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 PERKEMBANGAN NANOSTRUKTUR SILIKON DAN  

SILIKON KARBIDA UNTUK APLIKASI FOTONIK 

ABSTRAK 

Dalam kajian ini, ciri-ciri struktur, optik, dan elektrik nanostruktur silikon dan silikon 

karbida telah dibangunkan untuk aplikasi fotonik. Foto-pengesan yang tampak jelas dan 

bersifat ultra-ungu (UV) difabrikasi berdasarkan kepada nano-struktur silikon poros (PS) dan 

silikon karbida poros (PSC) yang dioptimakan.  Dalam kategori pertama kajian ini, sampel-

sampel PS yang mempunyai keporosan dan keseragaman yang tinggi dikeluarkan 

menggunakan satu kombinasi inovatif teknik-teknik punaran foto-elektrokimia tanpa-elektrik 

dan berdenyut. Punaran kimia tanpa elektrik dioptimakan dengan mengaplikasikan waktu 

penangguhan selama 2 minit sebelum proses elektrokimia untuk mendapatkan keporosan 

(83%) dan keseragaman yang paling tinggi dan seterusnya meningkatkan ciri-ciri foto-

luminar (PL). Seterusnya, karbonisasi haba sampel-sampel PS yang baru sahaja disediakan 

dijalankan untuk menstabilkan ciri-ciri optik dan elektrikal. Dalam kategori kedua, sampel-

sampel PSC yang mempunyai keporosan dan keseragaman yang tinggi disintesiskan melalui 

pengoptimaan kepadatan semasa punaran. Sampel yang dioptimakan (J = 20 mA/cm
2
) 

menunjukkan keporosan permukaan yang tertinggi (76%), kekasaran permukaan tertinggi 

(137 nm), puncak PL yang mempunyai keamatan tertinggi, dan kestabilan tertinggi 

berbanding dengan sampel-sampel PSC yang lain. Dalam kategori ketiga, lapisan nipis yang 

mempunyai keporosan yang tinggi dan berbentuk poros sekata dibiakkan berdasarkan 

kepada substrat TC-PS menggunakan pemercikan magnetron RF. Proses pasca-

penyepuhlindapan pada suhu 1200 °C menambahbaiki keseragaman, saiz bijirin (1380 nm), 

kekasaran permukaan (610 nm), dan keamatan PL (237.3 a.u.). Pengesan-pengesan foto 

seterusnya difabrikasi dengan membuang hubungan Schottky ke atas semua sampel poros. 

Keputusan-keputusan menunjukkan bahawa nano-struktur silikon dan silikon karbida yang 

sudah dioptimakan, dengan keporosan dan keseragaman yang tinggi adalah bahan-bahan 

yang sesuai untuk pengesanan foto yang bersifat boleh-nampak dan ultra-ungu. 
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DEVELOPMENT OF SILICON AND SILICON CARBIDE 

NANOSTRUCTURES FOR PHOTONIC APPLICATIONS 

ABSTRACT 

In this study, the structural, optical, and electrical properties of silicon and silicon 

carbide nanostructures are developed for photonic applications. Visible and 

ultraviolet (UV) photodetectors are fabricated based on optimized porous silicon 

(PS) and porous silicon carbide (PSC) nanostructures. In the first category of this 

work, the high-porosity and uniform PS samples are generated using an innovative 

combination of electroless and pulsed photoelectrochemical etching techniques. The 

electroless chemical etching is optimized by applying the delay time of 2 min prior to 

the electrochemical process to obtain the highest porosity (83%) and uniformity and 

hence enhanced photoluminescence (PL) intensity. Next, thermal carbonization of 

freshly-prepared PS samples is carried out to stabilize their optical and electrical 

characteristics. In the second category, the high-porosity and uniform PSC samples 

are synthesized through optimization of etching current density. The optimized 

sample (with J = 20 mA/cm
2
) shows the highest porosity (76%), highest surface 

roughness (137 nm), the most intense PL peak, and the highest stability compare to 

the other PSC samples. In the third category, high-porosity and uniform porous-

shaped SiC thin films are grown based on TC-PS substrates using RF magnetron 

sputtering. The post annealing process at 1200 °C improves uniformity, grain size 

