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MY  Million years ago 
DC  Direct current 
ACS  Atlantic continental shelf 
SPT  Standard penetration test 
SiLC  Southern Industrial & logistics Clusters 
CGAR  Centre for Global Archaeological Research (CGAR) 
JMG  Jabatan Mineral dan Geosains Malaysia 
LBR  Lembah Bujang with 2-D resistivity survey 
BBR  Bukit Bunuh with 2-D resistivity survey 
PAR  Pagoh with resistivity 2-D survey 
BMR  Batang Merbau with 2-D resistivity survey 
PR  Puchong with resistivity 2-D survey 
PHR  Putra Heights with resistivity 2-D survey 
SR Southern Industrial & logistics Clusters (SiLC), Nusajaya with 

2-D resistivity survey 
PER  Beseri, Kaki Bukit, Perlis with 2-D resistivity survey 
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 MEMBANGUNKAN TEKNIK PENINGKATAN RESOLUSI MENDATAR 

(EHR) DALAM SURVEI KEBERINTANGAN 2-D 

 

ABSTRAK 

Kajian keberintangan 2-D adalah satu kaedah tidak langsung dalam kajian 

subpermukaan cetek untuk mengekalkan geo-persekitaran. Ianya digunakan untuk 

mengukur keberintangan ketara subpermukaan. Kajian ini melibatkan 

pengubahsuaian teknik pengambilan data keberintangan 2-D dengan menggunakan 

empat susunatur yang berbeza (Wenner, Schlumberger, Wenner-Schlumberger dan 

Pole-dipole). Teknik ini dinamakan Peningkatan Resolusi Mendatar (EHR). Teknik 

EHR direka bagi mendapatkan penembusan yang lebih jelas dan dalam untuk kajian 

subpermukaan cetek. Empat model telah direka dan disahkan untuk mengkaji 

keberkesanan teknik EHR yang terdiri daripada satu model komputer dengan 

menggunakan perisian RES2DMOD dan tiga model lapangan; model lapangan 

(bersaiz kecil) dalam medium asal, bunker dan sistem pengairan bawah tanah. 

Penyongsangan model keberintangan dengan susunatur biasa menunjukkan resolusi 

mendatar yang kurang berbanding penyongsangan model keberintangan dengan 

menggunakan teknik EHR. Hasil daripada teknik EHR menunjukkan imej dan 

lapisan anomali yang jelas dari segi saiz, kedalaman dan nilai keberintangan. Oleh 

itu, penyongsangan ke atas model data yang lebih tepat menggunakan teknik ini 

boleh dilaksanakan dan tapak kajian dalam bidang arkeologi, eksplorasi mineral, 

kejuruteraan, persekitaran dan geologi menggunakan teknik EHR telah dijalankan. 

Lapan lokasi yang berbeza telah dikenal pasti yang kebanyakannya tertumpu pada 

kajian subpermukaan cetek. Lokasi tersebut adalah Lembah Bujang, Kedah; Bukit 

Bunuh, Lenggong, Perak; Pagoh, Batu Pahat, Johor; Batang Merbau, Tanah Merah, 
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Kelantan; Puchong, Selangor; Putra Heights, Selangor; Nusajaya, Johor dan Kaki 

Bukit, Perlis. Oleh itu, kajian keberintangan 2-D menggunakan susunatur Pole-dipole 

dengan teknik EHR dan tanpa teknik EHR telah dijalankan kerana mempunyai 

resolusi mendatar dan menegak yang baik dengan korelasi rekod lubang bor. Teknik 

EHR menghasilkan penembusan kedalaman yang hampir sama dengan teknik tanpa 

EHR walaupun teknik EHR menggunakan jarak elektrod minimum yang lebih kecil. 

