balas terhadap stres, struktur, pengawalaturan, sintesis asid amino, dan 

pengangkutan elektron. Protein ekstrasel yang menunjukkan perbezaan pula 

termasuk protein pengangkutan membran, lipoprotein dan protein yang bertindak 

balas terhadap tegasan oksigen. Selain itu, beberapa protein hipotetikal yang tidak 

diketahui fungsinya juga menunjukkan perbezaan kehadiran. Beberapa protein 

bakteria menunjukkan ekspresi teraruh di bawah keadaan kekurangan N. Terdapat 

juga beberapa protein yang lain yang menunjukkan kehadiran berbeza apabila A. 

vinelandii ATCC 12837 terdedah kepada akar padi berbanding dengan yang tidak 

terdedah. Protein hipotetikal Avin_16040 yang menunjukkan kehadiran eksklusif 

apabila A. vinelandii ATCC 12837 melakukan pengkolonian permukaan akar telah 

dipilih untuk analisis yang selanjutnya. Untuk mengkaji fungsi biologi bagi 

Avin_16040, satu mutan delesi untuk gen Avin_16040 telah dijana melalui 



xviii 
 

rekombinasi berhomolog. Mutan ∆Avin_16040 mempamerkan morfologi koloni 

terubah, pengurangan pembentukan biofilem, penurunan kehidrofobikan permukaan 

sel serta penurunan pelekapan pada permukaan akar berbanding dengan jenis liar. 

Pengklonan dan ekspresi gen Avin_16040 dalam Esherichia coli DH5α 

menghasilkan sel berfilamen dengan struktur berupa tiub yang lutsinar. Analisis 

carian penjajaran jujukan dilakukan terhadap protein Avin_16040 menunjukkan 

bahawa ia berkongsi identiti 39% dengan protein S-lapisan tetragon parahablur 

Aeromonas hydrophila. 
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INVOLVEMENT OF Azotobacter vinelandii HYPOTHETICAL PROTEIN 

Avin_16040 IN Oryza sativa ROOT ATTACHMENT 

 

ABSTRACT 

In this study, the dynamic changes of Azotobacter vinelandii ATCC 12837's 

proteome in response to Oryza sativa L. cv. MR 219, a local rice variety, was 

observed. Analysis by 2DE MS/MS revealed various protein spots which showed 

differential presence when A. vinelandii ATCC 12837 was grown in the N-enriched 

(+N) or N-free (-N) media. Similar experimental setup was also applied to study the 

profiles when the bacterial strain was exposed to root. The differentially-present 

intracellular proteins were identified by MALDI-TOF/TOF analysis and these 

included those involved in metal ion transport and storage, respiration, stress 

response, structure, regulatory, amino acid synthesis, and electron transport. The 

identified differentiated extracellular proteins were membrane protein transporters, 

lipoprotein and oxygen stress response proteins. Besides that, several hypothetical 

proteins with unknown function were also differentiated. Some of these bacterial 

proteins demonstrated induced expression under N deficient conditions. There are 

also a number of other proteins that showed differential presence when A. vinelandii 

ATCC 12837 was exposed to rice roots compared to those unexposed. The 

hypothetical protein Avin_16040, which showed exclusive presence when A. 

vinelandii ATCC 12837 colonized root surface, was further analyzed. To investigate 

the biological function of Avin_16040, a deletion mutant of the Avin_16040 gene 

was generated by homologous recombination. The ∆Avin_16040 mutant exhibited 

altered colony morphology, reduced biofilm formation, decreased cell surface 

hydrophobicity as well as declined root attachment when compared to the wild type. 
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Cloning and expression of the Avin_16040 gene into Escherichia coli DH5α 

produced filamentous cells with transparent tube-like structures. A sequence 

alignment search analysis performed on the Avin_16040 protein showed that it 

shared 39% identity with the paracrystalline tetragonal S-layer protein of Aeromonas 

hydrophila.  

 

 
 
 



 1

CHAPTER 1 

 

INTRODUCTION 

 

Azotobacter vinelandii is an obligate aerobe, Gram-negative, free-living 

bacteria which inhabit the soil environment. The bacterium belongs to the 

Gammaproteobacteria bacterial class. It is one of the bacterial strains able to fix 

atmospheric dinitrogen molecule in its free-living condition, un-associated with plant 

or plant tissue. A. vinelandii has been a bacterium of interest particularly for its 

several features including its ability to morphologically differentiate to desiccation-

resistant cyst, nitrogen fixation activity and special feature of housing several 

oxygen-sensitive mechanisms while being an obligate aerobic bacterium. Accredited 

by these characteristics, A. vinelandii has received vast interest from researchers 

worldwide with a record of exceeding 100 years of research. To date, comprehensive 

works have been carried out on the bacterium including completion of the whole 

genome sequencing of A. vinelandii DJ (GenBank accession no. NC_012560). 

Despite these, there is still limited information with regards to the bacterium’s 

interaction with the natural environment and its beneficial relationship with plants, 

particularly the rhizosphere. Studying the interactive biology of root-bacteria 

association could generate new knowledge and useful information to enhance the 

beneficial effects of plant-growth-promoting bacteria to plant and vice versa. This 

study aims to examine the interaction between A. vinelandii and plant rhizosphere in 

a laboratory setting. This study will encompass the differential protein response of an 

A. vinelandii strain, specifically ATCC 12837, during interaction with O. sativa L. cv. 

MR 219, a national rice variety in Malaysia. The approaches employed in this study 
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include a proteomic investigation by two-dimensional gel electrophoresis (2DE) and 

a real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. The 

analysis identified a hypothetical protein of A. vinelandii ATCC 12837, which 

showed an upregulated expression when colonizing O. sativa MR 219 root. This 

protein was designated as Avin_16040 in the A. vinelandii DJ genome. In order to 

decipher the role of Avin_16040 in A. vinelandii ATCC 12837, the structural gene of 

Avin_16040 was knocked out from the bacterial genome by homologous 

recombination. The deletion mutant showed differential phenotypic performances 

when examined by hydrophobicity test, root attachment assay, biofilm assay and 

plant growth assay.  