(1380 nm), surface roughness (610 nm), PL intensity (237.3 a.u.) and Raman red-

shift (24 cm
–1

). Photodetectors are subsequently fabricated by depositing Schottky 

contacts onto all porous samples. The results show that the optimized nanostructures 

of silicon and silicon carbide with high porosity and uniformity are suitable materials 

for visible and UV photodetection. 
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CHAPTER 1   

INTRODUCTION 

1.1 Fundamentals of Compound Semiconductors and Silicon Carbide 

Compound semiconductors have been a subject of electronic research for 

nearly as long as elemental semiconductors. Germanium was initially discovered in 

the late 1940s and early 1950s [1]. Over time, germanium has been replaced by 

silicon, which is a more robust, reliable, and technologically well-behaved material 

with stable oxides [2]. Compound semiconductors, whose merit of superior transport 

was recognized as early as in 1954 by Welker [3], have continued to be of interest 

since these early days. The areas of significant applications include light sources, 

microwave sources, microwave detectors, visible, and visible-blind photodetectors 

[4]. All of these applications are areas of semiconductor research to which compound 

semiconductors are uniquely suited. The specific characteristics of some compound 

semiconductors, such as wide bandgap, elevated melting point, and chemical 

stability, make them more favorable for operation in harsh environments than 

elemental semiconductors. 

Silicon carbide (SiC) is a wide bandgap semiconductor with many superior 

mechanical and electrical properties compared with Si [5]. These properties include 

high electron mobility (1000 cm
2
/V·s), elevated electron saturation velocity 

(2.0 × 10
17

 cm/s to 2.7 × 10
17

 cm/s), elevated breakdown electric field (2 × 10
6
 V/m 

to 3 × 10
6
 V/m), high decomposition temperature (2830 °C), high thermal 

conductivity (3.6 W/cm·K to 4.9 W/cm·K), and very low thermal expansion 

coefficient (4.0 × 10
−6

/K) [6]. The range of possible wide bandgaps in SiC polytypes 

are also desirable for switches in electric power distribution systems, high-
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temperature turbine engines, high-frequency power devices, high-temperature 

ambient detectors, and detectors for various harsh environments [7]. The elevated 

sublimation temperature of SiC makes it an applicable material for furnace parts. SiC 

does not melt at any pressure and is highly inert chemically. Moreover, SiC is the 

substrate of choice in the production of light-emitting diodes in the ultraviolet (UV) 

and blue range of the spectrum [8] because of its low lattice mismatch and low 

thermal expansion coefficient for GaN epitaxial layers. SiC-based UV detectors can 

also be used in various applications, such as in monitoring combustion processes, 

water purification systems, and detection of photochemical phenomena given that 

detectors are almost solar-blind [9]. The transparency of SiC at wavelengths higher 

than its band gap makes it a useful material for the fabrication of photodetectors 

capable of rejecting visible and near infrared regions of the spectrum while providing 

near-unity efficiency in the UV range [10]. Many properties of semiconductors are 

determined by their crystalline structure. Figure 1.1 illustrates the major polytypes of 

SiC. 

 

Figure 1.1. Structure of SiC polytypes 
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Alpha SiC (α-SiC) is the most common polytype; it has a hexagonal structure 

(same as Wurtzite). The beta modification (β-SiC), has a zinc blende (cubic) 

structure (same as diamond). The beta structure has had relatively less commercial 

uses. However, its higher surface area than the hexagonal structure has increased its 

applications as a support for heterogeneous catalysts [11]. Figure 1.2 shows the 

structure of major hexagonal SiC polytypes. 

Here, three SiC bilayer structures (that is, three atoms with two bonds) are 

shown and labeled as A, B, and C. Using these A, B, and C elements, any SiC 

polytype can be defined as shown in Figure 1.2 on example of the hexagonal 

structures 2H, 4H, and 6H. The 2H-SiC structure includes only elements A and B 

stacked as ABABAB. The 4H-SiC structure is twice longer and the second half is 

twisted compared with 2H-SiC, producing the ABCB structure. The 6H-SiC unit cell 

is three times longer than 2H, and the structure is ABCACB. The letters H and C 

denote the hexagonal and cubic symmetries, respectively. Table 1.1 shows the 

physical properties of the different SiC polytypes. 