Tambahan pula, ia meningkatkan resolusi mendatar. Terdapat korelasi yang baik 

antara kajian keberintangan 2-D dengan teknik EHR dan keputusan rekod lubang 

bor. Teknik EHR telah berjaya diaplikasi untuk sasaran yang besar dan kecil yang 

terletak pada kedalaman yang cetek atau dalam yang berkaitan dengan kajian 

arkeologi, eksplorasi mineral, kejuruteraan, persekitaran dan geologi yang 

sebelumnya mustahil dipetakan.  
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DEVELOPMENT OF ENHANCING HORIZONTAL RESOLUTION (EHR) 

TECHNIQUE IN 2-D RESISTIVITY SURVEY 

 

ABSTRACT 

 2-D resistivity method is an indirect method to the shallow subsurface survey 

for maintaining the geo-environment. It is used to measure the apparent resistivity of 

subsurface. The research involves modified 2-D resistivity acquisition technique 

using four different arrays (Wenner, Schlumberger, Wenner-Schlumberger and Pole-

dipole). This technique is called Enhancing Horizontal Resolution (EHR). The EHR 

technique was developed in order to acquire detail and deeper penetration for 

shallow subsurface study. Four models were designed and validate to study the 

effectiveness of EHR technique which consists of one computer model using 

RES2DMOD software and three field models; miniature with original medium, 

bunker and underground drainages. Inversion model resistivity with common array 

shows less horizontal resolution compared to inversion model resistivity with EHR 

technique. Results from the EHR technique shows clear images of an anomalous and 

layers in terms of size, depth and resistivity value. Notably, the technique can 

perform the inversion on model data set efficiency and for archaeology, mineral 

exploration, engineering, environment and geology, the EHR technique employed. 

Eight different locations were identified which were mainly focused on shallow 

subsurface investigations. The locations are Lembah Bujang, Kedah; Bukit Bunuh, 

Lenggong, Perak; Pagoh, Batu Pahat, Johor; Batang Merbau, Tanah Merah, 

Kelantan; Puchong, Selangor; Putra Heights, Selangor; Nusajaya, Johor and Kaki 

Bukit, Perlis. Throughout, 2-D resistivity with Pole-dipole array with and without 

EHR technique was adopted for this study due to the good horizontal and vertical 
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resolution with correlation of borehole records. EHR technique produces the same 

depth of penetration as without EHR technique although it used smaller minimum 

electrode spacing. Furthermore it enhances the horizontal resolution. There is a good 

correlation between the 2-D resistivity investigations with EHR technique and the 

results of borehole records. The EHR technique was successfully apply for larger and 

smaller target located at shallow or deeper depth which is associated with 

archaeology, mineral exploration, engineering, environment and geology studies that 

were previously impossible to map. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 Background 

 

 Malaysia is a developing country, which requires extensive infrastructures 

and industrial development. Most favorable lands with strategic locations have been 

developed, leaving only the more challenging grounds for present and future 

developments. These challenging grounds are either hilly terrain or land with 

underlying materials of notorious mechanical characteristics, such as soft 

compressible deposits, loose granular deposits, brown fills, karstic limestone, waste 

dumps and peaty soil. In addition to these inherent unfavorable ground properties, 

project clients and local authorities have also demanded a more technically 

challenging criteria for the designs to ensure safety. The forms of structure proposed 

in this modern day demand taller and heavier structures, deeper foundation and 

underground excavation (Liew, 2010). Therefore, for projects involving subsurface 

or substructure works with foundation and underground space excavation; site 

formation with cut slope, fill, retaining structures and ground improvement works, 

geotechnical engineer and geophysicist are usually engaged. Geotechnical studies are 

usually used for subsurface, engineering and environmental works. Geophysical 

studies provide supported data for engineers to improve the work, cost saving and 

time. Geophysical studies can be used to determine depth of bedrock, the nature of 

overburden materials and near surface structures such as sinkholes, cavities, voids, 
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faults and boulders. Selection of the appropriate geophysical method has to be based 

on project objectives and site conditions to produce a good result.  