 In summary, the objectives of this study are: 

I. To evaluate the differential response of A. vinelandii proteome during 

plant-microbe interaction with O. sativa (test model plant).  

II. To perform gene expression analysis on the gene coding for a protein of 

interest, namely the hypothetical protein Avin_16040, using real-time 

reverse transcription-polymerase chain reaction (RT-PCR). 

III. To elucidate the role of Avin_16040 by constructing a deletion mutant of 

its gene and characterizing it. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Azotobacter vinelandii 

Azotobacter vinelandii is an obligatory aerobic, rod-shape, Gram-negative 

bacterium that belongs to the γ-Proteobacteria group. The bacterium is well known 

for its relatively large size which is comparable to the yeast cell and its signature of 

yellowish green pigmentation (Wilson and Knight, 1952). A. vinelandii is one of the 

six bacterial species in the genus Azotobacter. All Azotobacter species are known to 

fix and convert atmospheric N2 into ammonia, a nitrogen compound readily 

utilizable by plant as nutrient. A. vinelandii exists as free-living bacteria in the soil 

and are able to perform dinitrogen fixation in its free-living condition. In contrast to 

the symbiotic Rhizobium, A. vinelandii and other Azotobacter species cannot exist in 

symbiotic association with plants. However, the bacterium fixes atmospheric 

nitrogen when grown in the plant root rhizosphere. During its interaction with plant 

roots, the bacterium provides fixed nitrogen to the plant while acquiring sugars and 

other nutrients that leak from the roots (Sommers et al., 2004; Gray and Smith, 2005; 

Bais et al., 2006). 

 A. vinelandii has adapted several mechanisms to survive environmental stress. 

One unique feature is its ability to differentiate from vegetative cell to desiccation-

resistant cyst under unfavourable environment of carbon source deficiency (Sadoff, 

1975). Carbon sources such as n-butanol or β-hydroxybutyrate (Lin and Sadoff, 

1969; Page and Sadoff, 1975) also induced A. vinelandii to form cyst. During 

encystment, A. vinelandii is not able to perform N2 fixation. The bacterium usually 
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reverts to vegetative cell form when it was provided with favourable growth 

condition containing utilizable carbon source.  

In addition to N2 fixation, A. vinelandii biosynthesizes the extracellular 

polysaccharide alginate, the intracellular polyester poly-β-hydroxybutyrate (PHB) 

and siderophores compounds that were reported to have multiple biotechnology and 

biomedical applications (Diaz-Barrera and Soto, 2010). These applications include 

siderophores as drug delivery (Möllmann et al., 2009), antimicrobial (Upadhyay and 

Srivastava, 2008) and soil bioremediation agents (Braud et al., 2009), alginate for 

control release of medical drugs (Yao et al., 2009). Other applications include 

alginate as food additives (thickener, stabilizer, gelling agent and emulsifier), and 

polyhydroxybutyrate (PHB) for development of biodegradable and biocompatible 

thermoplastics (Diaz-Barrera and Soto, 2010).  

 

2.1.1 Azotobacter vinelandii Lipman ATCC 12837 

Azotobacter vinelandii Lipman ATCC 12837 (also designated as DSM87) is 

the earliest A. vinelandii strain studied (Robson et al., 1984). The studies include 

physiological interaction with plant in the field through inoculation to plant roots for 

N2 fixation, amino acid and vitamins (Rodelas et al., 1999), growth of ATCC 12837 

in soil distillate and different media compositions (Gonzalez-Lopez et al., 1983), and 

production of PHB (Vargas-Garcia et al., 2002). Patents of A. vinelandii ATCC 

12837 mutants with enhanced PHB production was obtained by Page et al. in 1991 

(Patent Number 5,059,536). The productions of vitamins and amino acids under 

different media conditions and with various media supplements have also been 

studied by Gonzalez-Lopez et al. (1986) and Yoneyama et al. (2011). Molecular 

investigation of other characteristic of interest, for instance siderophores (Menhart et 
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al., 1991), was also conducted.  

 

2.1.2 Azotobacter vinelandii interaction with plants 

Azotobacter vinelandii is a common soil bacterium. The interactions between 

A. vinelandii and plants were reviewed since decades ago. The occurrence of A. 

vinelandii at the rice rhizospheres was well versed for various characteristics, most 

commonly dinitrogen fixation (Ueda et al., 1995), and the production of indole-3-

acetic acid (IAA) (Torres-Rubio et al., 2000). The genus Azotobacter was also 

reported to release growth hormones and antibiotics which improved soil fertility and 

agriculture crop productivity (Forlain et al., 1995; Kumar et al., 2001; Shafeek et al., 

2004). 

 

2.2 Oryza sativa L. cv. MR 219 

Oryza sativa L. cv. MR 219 is an indica rice variety generated from a cross 

between the MR 137 and MR 151 by the Malaysian Agricultural Research and 

Development Institute (MARDI). The rice variety was officially released in 2001. 