Table 1.1. Physical properties of major SiC polytypes [12]. 

Polytype 
Crystal       

structure 

Lattice constant    

(Å) 

Density 

(g/cm
3
) 

Bandgap  

(eV) 

3C (β) Zinc blende (cubic) 4.3596 3.21 2.36 

4H Hexagonal 3.0730; 10.053 3.21 3.23 

6H (α) Hexagonal 3.0730; 15.11 3.21 3.05 

 

The production technology for high quality SiC material only became 

successful after 1990. At present, wafers of up to 150 mm diameter are commercially 

available with highly uniform epitaxial layers as thick as 100 µm [13]. The currently 
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available high quality SiC material makes possible a variety of SiC for a broad range 

of research and device fabrication. 

 

Figure 1.2. Structure of major hexagonal SiC polytypes 

1.2 Overview and Background of Porous Silicon and Porous SiC 

Nanostructures 

Nanostructures are those materials with at least one dimension with the 

nanometer scale. These include nanoparticles (0D), nanowires (1D), and thin films 

(2D). Recently, nanostructured materials have received considerable attention due to 

their special physical properties that are widely different from those of their bulk 

phases. Their properties are strongly dependent on the structure type, dimension, and 

surface nature [14]. Controlling the properties of these materials by varying these 

parameters can be done for technological applications such as optoelectronics and 

sensing. Porous nanostructures are one of the known nanostructured materials. The 

description of porous implies that billions of micro and nano-sized holes are formed 
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inside the materials. The ratio of voids’ volume to the total volume is called the 

porosity [15]. 

Porous semiconductors are one of the most common porous materials, which 

have promising optoelectronic applications. The tunable physical properties, large 

surface-to-volume area, and band gap broadening are some of their properties that 

can be used for sensing applications [16]. Recently, the request for more 

sophisticated and powerful devices has led to studies on the fabrication of compound 

semiconductors on porous substrates. The most outstanding advantage of porous 

semiconductors for substrate applications is that the nanopatterned porous structures 

can act as a sink to accommodate the strain and threading dislocations to obtain the 

subsequent layer with lesser dislocation densities and strain [17]. 

Porous silicon (PS) has been considered an advantageous material for sensing 

applications since the discovery of its efficient visible room temperature 

photoluminescence (PL). A successful experiment was published in the 1990s 

revealed that electrochemical and chemical dissolution enabled the silicon wafers to 

emit light in red luminescence [18]. Moreover, Canham et al. [19] argued that PS 

may display the quantum confinement effects of carriers on the silicon nanocrystals 

present in the pore walls. The publication of these results elicited increasing interest 

in PS, particularly in its non-linear optical properties. A number of studies were 

devoted to the properties and potential applications of PS, and investigations on this 

element continued to increase, especially between 1991 and 1995 [20]. The 

compatibility of PS with Si-based electronic circuits has been considered a 

motivation for the development of PS-based technologies [21]. PS substrates have 

large surface areas of 200–500 m
2
 cm

−3
 and therefore, they have high reaction 
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activities in their surfaces. Many investigations have indicated that the optical and 

electrical characteristics of PS may considerably change by adsorption of different 

molecules onto their surfaces [22, 23]. Consequently, PS substrates are high-potential 

sensing materials capable of increased adsorptive effects [24]. The sensitivity of PS-

based devices depends on the morphological properties of its pores, i.e., surface 

regularity, diameter and uniformity, as well as layer thickness [25]. 