Geophysical method is one of the fastest, most effective and least costly. The 

shallow subsurface of the earth is an extremely important zone that supports our 

infrastructure and provides for our industries. Infrastructure applications have more 

of an “Engineering” component, that is, dealing with the detection and 

characterization of dangerous roadbed conditions underlying highways. This type of 

application may involve detecting void under roadways due to underground (mining 

or tunneling) excavations, or characterizing the relative integrity of reinforces 

structures in bridges or other transportation structures.  As safe and effective use of 

the near-surface environment is a major challenge facing our society, there is a great 

need to improve our understanding of the shallow subsurface. Many advances 

associated with near-surface geophysics have been made in the last decade (Bullock, 

1988). These advances methods (2-D resistivity, IP, SP, seismic, GPR, magnetic and 

gravity) which facilitate the use of geophysical data include better understanding of 

geophysical responses for near-surface environments and improved digital 

technology acquisition. The improvements of geophysical methods for near-surface 

imaging, such as computational speed and capabilities are associated with 

processing, inversion, modeling and visualization of geophysical data. 

Exploration geophysics is also used to map subsurface structure, elucidate the 

underlying structures, obtain spatial distribution of rock units, and detect structures 

such as faults, folds and intrusive rocks. This is an indirect method to perform the 

shallow subsurface study for maintaining the infrastructure and geo-environment. 
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Ground Penetrating Radar (GPR) is the most powerful archaeogeophysical 

technique. GPR allows the registration of such fine archaeological objects that are 

hard to see by eye and can be missed during archaeological excavation (Conyers, 

2004). GPR also allows precise localization of small metal objects and determination 

of the metal by its conductivity. It has the highest resolution of all geophysical 

techniques. However, the interpretation of the signal is extremely complicated and 

requires years of experience and it cannot be used in conductive environment (like 

sea water). Limited penetration depth which depends on the soil humidity, usually it 

varies from 1 m in wet soil to 17 m in buildings (Conyers, 2004). 

Seismic method is commonly used to detect rock velocities and quality, 

overburden thickness, rock rippability and bedrock depth. Seismic investigates the 

subsurface by generating arrival time and offset distance information to determine 

the path and velocity of the elastic disturbance in the ground. It is also depends on 

elastic properties (compactness, rigidity and pore content). Pores, gas and fractures 

reduce the velocity while pressure, water and oil increase the velocity value. Seismic 

method has a resolution limit which is associated with wavelength, distance and 

shielding by surface rocks. Seismic wave can resolve structures whose size is about 

¼ of their wavelength that affect the resolution. The resolution decreases with 

distance and high electrical conductivity will give strong velocity contrast (Hermann, 

2004). 

Magnetic method is an efficient and effective method to survey large areas 

for underground iron and steel objects such as tanks and barrels. Magnetic 

measurement of the earth‟s total magnetic field and local magnetic gradients are 

usually made with proton precession magnetometers at points along a line which 

should be oriented at a high angle to the suspected trend of structures. Gradient 
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measurements are less sensitive to deeper objects than total field measurements and 

magnetic measurements are susceptible to interference from steel pipes, fences, 

vehicles and buildings. The magnetic method does not give exact depth 

determination (Grauch and Lindrith, 2005). 

A microgravity survey provides a measure of change in subsurface density. 

Natural variations in subsurface density include lateral changes in soil or rock 

density, buried channels, large fractures, faults and cavities. Data can be interpreted 

to provide estimates of depth, size and the nature of the anomaly. Irregular 

topography will produce artifacts in the data unless accounted for in the processing. 

Local sources of vibrations, wind, storms and distance earthquakes can produce 

interference (Butler, 1984). 