Since then, it has become one of the most popular rice varieties in Malaysia. In 

general, the rice variety was developed by means of a direct seeding planting system 

(http://agromedia.mardi.gov.my/magritech/tech_detail_fdcrop.php?id=346, accession 

date 6th February 2013). It has a maturation period of 105 to 111 days, produced 

larger grain size and higher yield by 12% when compared to rice varieties MR 84 

and MR 220. This rice variety constituted approximately 70% and 40-50% of the 

total rice granary areas in the year 2002 and 2007, respectively.  
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2.3 Nitrogen in agriculture 

Nitrogen gas constitutes 78.08% by volume of the Earth's atmosphere and it 

is colourless, odourless, tasteless and most often exists as inert diatomic N2. Nitrogen 

is the most important cell-building element in all the living organisms. It is a crucial 

constituent element of amino acids (proteins) and nucleic acids DNA and RNA.  

Nitrogen is often the limiting factor for growth and biomass production when 

a plant is cultivated under suitable climate and sufficient water supply. It is one of the 

three primary nutrients required for plant growth, in addition to phosphorus (P) and 

potassium (K). These three primary nutrients are represented in the fertilizer 

formulas by the numbers on fertilizer container labels for N:P:K. Other essential 

elements required by plants include carbon (C), hydrogen (H) and oxygen (O). 

Secondary nutrients include calcium (Ca), magnesium (Mg) and sulphur (S). 

Nutrients required in trace amounts include boron (B), chlorine (Cl), copper (Cu), 

iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn) 

(http://www.albrightseed.com/nitrogen.htm, accession date 6th February 2013).  

 Industrially, nitrogen is converted to its plant-accessible fertilizer formats of 

ammonia and nitrate through the expensive Haber-Bosch process, which requires a 

lot of energy in terms of pressure and temperature. On the other hand, natural 

processes exist which convert atmospheric nitrogen to nitrates through lightning 

storms and nitrogen-fixing bacteria. The nitrates are acquired by plants to construct 

amino acids, DNA and proteins. The natural process of acquisition and conversion of 

nitrogen from the atmosphere to nitrates, fertilization of plants, consumption of 

plants by animals and the returns of nitrogen from plants and animals to the soil and 

atmosphere is demonstrated in the nitrogen cycle below (Figure 2.1). 
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Figure 2.1 The nitrogen cycle (modified from the Environmental Protection 
Agency, Nitrogen Element Facts, http://www.chemicool.com/elements/nitrogen.html, 
accession date 6th February 2013). 
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2.4 Nitrogen fixation 

Despite its high composition of more than 78% in the earth atmosphere, 

nitrogen is not accessible by plant. In its atmospheric form, gas N2, the two nitrogen 

atoms are connected by a triple covalent bond which is unbreakable by the higher 

plants for their uses. Therefore, the labile N2 needs to be reduced to nitrate or 

ammonia before it could be assimilated by the plants. The process of reducing the 

atmospheric N2 molecules to nitrate and ammonia is called nitrogen fixation or 

dinitrogen fixation. Generally, there are three commonly known means of nitrogen 

fixation, as in the following:  

i) Spontaneous fixation of atmospheric N2 by lightning and photochemical 

reactions which contributes to 10% of naturally fixed nitrogen; 

ii) Industrial fixation of N2 through the Haber-Bosch process mediated by 

iron catalyst. The process is expensive and involves high energy in terms 

of high pressure and high temperature; and 

iii) Biological fixation of atmospheric N2 by nitrogen-fixing bacteria, termed 

diazotrophs. Biological nitrogen fixation (BNF) contributes to about 60% 

of the total nitrogen fixed by all three processes. It contributes to 90% of 

the naturally fixed nitrogen.  

 

Among the three nitrogen fixation means, biological N2 fixation poses the highest 

potential for prolonged application simply because it is a natural and sustainable 

process.  
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2.4.1 Nitrogen-fixing bacteria 

Generally, there are two categories of nitrogen-fixing bacteria (diazotrophs), 

specifically the free-living and symbiotic nitrogen-fixers. Examples of free-living 

nitrogen-fixers include aerobic bacteria from the genus Azotobacter, Beijerinckia, 

Klebsiella, and anaerobic bacteria from genus Desulfovibrio and Clostridium. The 

symbiotic nitrogen-fixers are the diazotrophs which maintain symbiotic associations 

with plants, i.e. endophytic in plant cells and colonization of plant (legume) root 

nodules. Examples of symbiotic nitrogen-fixers include legume symbiont Rhizobium  

and non-legume symbiont Frankia and Azospirillum. 

 

2.4.2 Mechanism of nitrogen fixation 

The process of nitrogen fixation involves conversion of one mole of N2 

molecule to 2 moles of ammonia. The process utilizes 16 moles of ATP and a supply 

of electrons and protons (hydrogen ions). The interaction is represented by the 

following equation: 

 

N2 + 8H+ + 8e- + 16ATP = 2NH3 + H2 + 16ADP + 16Pi 

 

A typical nitrogen fixation process is mediated by the nitrogenase enzyme 

complex which consists of Fe and FeMo proteins (Figure 2.2). Typically, an N2 

molecule is bound by the nitrogenase enzyme complex. The Fe protein is reduced by 

electrons which were donated by ferredoxin. The reduced Fe protein then binds ATP 

and reduces the FeMo protein. The process donated electrons for the reduction of N2 

to HN=NH, then H2N−NH2, and finally 2NH3. The ammonia is thus assimilated by 

plants by first converting it into amino acids glutamine and glutamate (Meeks et al., 
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1978; Helber et al., 1988), and then into nucleic acids. 