Although PS has attracted considerable attention, its chemical, thermal, and 

mechanical instabilities hinders its high rate of application [26]. These problems 

have led to the further studies on other porous semiconductors, such as GaP, GaAs, 

and InP, as well as the wide band gap semiconductors, like GaN and SiC. Porous SiC 

(PSC) has become the focus of considerable attention because of its large internal 

surface area and high activity in surface reactions. Consequently, PSC layers are 

used as high-potential sensing materials because of their enhanced adsorptive 

properties [27]. In addition, the remarkable PL intensity and stability of the physical 

and chemical properties of PSC may expand their applications compared with the PS 

substrates [28, 29]. 

Etching is an essential technique for the formation of porous semiconductor 

samples. To date, dry etching methods such as inductively coupled plasma and 

electron cyclotron have been mostly applied [30, 31]. However, these methods 

require expensive and sophisticated techniques and have a high risk of damaging the 

surface [32-35]. Thus, wet-chemical etching is a useful alternative in many cases 

[36]. Wet chemical etching of semiconductor substrates involves two main methods, 

namely, metal-assisted electroless chemical etching and electrochemical etching. The 

former suffers from the lack of controllability of the pore size and distribution, 
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whereas the latter technique, which was pioneered by Shor et al. [37, 38], can be 

controlled through several parameters, such as current density, voltage, electrolyte 

composition, and illumination conditions. Konstantinov et al. [39] investigated the 

physical characteristics and the formation process of porous SiC produced by 

photoelectrochemical etching as well as the dark etching and proposed the model of 

self-regulation of the fiber size. In 2000, Zangooie et al. [40] followed up with 

studies on different pore morphologies and possible formation mechanisms of SiC. 

However, many of the reproducible morphologies of porous templates, which 

were discovered in 2004, did not serve the needs of high-efficiency photonic 

applications. In the current research, a novel pulsed-current photo-electrochemical 

etching process that can control the porosity of PS and PSC substrates is introduced. 

This process is controlled by electrical etching parameters such as delay time and 

current density. The main topic of this research is the fabricated high-quality and 

uniform porous structures, which have made breakthroughs in photonic applications. 

1.3 Overview and Background of SiC Growth Techniques 

Although the use of SiC is relatively new in the electronics industry, it has 

long been used as a material for other purposes. SiC formation was first reported in 

1824, recognized as a silicide of carbon (C). In 1893, SiC was successfully 

synthesized by the Acheson process [41] using sand and coke. However, reports on 

the development of SiC as a semiconductor material until 1955 were unavailable 

because of the difficulties of forming high quality single crystals. In 1955, Lely 

showed the growth of SiC on a PSC using vapor condensation method. This 

technique was further developed by Hamilton et al. [42] and Novikov et al. [43] and 

is referred to as the Lely technique. Kendal [44] proposed a technique of cracking 
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gaseous compounds containing Si and C to form SiC crystallites at high 

temperatures. This method is probably the fundamental for today’s chemical vapor 

deposition (CVD) method. An important breakthrough occurred in 1978 when 

Tsvetkov and Tairov [45] demonstrated the seeded growth of SiC by sublimation 

technique. Their study was the milestone for SiC growth technology. Given that 

Tairov and Tsvetkov used Lely’s theory of vapor condensation, their technique is 

known as the modified Lely method. SiC wafers were first produced commercially 

by Cree Research, Inc., in 1991. The availability of SiC wafers in recent years is due 

to the extensive research on SiC epitaxial growth. To enhance the quality of bulk 

material and to fabricate sophisticated device structures, epitaxial methods are 

applicable. Considerable efforts have been made recently for epitaxial growth of SiC 

thin films by various conventional growth techniques. The epitaxial techniques can 

be categorized based on the phase (vapor or liquid) of the material used to form the 

epitaxial layer. Growth techniques include liquid phase epitaxy (LPE), chemical 

vapor deposition (CVD), molecular beam epitaxy (MBE), and physical vapor 

deposition (PVD). In this section, we briefly present these techniques. 

1.3.1 Liquid Phase Epitaxy (LPE) 

LPE is a method for the formation of the epitaxial thin films from saturated 

solutions. The chosen solvent has generally low vapor pressure and low melting 

point. LPE method is mostly applied for the growth of compound semiconductors. 