2-D resistivity survey can be useful in detecting bodies of anomalous material 

or in estimating the depth of bedrock surfaces. In coarse, granular soil, the 

groundwater surface is generally marked by an abrupt change in water saturation and 

thus by a change of resistivity. In fine grained soils, however, there may be no such 

resistivity change coinciding with a piezometric surface. Generally, since the 

resistivity of a soil or rock is controlled primarily by the pore water conditions, there 

are wide ranges in resistivity for any particular soil or rock type, and resistivity 

values cannot be directly interpreted in terms of soil type or lithology. The 2-D 

resistivity method has some inherent limitations that affect the resolution and 

accuracy that may be expected from it (Beresnev et al., 2002).  

Like all methods using measurements of a potential field, the value of a 

measurement obtained at any location represents a weighted average of the effects 

produced over a large volume of material, with the nearby portions contributing most 
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heavily. For these reasons, it is always advisable to use several complementary 

geophysical methods in an integrated exploration study rather than relying on a 

single exploration method. 

 

1.1 Problem statements 

 

 The present 2-D resistivity acquisition technique has a few disadvantages 

such as penetration depth which is related to electrode spacing, resolution and high 

level of noise. The smaller the electrode spacing, the higher the horizontal resolution 

but penetration is shallow. The larger the electrode spacing, the lower the horizontal 

resolution but it allows for deeper penetration.  

 The most commonly used arrays in the 2-D resistivity surveys are 

conventional arrays such as Wenner, Schlumberger or Dipole-dipole arrays. These 

arrays are often well understood in terms of their depths of investigations, lateral and 

vertical resolution and signal-to-noise ratios. Generally, the Wenner and 

Schlumberger arrays provide good vertical resolution for horizontal structures and 

high signal-to-noise data. Reversely, the Dipole-dipole and Pole-dipole arrays 

produce poorer vertical resolution and lower signal-to noise ratios, but have better 

lateral resolution (Barker, 1979; Dahlin and Zhou, 2004). However, these 

conventional arrays may not be the most appropriate and effective options when the 

time and number of measurements given for the survey is limited, or when an object 

at a specific location in the very complex structure becomes the target of the survey. 
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1.2 Research objectives 

 

 The objectives of this study are; 

i. to develop a new data acquisition technique for better resolution and deeper 

penetration. 

ii. to validate a useful technique that can give better results for archaeology, 

mineral exploration, engineering, environment and geological purposes. 

iii. to compare the results of common array and array with Enhancing Horizontal 

Resolution (EHR) technique. 

 

1.3 Significance and novelty of the study 

 

 The research work namely Enhancing Horizontal Resolution (EHR) 

technique aims to modify the 2-D resistivity acquisition technique based on the 

arrays (Wenner, Schlumberger, Wenner-Schlumberger and Pole-dipole) provided. 

The technique provides a better result and enhances horizontal resolution image with 

deeper penetration and low noise level. With the newly introduced EHR technique, 

all arrays (Wenner, Schlumberger, Wenner-Schlumberger and Pole-dipole) can now 

be carried out to map complex geological structures (smaller target located at deeper 

depth) that were previously impossible to map.  

 However the limitation of EHR technique was the time constrain depending 

on the minimum electrode spacing use and it was mainly focus on horizontal 

resolution not vertically. 
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1.4 Layout of thesis 

 

 Generally, the contents of this dissertation are organized as follows; 

 Chapter 2 include theory of 2-D resistivity method and early studies using 2-

D resistivity method applied to archeological, mineral exploration, engineering and 

environment problems are discussed.  

 Chapter 3 is devoted to research methodology of 2-D resistivity method. The 

research involves 2-D resistivity for common array and modified 2-D resistivity 

acquisition technique using four different arrays (Wenner, Schlumberger, Wenner-

Schlumberger and Pole-dipole). This technique is called Enhancing Horizontal 

Resolution (EHR). The application of EHR technique at study areas (Lembah 

Bujang, Kedah; Bukit Bunuh, Lenggong, Perak; Pagoh, Batu Pahat, Johor; Batang 

Merbau, Tanah Merah, Kelantan; Puchong, Selangor; Nusajaya, Johor and Beseri, 

Kaki Bukit, Johor) using Pole-dipole array is also discussed. Borehole record was 

used as a correlation with 2-D resistivity as assessed by EHR technique. The survey 

was divided into subsurface study in archaeology, mineral exploration, engineering, 

environment and geology. 