The nitrogenase enzyme complex is highly sensitive to oxygen. The enzyme 

is inactivated upon exposure to oxygen due to the interaction between oxygen and 

iron in the protein. This characteristic poses a problem to the aerobic nitrogen-fixing 

bacteria such as the soil bacteria Azotobacter, Beijerinckia, and the photosynthetic 

cyanobacteria. However, these bacteria have developed various methods to overcome 

the problem. For instance, Azotobacter acquired high respiratory metabolism rate to 

eliminate oxygen concentration in the cells. Through the production of extracellular 

polysaccharide, Azotobacter and Rhizobium minimized the diffusion of oxygen into 

the cells. For the symbiotic nodule bacteria such as Rhizobium, the root nodules of 

legume contain oxygen-scavenging molecules, for instance leghaemoglobin, which 

regulate the oxygen concentration in root nodule tissue.  

 

 

Figure 2.2 A typical nitrogen fixation mechanism (adapted from “The Microbial 
World: The Nitrogen Cycle and Nitrogen Fixation, by John Deacon”, accessed from 
www.biology.ed.ac.uk/archive/jdeacon/microbes/nitrogen.htm, February 11, 2013). 
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2.4.3 Nitrogen fixation genes and their affiliates 

The diazotrophs produce a special enzyme complex called nitrogenase, which 

can break the triple covalent bond of N2 molecule. These nitrogenase enzymes are 

typically encoded by nif genes that are mediated by both the iron (Fe) and iron-

molybdenum (FeMo) cofactors. Alternative genes coding for nitrogenase include vnf 

and anf genes which are mediated by vanadium and iron cofactors, respectively. 

There are approximately 20 nif genes involved in encoding the nitrogenase complex. 

The genes are listed in Table 2.1. In the beneficial relationships between the plant 

and nitrogen-fixing bacteria, the bacteria supply the plant with reduced (fixed) 

nitrogen while the plant provides the nitrogen-fixing bacteria with protection and 

source of carbon for energy and hydrogen for reduction of atmospheric nitrogen.  

 The expression and regulation of nif also involved other genes. For instance, 

the transcription of nif genes is activated when there is nitrogen stress, when there is 

not enough nitrogen supply for the plant’s use. Nitrogen stress first triggers the 

expression of nitrogen sensitive activator protein called NifA, and this process is 

mediated by NtrC which interacts with the sigma factor RpoN to allow RNA 

polymerase to express the nifA gene. NifA then activates the transcription of the 

other nif genes to produce nitrogenase. Under nitrogen excess, NifL protein is 

activated. The protein inhibits NifA activity thus terminating the production of 

nitrogenase (Triplett, 2000).  

In the symbiotic N2 fixation model, the N2 fixers participate in intimate 

interaction with plant by residing inside special plant structure namely the root 

nodules. This intimate relationship between symbiotic N2 fixers and plant requires a 

series of genes which were affiliated to the N2 fixation mechanism. Through 

proteome and transcriptome analyses, Resendis-Antonio et al. (2011) identified 415  
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Table 2.1 The nif genes and symbiosis gene clusters involved in nitrogen 
fixation. 
GENES/ 
GENE 
CLUSTERS 

IDENTITY/ROLE 
SOURCE/ 
REFERENCE 

nif genes 
nifH  Dinitrogenase reductase. Obligate electron donor to 

dinitrogenase during nitrogenase turnover. Also is required 
for FeMo-co biosynthesis and apodinitrogenase maturation. 

nifD α subunit of dinitrogenase. Forms an α2β2 tetramer with β 
subunit. FeMo-co, the site of substrate reduction. Is present 
buried within the α subunit of dinitrogenase. 

nifK  β subunit of dinitrogenase. P-clusters are present at the β 
subunit interface. 

nifT Unknown. 
nifY In K. pneumonia, aids in the insertion of FeMo-co into 

apodinitrogenase. 
nifE Forms α2β2 tetramer with NifN. Required for FeMo-co 

synthesis. Proposed to function as a scaffold on which 
FeMo-co is synthesized. 

nifN  Required for FeMo-co synthesis. 
nifX  Involved in FeMo-co synthesis. Specific role is not known. 
nifU Involved in mobilization of Fe for Fe-S cluster synthesis 

and repair. 
nifS  Involved in mobilization of S for Fe-S cluster synthesis and 

repair. 
nifV Homocitrate synthase. Involved in FeMo-co synthesis. 
nifW  Involved in stability of dinitrogenase. Proposed to protect 

dinitrogenase from O2 inactivation. 
nifZ Unknown. 
nifM  Required for the maturation of NifH. 
nifF  Flavodoxin. Physiologic electron donor to NifH. 
nifL  Negative regulatory element. 
nifA Positive regulatory element. 
nifB  Required for FeMo-co synthesis. Metabolic product, NifB-

co is the specific Fe and S donor to FeMo-co. 
fdxN  Flavodoxin in R. capsulatus, it serves as electron donor to 

nitrogenase. 
nifQ  Involved in FeMo-co synthesis. Proposed to function in 

early MO4
2- processing. 

nifJ Pyruvate:flavodoxin (ferredoxin) oxidoreductase. Involved 
in electron transport to nitrogenase. 