High quality, thin and uniform layers can be grown by this technique. SiC does not 

make a stoichiometric liquid formation at normal physical conditions. Instead, the 

material decomposes to vapor at 2830 °C. Therefore, the growth of SiC can be 

performed using a non-stoichiometric melt [46]. Si is the preferred choice for the 
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solution because it is a constituent of SiC. Moreover, high-quality Si is commercially 

available. The growth rate using Si as a solvent is not high because the solubility of 

carbon in silicon is low at temperatures less than 2000 °C. By adding a transition 

metal to the silicon melt, the solubility of carbon is enhanced. For instance, silicon–

scandium (Si–Sc) melts has demonstrated perfect influence on the growth rate of SiC 

as well as on the structural characteristics (surface morphology and crystallinity) of 

the SiC epitaxial layers [5]. Generation of micropipes is a critical issue in SiC bulk 

crystal growth. The existing micropipes in the surface of the material can be closed 

using LPE growth technique [47]. The main advantage of LPE technique is that the 

growth temperature can be well below the melting point of the deposited material. 

Moreover, the equipment is inexpensive, simple, and non-hazardous. The key 

problem of LPE technique for the formation of the epilayer is that this method is too 

simple to deposit sophisticated nanostructured materials due to the difficult 

composition and thickness control. 

1.3.2 Chemical Vapor Deposition (CVD) 

Generally, CVD is a process in which high quality thin layers of intrinsic or 

doped layers of semiconductors can be grown. The substrate is heated to high 

temperatures where chemical decomposition, called pyrolysis of a gas, generally 

takes place directly on the surface of the heated substrate. Homo-epitaxial CVD 

deposition of SiC has been reported on 3C, 4H, and  6H polytypes of SiC, whereas 

hetero-epitaxy of 3C-SiC has been reported on sapphire, Si, AlN, and 6H-SiC 

substrates [48]. Scientists from North Carolina State University introduced a growth 

technique employing the SiH4–C2H4–H2 gas system. In the epitaxial growth method 

described at NASA Lewis Research Center for 4H-SiC and 6H-SiC, the substrates 
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are first etched by HCl at 1350 C prior to growth. The initial HCl cleaning 

procedure decreases the density of surface defects in the deposited SiC epitaxial 

layers. 

The surfaces of SiC CVD layers may contain large amounts of imperfections. 

Surface defects observed in SiC epitaxial layers are polytype inclusions (which 

appear as triangular features), growth pits, micropipes, and macro-steps (often 

referred to as step bunching) [49]. The sizes of some defects are relatively large (tens 

of microns), whereas others have an average size less than 1 µm. Although many 

researches have been performed in understanding the nature of structural defects, the 

control and origin of many defects in SiC remain to be investigated. 

1.3.3 Molecular Beam Epitaxy (MBE) 

In 1958, MBE was described by Gunther [50] as a technique of growing 

compounds on heated substrate by evaporation from two sources. In 1975, Cho and 

Arthur [51] achieved major developments toward modern MBE equipment. The 

growth chamber is the heart of an MBE system. During the fabrication process, 

elemental materials are heated in Knudsen cells and evaporated onto a substrate 

under ultra-high vacuum (UHV) conditions ~10
-10

–10
-11

 Torr. The UHV growth 

ambient is crucial to the MBE process. It provides a clean growth environment 

leading to deposited layers with a high purity, which is very important for the 

deposition of high-quality semiconductors used for high-performance electronic 

devices. MBE growth has a number of benefits such as hetero-polytype growth (for 

instance 4H/3C/4H heterostructure), deposition of atomically abrupt interfaces, and 

in situ characterization. However, this method is rarely used for SiC growth because 

of its high costs and source material availability. Si source is widely available, but C 
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is not easy to obtain. Graphite can be applied, but high temperatures are required. C60 

does not require high temperature cells, but the material is costly. For gaseous 

precursor usage, many technical problems arise, such as keeping UHV and high 

temperature requirement (>1200 °C), which makes this technique hard to use. 