 In Chapter 4, four models were tested with EHR technique using Wenner, 

Schlumberger, Wenner-Schlumberger and Pole-dipole arrays. It consists of one 

computer model and three field models. The first model is a simulation model 

created by RES2DMOD software using Wenner, Wenner-Schlumberger and Pole-

dipole array. The first field miniature model with void was carried out with Wenner, 

Schlumberger, Wenner-Schlumberger and Pole-dipole arrays to see the suitability of 

the arrays selected. The second field model was conducted at USM bunker using 
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Pole-dipole (long and short) array to study the contrast of horizontal resolution and 

the effectiveness of subsurface structure mapping with EHR technique. The test 

model was evaluated at USM Convocation site to study underground drainages using 

four different arrays; Wenner, Schlumberger, Wenner-Schlumberger and Pole-dipole 

with common and EHR techniques. This chapter continues discussed the results of 

the 2-D resistivity with and without EHR technique for application in archaeology, 

mineral exploration, engineering, environment and geology. 

 Finally, Chapter 5 concluded the 2-D resistivity study with EHR technique 

including recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Introduction 

 

 Resistivity prospecting involves the detection of surface effects produced by 

electric current flow in the ground. Using resistivity methods, one may measure 

potentials, currents and electromagnetic fields that occur naturally or are introduced 

artificially in the earth. Basically, it is the enormous variation electrical conductivity 

found in different rocks and minerals that make these techniques possible.  

 Geotechnical studies are usually used for subsurface, engineering and 

environmental works. Geophysical studies provide supported data in order to save 

cost and time. Geophysical methods can be used to determine depth of bedrock, 

nature of overburden materials and near surface structures such as sinkholes, cavities, 

voids, faults and boulders. Selection of the appropriate geophysical method is based 

on project objectives and site conditions. Electrical methods (IP, SP, 2-D/3-D 

resistivity) are used to detect groundwater, mapping subsurface and to determine the 

boulders or bedrock. An induced polarization (IP) survey is used to delineate 

municipal waste landfills while Self-Potential (SP) and resistivity are used to map 

seepage paths. Shallow seismic reflection technique has recently been used in 

bedrock mapping, detecting abandoned coal mine, detecting saturated zone during a 

pump test in an alluvial aquifer and mapping shallow faults. Seismic refraction is 

used to study shallow subsurface investigation such as bedrock and faults. Both 

techniques depend on the presence of contrast in the subsurface. In many cases, the 
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contrast occurs at boundaries between geologic layers including man-made 

boundaries such as tunnels and mines.  

 

2.1 Resistivity theory 

 

 The purpose of the resistivity survey is to determine the subsurface resistivity 

distribution by making measurements on the ground surface. From these 

measurements, the true resistivity of the subsurface can be estimated. The ground 

resistivity is related to various geological parameters such as mineral and fluid 

content, porosity and degree of water saturation in rock. Resistivity surveys have 

been used for many decades in hydrological, mining and geotechnical investigations. 

More recently, it has been used for environmental surveys. 

 The resistivity measurements, shown in Figure 2.1 are normally made by 

injecting current into the ground through two current electrodes, C1 and C2 while 

measuring the resulting voltage difference at two potential electrodes P1 and P2. 

From the current (I) and potential (V) values, an apparent resistivity (ρa) value is 

calculated (2.1-2.3). 

 

 

Figure 2.1: A conventional four electrode array to measure the subsurface resistivity 
(modified after Loke, 1997). 