Adapted from 
Triplett (2000); 
Schübbe et al. 
(2009); 
Dodsworth and 
Leigh (2006); 
Enkh-Amgalan 
et al. (2006) 

nifR A repressor binding site between the promoter of the 
nifRLA operon and nifL gene.  

nifI Posttranslational regulation of nitrogenase, or switch-off.  
Symbiosis genes/ gene clusters involved in N2 fixation 
nod/ nol/ noe  Synthesis and regulation of the Nod factor (root nodulation) 

during symbiotic N2 fixation. The studied operons include 
nodABCSUILZnoeCHOP with nodD1 located downstream 
(Azorhizobium caulinodans), nodD1-YABCSUIJ 
(Bradyrhizobium japonicum), and nodDABCIJ (Rhizobium 
leguminosarum, Sinorhizobium meliloti).  

fix Involved in the regulation and metabolism of oxygen 
in symbiotic N2 fixation (B. japonicum). fixABCX involved 

Reviewed by 
Black et al. 
(2012) 
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Table 2.1. Continued. 
 in regulation of gene transcription under low oxygen 

concentration. fixGHIS is required for the initial 
construction of cytochrome cbb3 oxidase complex. 
fixNOPQ encodes the cytochrome cbb3 complex which 
mediates electron exchange and synthesis of ATP. 

exo Synthesis of exopolysacchaaride EPS I (S. meliloti). 
Involved in bacterial invasion of root and nodulation. 

pss Synthesis of exopolysacchaaride EPS I (R. 
leguminosarum). Involved in bacterial invasion of root and 
nodulation. 

pps Synthesis of exopolysacchaaride EPS II (B. japonicum, 
Mesorhizobium sp.). Involved in bacterial invasion of root 
and nodulation. 

tat Transportation of pre-folded proteins to the periplasmic 
space. Genus specific protein secretion system. 

arp/ hly/ prt Transportation of targeted proteins across bacterial 
membrane to the extracellular space. Common Type 1 
secretion system.  

gsp Excreting proteins into extracellular space. Type II 
secretion system (Bradyrhizobium, M. meliloti, 
Sinorhizobium).  

sec Excreting proteins into extracellular space. Common Type 
II secretion system. 

ysc/ fli/ hrc Involved in the production of nodulation outer proteins 
Nops (B. japonicum, Mesorhizobium loti, R. etli, 
Sinorhizobium sp.). Type III secretion system. 

vir/ trb  Involved in virulence and conjugal transfer. Ubiquitous 
Type IV secretion system. F-type protein family. 

cpa/ tab/ pli Adaptation from flagella proteins. Type IV secretion 
system. P-type protein family. Ubiquitous, except in A. 
caulinodans. 

aut Protein translocating outer membrane porins (R. 
leguminosarum, Mesorhizobium sp.). Type V secretion 
system.  

 

iscN Fe-S cofactor nitrogenase synthesis protein (Rhizobium 
etli). Co-transcribed with nifU and nifS.  

icd Isocitrate dehydrogenase gene. Influence N2 fixation (S. 
meliloti).  

pckA PEP carboxykinase gene. Essential for symbiotic N2 
fixation (R. etli). 

fbaB Bisphosphate aldolase gene. Essential for symbiotic N2 
fixation (R. etli). 

idhA/ iolB Production of myo-inositol protein in root nodules. 
Influence symbiotic N2 fixation (R. etli). 

purB Catalyze the biosynthesis of 5-aminoimidazole-4-
carboxamide ribonucleotide. Involved in nodule invasion 
(Lotus japonicus). Essential for symbiosis. 

purH Involved in nodule development (L. japonicus). Essential 
for symbiotic N2 fixation. 

Reviewed by 
Resendis-
Antonio et al. 
(2011) 

ndvF Essential in nodule development and N2 fixation (R. 
meliloti). Gene locus contains four genes phoCDET which 
encode ABC-type phosphate transport system.  

Bardin et al. 
(1996) 
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proteins and 689 upregulated genes in the symbiosis of Rhizobium etli and Phaseolus 

vulgaris (bean plant). The gene clusters involved in the construction of the plant-

microbe symbiosis machineries such as root nodules (nod/ nol/ noe operons), as well 

as regulation of oxygen metabolism (fix operons), bacterial invasion of plant root 

(exo, pss), and bacterial protein secretion systems (Type 1 to VI) (Black et al., 2012). 

These gene clusters were located on symbiotic plasmids, or existed as laterally 

transferrable genomic (symbiotic) islands. Some of the symbiosis gene clusters are 

also listed in Table 2.1. 

 

2.5 Nitrogen cycling by Azotobacter vinelandii 

Nitrogen cycling by A. vinelandii involved complex processes of nitrogen 

fixation and nitrate assimilation. In general, the bacterium’s nitrogen fixation 

mechanism was as described previously (section 2.4.2). The mechanism was 

catalyzed by the nitrogenase complex. Nitrate assimilation involved both nitrate and 

nitrite reduction. Nitrate was reduced to nitrite by nitrate reductase and nitrite was 

further reduced by nitrite reductase to ammonium, which serves as nitrogen source 

for the metabolism of A. vinelandii (Payne, 1973). Both nitrogen fixation and nitrate 

assimilation mechanisms were repressible by nitrate and ammonia (Sorger, 1969). 