1.3.4 Physical Vapor Deposition (PVD) 

Physical deposition techniques, such as radio frequency (RF) magnetron 

sputtering, use ion irradiation to induce film growth [52]. The sputtering process 

usually works at moderate vacuum around 2 × 10
−2

 mbar where the pressure of the 

sputtering gas remains stable. Argon is used as a sputtering gas because it is inert. In 

this process, the gas atoms are ionized and bombard the target. The different 

potentials between the target and the substrate holder make the gas ions move toward 

the target and make collision. Accordingly, the sputtered atoms can ballistically 

move from the source in straight path and impact energetically on the substrates. 

Alternatively, at high gas pressures, the sputtered atoms collide with the gas atoms 

and fly diffusively; reaching the substrates and condensing after undergoing a 

random fly. The whole range from energetic ballistic impact to low-energy 

thermalized motion is reachable by changing the background gas pressure [53]. RF 

sputtering can be used for epitaxial growth of metals and insulators. This technique 

can be very easily controlled because it is independent from many of the 

experimental parameters. The quality of sputtered layers can also be optimized by 

controlling many parameters including substrate temperature, working pressure, RF 

power, time of deposition, and so on. RF magnetron sputtering is a novel deposition 

technique to grow thick SiC thin films with an elevated growth rate. The process is 

based on sublimation of a SiC source and transport of vapor species to the substrate 
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surface. In sputtering technique, a solid SiC target is used instead of a conventional 

SiC powder. Therefore, disturbances due to the irregular shape of the powder are 

avoided. In SiC epitaxy, pre-treatment of the target surface prior to growth is 

commonly needed. However, in sputtering, this is inherent by a surface removal 

through initial sublimation of the target surface at temperature increasing to 

temperature growth. These characteristics enable epitaxial growth of 4H-SiC and 6H-

SiC layers with uniform surfaces, even in thick material. The technology is safe 

because no hazardous gases are used. Moreover, no clean area is needed, the loading 

procedure is simple, and no costly parts with protective coating (as needed in CVD) 

are required. The growth containers do not degrade even after many times of growth, 

and the basic technology is not complicated. These characteristics make the system 

less costly, and the growth costs mostly depend on the target costs. 

In conventional epitaxial methods, hydrogen molecules penetrate into the 

deposited layers, resulting in the fabrication of a SiC:H thin film. The hydrogen is 

evaporated during thermal annealing, leading to the formation of numerous voids of 

hydrogen molecules. Therefore, thermal processing leads to the degradation of the 

thermal stability of SiC thin films that are fabricated using these methods [54]. RF 

magnetron sputtering has the advantage of producing SiC without a hydrogen 

precursor [55]. Therefore, it can provide high quality and high purity SiC thin films. 

1.4 Overview of Semiconductor Photodetectors 

Photodetectors are fundamentally semiconductor devices that convert optical 

energy (light) into electrical energy, which is mostly manifested as photocurrent. 

High-sensitivity and high-speed photodetectors have been widely studied over the 

past 10 years because of their application in optical generation of high power 
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microwaves and optical communication networks. First studies on photodetectors 

can be dated back to 1873 when Smith discovered photoconductivity in selenium 

[56]. The progress of photodetectors was slow until Einstein explained the observed 

photoelectric effect in metals, and Planck solved the black body emission problems 

by introducing the hypothesis of quanta. The performance of the photodetector 

depends on the distribution and flux of incident light as well as on electronic 

parameters of substrate material, such as doping levels and band structures [57]. 

Based on the application, the performance of photodetectors refers to sensitivity, 

wavelength selectivity, response and recovery times, and quantum efficiency [58]. 

Different kinds of photodetectors have been produced, such as Schottky 

diodes, p-n junctions, and metal–semiconductor–metal (MSM) structures [59-61]. 

MSM photodetectors have been popular in the field of optical communications in the 

past few years due to their several advantages. One of the most outstanding 

advantageous characteristics is its high response speed, which is a function of the 

geometry of the structure. The fundamental purpose of further developments in the 

field of MSM photodetector production is the improvement of physical 

characteristics. 