 

𝜌𝑎 = 𝑘 𝑉/𝐼                  (2.1) 

 

C1 P1 P2 C2 
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Where  𝑘 : Geometric factor (depends on the arrangement of four electrode) 

 𝑉 : Potential 

 I  : Current 

 𝜌𝑎 : Apparent resistivity 

Resistivity meters normally give a resistance value, 

𝑅 = 𝑉/𝐼                 (2.2) 

So, in practice the apparent resistivity value is calculated by, 

𝜌𝑎 = 𝑘𝑅                   (2.3) 

The calculated resistivity value is not the true resistivity of the subsurface, but 

an apparent value which is the resistivity of a homogeneous ground with the same 

resistance value for the same electrode arrangement. The relationship between the 

apparent resistivity and the true resistivity is a complex relationship (Loke, 1997, 

1999, 2000). 

The potential change from a single current electrode to some point in the half 

space representing the earth can be calculated using Ohm‟s law (2.4) (Loke, 1997, 

1999, 2000). 

𝑉 = 𝐼𝑅                  (2.4) 

    =  
𝜌𝐼

𝑘
  

    =  
𝜌𝐼

2𝜋𝑟
  

Where  𝑉 : Potential 

 𝑅 : Resistance 

             𝐼 : Current 
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 𝜌 : Resistivity 

 𝑘 : Geometric factor 

 𝑟 : Distance between the current electrodes 

Earth resistivity can be measured by connecting one of the current electrodes 

to an ammeter to measure the amount of current going into the earth. Another 

electrode is connected to a voltmeter next to the current electrode and placed at some 

distance, r, away from the electrode to measure the voltage difference between the 

two locations (Figure 2.2). The distance of current electrode, ri must be large 

compared to voltage electrode, rv (at least by 10 times). When ri is small, rv is smaller 

and the voltage drop is small (Burger, 1992; Robinson and Coruh, 1988; Telford et 

al., 1990). 

 

 

 

 

 

 

Figure 2.2: Measuring earth resistivity (modified after Burger, 1992; Robinson and 
Coruh, 1988; Telford et al., 1990). 

 

2.1.1 Current flow from two closely spaced electrodes 

 

By placing the two current electrodes close to each other, the current 

distribution and equipotentials produced within a homogeneous become more 

complicated. Instead of the current flowing radially out from the current electrode, it 
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flows along curved paths connecting the two current electrodes (Figure 2.3). Table 

2.2 shows the proportion for the six paths labeled 1 through 6. From these 

calculations and the graph of the current flow shown, notice that almost 50% of the 

current placed into the ground flows through rock at depths shallower or equal to the 

current electrode spacing. 

 

 

 

 

 

 

 

 

Figure 2.3: Equipotential surfaces (black lines) and current lines of flow (red lines) 
(modified after Burger, 1992; Robinson and Coruh, 1988; Telford et al., 1990). 

 
Table 2.1: Current path and their percent of total current that penetrates into the 
depth of line (modified after Burger, 1992; Robinson and Coruh, 1988; Telford et al., 
1990). 
 

Current path % of total 
current 

1 17 
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6 57 
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2.1.2 Measuring earth resistivity 

 

The resistivity in homogeneous earth can be estimated using two potential 

electrodes (purple) placed between the two current electrodes (red and green). Let the 

distances between the four electrodes be r1, r2, r3 and r4 as shown in Figure 2.4. The 

potential computed along the surface of the earth is shown in the Figure 2.5. The 

voltage observed with voltmeter is the difference in potential at the two voltage 

electrodes, ΔV (Burger, 1990; Pozdnyakova and Zhang, 1999; Butler, 2001).  

 

 

 

 

 

 

Figure 2.4: Four electrodes principle to measure resistivity or conductivity (modified 
after Burger, 1990; Pozdnyakova and Zhang, 1999; Butler, 2001). 

 

 

 

 

 

  

Figure 2.5: Potential along the surface and potential difference (modified after 
Burger, 1990; Pozdnyakova and Zhang, 1999; Butler, 2001). 
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 Knowing the locations of four electrodes, and by measuring the amount of 

current input into the ground, i, and the voltage difference between the two potential 

electrodes, ΔV, the apparent resistivity, ρa, of the medium can be calculated using 

equation (2.5) (Keller and Frischknecht ,1996). 