Whilst nitrogen fixation was regulated by the nif operon, nitrate assimilatory 

pathway was regulated by the nas operon (Ramos et al., 1993; Wang et al., 2012). In 

another study by Luque et al. (1987), mutant defective of ntrC lost nitrate and nitrite 

reductase simultaneously. 
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2.6 Genome sequencing of Azotobacter vinelandii 

The most advanced genomic achievement for A. vinelandii is the completion 

of A. vinelandii DJ genome sequencing project (Setubal et al., 1999). Annotation of 

the genome of A. vinelandii DJ revealed massive information on genes that were 

already known as well as hypothetical ones. The information opens up new avenues 

to better understand and unveil the biochemical pathways and structures of this 

bacterium, which has received much interest since 1930s (Lineweaver, 1938) or 

earlier. The full genome sequence of the bacterium revealed a single circular genome 

of 5,365,318 bp in size with 65.7% GC content (Setubal et al., 1999). With the 

completion of the A. vinelandii DJ genome sequence, its mechanism of protecting the 

oxygen-sensitive processes and proteins by high respiration rate was better defined 

(Setubal et al., 1999). The oxygen-sensitive components include nitrogen fixation 

proteins, carbon-monoxide dehydrogenase and formate dehydrogenase. In addition, 

the regulation and production of alginate, a polymer, were elaborated to greater 

depth. Although much has been achieved through the genome annotation works, 

there is still a portion of hypothetical genes with unknown functions.  

 

2.7      Post-genomics of Azotobacter vinelandii 

Advancing from genomics, proteomics is becoming a key tool in systems 

biology because it provides quantitative and structural information about proteins, 

which are the major functional determinants of cells (Baginsky et al., 2010). The 

proteomic technology of two-dimensional gel electrophoresis (2DE) enabled analysis 

of a bacterium’s protein complexes to reveal its global protein expression pattern. By 

subjecting a bacterium of interest to several different conditions, the global changes 

in protein expression patterns within the bacterial system can be analyzed. Since 
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transcriptomic (mRNA) information is not always able to provide true reflection of 

the adaptation of a microorganism towards their changing environment, proteomics 

is an invaluable tool to identify the functions or connectivity of specific gene 

products (Han and Lee, 2006; Hecker et al., 2008; Bumann, 2010; Curreem et al., 

2012). The versatility of this differential 2DE approach makes it a powerful means in 

protein and gene discovery.  

The combination of proteomic approach with the full genome information of 

a bacterium of interest has increased understanding and introduced new insights of 

many important proteins and their related mechanism. One such example is 

molybdenum trafficking in the A. vinelandii nitrogen fixation mechanism mediated 

by molybdenum nitrogenase (Hernandez et al., 2009). The genes and proteins 

involved in molybdenum uptake, homeostasis, storage, regulation and nitrogen 

cofactor biosynthesis were reviewed. Investigation of molybdenum biochemistry in 

the bacterium revealed new mechanisms and a novel role for iron-sulfur clusters in 

the sequestration and delivery of molybdenum (Hernandez et al. 2009).  

Another example is the regulation of poly-β-hydroxybutyrate (PHB) by an 

iron-regulatory small RNA ArrF. ArrF is under the negative control of ferric uptake 

regulatory protein. Deletion of arrF gene from the genome of A. vinelandii caused 

overproduction of poly-β-hydroxybutyrate (PHB) (Pyla et al., 2009; Pyla et al., 

2010). Gel-based proteomic and real-time RT-PCR analysis revealed a list of other 

proteins that were affected by arrF deletion (Pyla et al., 2010). The proteins were 

found to express differentially upon the deletion of arrF gene. Further investigation 

of the involvement of these proteins to ArrF may increase understanding of the 

protein network.  

Lery et al. (2010) used the genomic information of A. vinelandii and 
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Gluconacetobacter diazotrophicus to produce protein structure information of 

nitrogenase conformational protection through FeSII-nitrogenase interactions. The 

research group combined approaches of bioinformatics analysis, comparative protein 

modeling, protein docking and molecular dynamics to elucidate the molecular 

mechanisms and structural features of FeSII-nitrogenase interaction.  

 

2.8      Two-dimensional gel electrophoresis 

Two-dimensional gel electrophoresis (2DE) is a gel-based protein separation 

technique. 2DE was developed in the 1970s for large-scale protein separation (Klose, 

1975; O’Farrell, 1975). This technique has hence remained as one of the preferred 

methods to separate crude protein samples in order to detect differentiation in levels 

of abundance as well as patterns. The electrophoresis method has the capacity to 

resolve thousands of protein in one electrophoresis trial. In general, the technique of 

2DE involves two electrophoresis steps. The first step or 1st dimension 

electrophoresis involves separation of proteins according to their charges by 

isoelectric focusing (IEF), while the second step or 2nd dimension electrophoresis 

involves separation of the isoelectric-focused proteins according to their molecular 

weight by the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) (Gorg et al., 2004). The method hence produced information on molecular 

weight and isoelectric point (pI) of each protein, as well as the quantity of proteins in 

a protein complex (Gorg et al., 2004; Wittmann-Liebold et al., 2006).  

The 2DE protein spots can be visualized through staining with Coomassie 

Blue, silver stain or SYPRO (ruby, red, orange) (Westermeier and Marouga, 2005; 

Miller et al., 2006). Coomassie blue and silver stains are the more common staining 

methods. Silver stain is the more sensitive staining method able to detect as low as 
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0.1 ng of protein. However, it has the potential to interfere with subsequent mass 

spectrometry (MS) analysis. In addition, silver stain does not produce linear 

relationship between spot intensity and protein expression for accurate estimation of 

spot volumes in relation to protein expression. In contrast, Coomassie blue stain 

produces linear relationship between the protein spot intensity and its expression 

level, thus more frequently employed to stain and visualize the 2DE protein spots 

(Gorg et al., 2004; Wittmann-Liebold et al., 2006). 2DE protein spot of interest 

which shows differentiation of up- or down-regulation is excised from the 2DE gel, 

digested with trypsin and analyzed by mass spectrometry to determine its identity 

(Rose et al., 2004).  