 ρa =
2𝜋𝛥𝑉

𝑖
 

1

 
1

𝑟1
 −  

1

𝑟2
 −  

1

𝑟3
 +  

1

𝑟4
 
               (2.5) 

2.1.3 Depth of penetration 

 

When two current electrodes are moved close to one another, current flows 

along arc-shaped paths connecting the two electrodes. About 50% of the current 

flows through rock at depths shallower than the current electrode spacing provided 

the earth has a constant resistivity. By increasing the electrode spacing, more of the 

injected current will flow to greater depths. If the electrode spacing is much closer, 

current flows mostly near the earth surface and apparent resistivity will be dominated 

by resistivity structure of the near surface (Figure 2.6). 

 

 

 

 

 

Figure 2.6: Current flow through the earth with different electrode spacing (modified 
after Burger, 1992). 
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2.1.4 Current flow in layered media 

 

Assume that the resistivity change with depth can be quantized into a series 

of discrete layers, each with a constant resistivity. Figure 2.7 shows high resistivity 

layer (250 Ωm) overlying a lower resistivity layer (50 Ωm). This model is associated 

with unsaturated alluvium overlying water saturated alluvium. Figure 2.8 shows a 

low resistivity layer (50 Ωm) overlying a higher resistivity layer (250 Ωm), 

associated with an aquifer. Assuming a homogeneous medium, the current paths 

from the two current electrodes are labeled as blue lines while red lines represent 

current paths in a two layer model. The current in Figure 2.7 appears to be pulled 

downward into the low resistivity layer (50 Ωm) while the current path in Figure 2.8 

appears to be bent upward, trying to remain within the lower resistivity layer at the 

top of the model. For the model in Figure 2.7, that path goes through the deep layer 

while for a model in Figure 2.8, that path goes through the shallow layer. The current 

is distorted in such a way in the low resistivity layer (Burger, 1992). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: Current flows through a model of high resistivity overlying low 
resistivity layer (modified after Burger, 1992). 
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Figure 2.8:  Current flows through a model of low resistivity overlying high 
resistivity layer (modified after Burger, 1992). 

 

2.1.5 Current flow and current density 

 

 The distribution of current density exists when a horizontal interface is 

present. It is important to know the orientation of flow lines and equipotentials when 

crossing a boundary separating regions of different conductivity or resistivity. 

Hubbert, 1940 as cited by Burger, 1992 demonstrated that the flow lines follow a 

tangent relationship (2.6) 

   
tan 𝜃1

tan 𝜃2
=

𝜌2

𝜌1
                 (2.6) 

 Where θ : refraction angle 

  ρ : resistivity 

 If 𝜌2 of the deeper material is greater, the current flow lines bend in toward 

the normal to the interface (Figure 2.9(b)) and, as a consequence, are more widely 

spaced. However, if the reverse is true, Figure 2.9(c) shows the current flow lines 

bent away from the normal, become oriented more parallel to the interface, and are 

closer together. Figure 2.10(a) illustrates the pattern of current flow lines for a 
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homogeneous subsurface (𝜌2 =  𝜌1). If 𝜌2 is increased, more current will flow above 

the interface, the current flow lines will be spaced more closely, and the current 

density will be greater in the region above the interface relative to the case of the 

homogeneous subsurface (Figure 2.10(b)). If 𝜌2 < 𝜌1, a greater percentage of current 

will flow beneath the interface, the current flow lines will be spaced more widely in 

the material above the interface, and the current density will be reduced (Figure 