 

2.9 Peptide analysis by mass spectrometry 

Mass spectrometry (MS) is employed for protein identification (Lambert et 

al., 2005; Domon and Aebersold, 2006). Protein spot is first excised from the 2DE 

gel and digested with trypsin. The resulting peptides are then analyzed by MS.  

The mass spectrometer consists of an ion source, mass analyzer and ion 

detection system. Analysis of proteins by MS occurs in three major steps, specifically 

protein ionization and generation of gas-phase ions, separation of ions according to 

their mass to charge ratio and the detection of ions (Mann et al., 2001). There are two 

main ionization sources and four major mass analyzers used for protein identification 

and characterization (Mann et al., 2001). The ionization sources are the matrix 

assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). The 

mass analyzers include time-of-flight (TOF), ion trap, quadrupole and fourier 

transform ion cyclotron (FTIC). The ionization source can be combined with 

different types of mass analyzer depending on the specific application, therefore 
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provides a large variety of specialized mass spectrometers for protein identification 

and characterization (Domon and Aebersold, 2006). Simple mass spectrometers such 

as MALDI-TOF are used only for measurement of mass, whereas tandem mass 

spectrometers are used for amino acid sequence determination (Dubey and Grover, 

2001; Mann et al., 2001). MALDI measures the mass of peptides derived from a 

trypsinized protein thus generates a list of experimental peptide masses, often 

referred to as peptide mass fingerprints (Karas and Hillenkamp, 1988; 

Medzihradszky et al., 2000). These peptide mass fingerprints are then correlated with 

the peptide fingerprints of known proteins in the protein database using search 

engines such as Mascot and Sequest. 

 

2.10 Real-time polymerase chain reaction  

Real-time polymerase chain reaction (RT-PCR) is an advanced technology of 

the conventional polymerase chain reaction (PCR). The technology enables 

continuous monitoring of the amplicon during the course of a RT-PCR reaction while 

conventional PCR enables only end-point analysis. The continuous monitoring of 

RT-PCR amplicon is mediated by fluorescence dyes or probes added into the RT-

PCR mixture. During RT-PCR reaction, fluorescence signal is emitted, captured and 

correlated in proportion to the amount of RT-PCR amplicon generated. A threshold 

value of the amplification cycle is registered, which indicates the generation of a 

specific amount of DNA amplicon (Kubista et al., 2006). By assuming a certain 

amplification efficiency that is almost the doubling of the number of DNA amplicon 

per amplification cycle, the initial amount of DNA molecules in the reaction can be 

calculated.  

RT-PCR technology has been applied in various research disciplines, most 
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commonly the medical science. Later, the technology was extended to food, 

industrial, agriculture and microbial studies. Common applications include single 

nucleotide polymorphism (SNP) analysis, pathogen detection, gene expression 

analysis and analysis of chromosome aberrations. Although the advancement in 

bioscience has generated comprehensive genomic information (i.e. through the 

genome sequencing projects), a major portion of the genome was still undefined. The 

unknown gene or protein was referred to as hypothetical gene/ protein. The still 

unexplored information could represent significant role in the functional gene/ 

protein networks. RT-PCR technology has become a popular means for detecting the 

dynamics of gene expression in plant-microbe associations (Deepak et al., 2007) due 

to its high sensitivity and specificity. 

 

2.11 Root-microbe interaction 

In the context of soil, rhizosphere is the layer of soil that is in contact with 

plant root. Therefore, the bacteria that reside in the rhizosphere are defined as the 

rhizosphere bacteria. Due to their close proximity, these bacteria pose direct effects 

to the plant. The rhizosphere bacteria can improve the uptake of nutrient by plant and 

produce plant-growth-promoting compounds. In a natural root ecosystem of mixed 

microorganism, the rhizosphere bacteria protect plant root surface from colonization 

by pathogenic microbes through direct competitive effects and production of 

antimicrobial agents (Maunuksela, 2011).  

 The provision of atmospheric ammonium-N to plant is one of the direct plant-

growth-promoting effects of rhizosphere bacteria (Glick, 1995). The bacteria could 

also promote plant growth directly through the production of plant hormones such as 
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auxins (Tien et al., 1979), gibberellins (Gutiérrez-Mañero et al., 2001) and ethylene 

(Lynch and Whipps, 1990).  

 Upon detecting an approaching microorganism in the root zone, the plant root 

secretes signal molecules such as flavonoids and flavones for protection against the 

invasion (Parmar and Dufresne, 2011). Therefore, it is important for a plant-growth-

promoting bacterium to be rhizospheric competent (Karuppiah and Rajaram, 2011) 

before it can exert its beneficial effect to the plant effectively. The bacterium must be 

able to colonize and multiply in the plant rhizosphere (Karuppiah and Rajaram, 2011; 

Maunuksela, 2011). According to Benizri et al. (2001), bacterial colonization and 

survival at the root rhizosphere were influenced by various biotic and abiotic factors.  

 A classic root-microbe interaction is the mutualistic symbiosis between the 

rhizobia and legumes (Salavati et al., 2013). The root nodules are their symbiosis 

machinery mediated by the Nod factors (Perret et al., 2000). In this interaction 

model, the rhizobia reside in the root nodules. The root nodules provide an anaerobic 

environment for the rhizobia to fix N2 which was then supplied to the hosting plant. 

In exchange, the host legume plant provides the rhizobia with carbohydrates. 

Through bi-direction quorum-sensing (signal transductions) mechanisms between the 

rhizobia and legumes, the rhizobia were first attracted to the legume rhizosphere by 

the plant-secreted flavovoids (Schlaman et al., 1998; Broughton et al., 2000; Perret 

et al., 2000). The bacteria then proceeded to infect the root hairs (Perret et al., 2000) 

before penetrate the root hair tissues (Broughton et al., 2000; Geurts and Bisseling, 

2002). Provoked by the bacterial intrusion, the root cortical cells differentiated to 

form nodule (Gage, 2004; Oldroyd and Downie, 2004).  

Although unable to colonize root tissue like the symbiotic root-nodulating 

bacteria, some free-living bacteria are able to form looser interaction with root. These 
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bacteria adhere to the surface of root in an associative relationship. Several nitrogen-

fixing root-associative bacteria have been identified, including Azospirillum, 

Enterobacter, Klebsiella and Pseudomonas (Haahtela et al., 1988). Azospirillum was 

also found to produce auxin in root rhizosphere, stimulate rooting and enhance plant 

growth (Bloemberg and Lugtenberg, 2001). Another root-associative bacterium, 

Acetobacter diazotrophicus, provides up to 80% of the nitrogen required by 

sugarcane through biological nitrogen fixation (Boddey et al., 1991).  

In this study, comparative profiling of the global proteome of A. vinelandii 

ATCC 12837 revealed a hypothetical protein Avin_16040 which is upregulated 

during root adhesion (attachment to root surface). The behaviour of the protein 

indicated its potential importance based on the fact that bacterial colonization 

(adhesion) of plant root is a pre-requisite for an effective root-microbe interaction. 

Ultimately, a deletion mutant devoid of the gene sequence of Avin_16040 was 

generated and analyzed. 

 

2.12 Bacterial S-layer protein 

The bacterial surface layers (S-layers) are glycoproteins which were present 

as the outermost structures on the cell envelope of many Gram-positive and Gram-

negative bacteria. They can exist as uniform nanolattices of oblique (p1, p2), square 

(p4), or hexagonal (p3, p6) symmetry (Sára and Sleytr, 2000; Sleytr et al., 2007).  

The Gram-negative bacterial strains such as A. vinelandii (Bingle et al., 1984; 1986; 

1987a; 1987b), Aeromonas salmonicida (Kay et al., 1981; 1984; Stewart et al., 

1986), Aeromonas hydrophila (Al-Karadaghi et al., 1988; Dooley et al., 1988; 1989; 

Dooley and Trust, 1988; Murray et al., 1988), Comamonas acidovorans (Chalcroft et 

al., 1986; Gerbi-Reiger et al., 1988) and Pseudomonas (Austin et al., 1990) were 
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reported to produce S-layers of tetragonal (p4) symmetry.  

Although no precise function yet has been attributed to the S-layers, these 

bacterial structures were speculated to possibly protect the prokaryotic bacteria from 

dessication and environmental stress (Ristl et al., 2011). Besides, the S-layers were 

found to contribute to the surface charge of bacterial cell, facilitate the adherence of 

bacterial cells to external biotic/ abiotic surfaces, influence the formation of biofilm, 

and involved in bacterial pathogenesis (Schneitz et al., 1993; Lee et al., 2006; 

Fletcher et al., 2007; Ristl et al., 2011). In the symbiotic legume-rhizobia interaction, 

the bacterial surface proteins were found to be involved in rhizobia attachment to 

root hairs during the initial step of the symbiosis (Peters and Verma, 1990; Deakin 

and Broughton, 2009).  

 

 

 

 



 24

CHAPTER 3 

 

COMPARATIVE PROTEOMICS OF Azotobacter vinelandii ATCC 12837 IN 

ASSOCIATION AND NON-ASSOCIATION WITH Oryza sativa MR 219 

ROOT UNDER NITROGEN-ENRICHED AND NITROGEN-FREE 

ENVIRONMENTS 

 

3.1 Introduction 

Proteomics has become an indispensable approach for large-scale protein 

analysis in functional genomics (Han and Lee, 2006). Comparative proteomics using 

2DE/MS-based approach has for the recent decades been widely applied to 

understand the complex biological systems of human, animals, eukaryotes and 

prokaryotes. It has been proven useful in the search for novel proteins and novel 

protein-coding genes (Kovarova et al., 2002; Dai et al., 2006; Ummanni et al., 2011). 

Over the years, the comparative proteomics approach has revealed the workings of 

various biological mechanisms, uncovered novel proteins with beneficial or 

detrimental effects. The discoveries from the comparative proteomic attempts 

brought about research works to solve relevant biological issues in addition to 

providing new insights and understanding of the biological relationships. 

 In accordance with the long history of applying proteomics in the medical 

investigations, adaptation of comparative proteomic methodologies (i.e. 2DE/MS and 

2DE MS/MS) to study the plant-microbe interaction has become popular in recent 

years. These studies include the plant-microbe symbiosis (Natera et al., 2000; 

Wienkoop and Saalbach, 2003; Bestel-Corre et al., 2004; Hauberg-Lotte et al., 

2012), pathogenesis (Kav et al., 2007) and heavy metal remediation (Farinati et al., 