2.10(c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.9: Refraction of current flow lines at a boundary separating materials of 
different resistivity. (a) Symbols used in equation 3.6, (b) Refraction when 𝜌1 <  𝜌2, 
(c) Refraction when 𝜌1 >  𝜌2 (modified after Burger, 1992). 
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Figure 2.10: Qualitative distribution of current flow lines when a horizontal interface 
separates materials of different resistivities. (a) Homogeneous subsurface, (b) 
𝜌2 >  𝜌1, (c) 𝜌2 <  𝜌1 (modified after Burger, 1992). 
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measured and then the apparent resistivity is computed. Then the same experiment is 

repeated but the current electrode spacing is systematically increased. Consider the 

earth model a high resistivity layer over a lower resistivity layer (Figure 2.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Current flow through different resistivity medium with different 
electrode spacing (modified from Burger, 1992). 
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begins to affect a greater portion of the current. In this case, current is preferentially 

drawn downward into the lower resistivity layer, decreasing the current density 

between the two current electrodes where voltage measurement is taken. This 

decrease in current density is because our computed values of apparent resistivity 

decreases from 250 Ωm (Burger, 1992). 

 At very large current electrode spacing, all the current flows through the 

lower resistivity layer (lower medium). As observed for the very close electrode 

spacing, current flowing along the lines are similar to those found in a homogeneous 

medium. However, the medium has a resistivity of 50 Ωm, not 250 Ωm. Figure 2.12 

shows as the current electrode spacing is increased, the apparent resistivity will 

decrease, eventually approaching 50 Ωm. 

 

 

 

 

 

 

 

 

Figure 2.12: Apparent resistivity with electrode spacing in high resistivity layer 
(Mooney, 1958 as cited by Reynolds, 1997). 
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through the upper layer until it essentially behaves like it would in a homogeneous 

earth. The computed apparent resistivity will be very close to the resistivity of the 

upper layer, 50 Ωm (Burger, 1992). 

 At larger current electrode spacing, more current flows to greater depth. Thus, 

the presence of higher resistivity layer begins to affect a greater portion of the 

current. This occurs even though current prefers to flow through the lower resistivity 

layer (upper layer). Despite these greater electrodes spacing, current would still flow 

through the upper layer, compared to the current density that would have been 

produced in a homogeneous half space. At these larger electrodes spacing there is a 

greater current density near the potential electrodes. This relative increase in current 

density will cause our computed value of apparent resistivity to increase to more than 

50 Ωm. 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.13: Current flow through lower to higher resistivity medium with different 
electrode spacing (modified after Burger, 1992). 
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 At very large current electrode spacing, all the current flows through the 

higher resistivity layer in the lower medium. In this case, the current flows along 

lines that are similar to those found in a homogeneous medium. However, the 

medium has a resistivity of 250 Ωm. Thus, as the current electrode spacing is 

increased, the apparent resistivity will increase, eventually approaching 250 Ωm 

(Figure 2.14) because the current would prefer to flow within the first layer, notice 

that the apparent resistivity approaches the resistivity of the layer more slowly with 

greater electrode spacing (Mooney, 1958 as cited by Reynolds, 1997). 

 

 

 

 

 

 

Figure 2.14: Apparent resistivity with electrode spacing in low resistivity layer 
(Mooney, 1958 as cited by Reynolds, 1997). 
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but the spacing between the electrodes is increased to obtain deeper information 

about the subsurface. Figure 2.15 shows common arrays used in resistivity surveys 

and their geometric factors. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.15: Common arrays used in resistivity surveys and their geometric factors. 

 The measured apparent resistivity values are normally plotted on a log-log 

graph paper. To interpret the data from a survey, it is normally assumed that the 

subsurface consists of horizontal layers. In this case, the subsurface resistivity 

changes only with depth, but does not change in the horizontal direction. A one-

dimensional (1-D) model of the subsurface is used to interpret the measurement 

(Figure 2.16(a)). Figure 2.17 shows an example of the data from a sounding survey 

and a possible interpretation model. Despite this limitation, this method has given 

useful results for geological situations where the 1-D model is approximately true. 
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