Porous semiconductors can be assumed outstanding materials for light 

detection because of their vast surface area to volume ratio and high absorption 

coefficients. Different porous semiconductors with different band gap values provide 

a variety of photodetectors with different ranges of sensitivity. For example, PS is 

sensitive to visible light whereas PSC is sensitive to UV radiation and is visible blind 

[62]. 
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1.5 Problem Statement 

Several essential problems are addressed in this research, and they are 

summarized as follows: In recent years, many studies have been performed to 

fabricate uniform PS substrates for optoelectronic applications. However, the 

electrochemical etching has not been optimized completely and the porous structures 

suffer from lack of uniformity and controllability. These shortcomings are more 

critical when a high porosity of porous material is needed. In this study, a novel 

method of etching is introduced for fabrication of highly uniform PS substrates. This 

technique is based on a combination of chemical and electrochemical etching. The 

process can be adjusted by optimizing the duration of each process using a novel 

parameter, which is delay time. In this work, the delay time is optimized, and thus 

uniform thick PS samples are grown by applying a suitable ratio of chemical and 

electrochemical etching time. The instability of Si nanostructures is another concern 

for photonic applications of PS. Therefore, fabricated devices based on PS suffer 

from the lack of stability in case of commercializing this technology. This problem is 

minimized in this research by growing a protective layer on PS substrate. Our results 

show that thermal carbonization can stabilize the optical and structural properties of 

PS substrates and enhance the stability of fabricated photonic devices.  

Although SiC has outstanding properties to withstand harsh environment, the 

excellent chemical stability and high hardness of this substrate make it difficult to 

etch in normal conditions. Some authors recommend molten potassium hydroxide 

(KOH) for SiC etching, which needs advanced experimental equipment and suffers 

from the lack of controllability. In this research, the electrochemical etching of SiC is 

optimized in hydrofluoric acid (HF)-based cell at room temperature. The uniformity 
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and porosity of the PSC samples are enhanced by optimizing the etching current 

density. Given that SiC is a high-cost material and optimization of electrochemical 

etching is an expensive technique because of the large amount consumption of 

substrate material, an inventive technique is introduced for the formation of porous-

shaped SiC thin film on low-cost PS substrates. Here, the porous skeleton of PS is 

chosen as a template for growth of porous-shaped SiC with the same morphology. 

The SiC atoms were sputtered on PS substrate and followed the morphological 

characteristics of the PS template. Moreover, PS substrate is more suitable for SiC 

deposition comparing to Si substrate because it provides a lesser lattice mismatch. 

The results showed that this inexpensive product has the ability to compete with 

high-cost conventional PSC substrates, especially in photonic applications. 

1.6 Research Objectives 

In order to develop silicon and silicon carbide nanostructures for photonic 

applications, the following experimental objectives are set;    

1. To develop the high-porosity, uniform, and stable porous silicon (PS) 

nanostructures by optimization of delay time in the photoelectrochemical etching 

technique. 

2. To develop the high-porosity, uniform, and stable porous silicon carbide (PSC) 

nanostructures by optimization of current density in the photoelectrochemical etching 

technique.  

3. To develop the high-porosity and uniform porous-shaped silicon carbide (SiC) 

nanostructures on stable PS using RF magnetron sputtering technique and 

optimization of post-deposition annealing process. 
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1.7 Scope of Study 

This study optimized a photo-assisted electrochemical etching of silicon and 

silicon carbide to produce more uniform and stable porous semiconductor substrates. 

A novel porous-shaped SiC/PS structure is introduced for optoelectronic 

applications. The nanostructured materials were used to fabricate visible and UV 

photodetectors with enhanced performance. 

1.8 Outline of Thesis 

The content of this thesis is organized as follows: Chapter 1 deals with a 

literature overview of the research on silicon and silicon carbide etching and 

deposition and the main properties of these materials. The general principles and 

theories of the electrochemical etching, metal–semiconductor contact, porous 

formation mechanisms, RF-magnetron sputtering of SiC as well as the basic 

principles of photodetectors are covered in Chapter 2. Chapter 3 describes the 

methodology and instrumentation involved in this study. 

The results obtained from the research works are analyzed and discussed in 

Chapters 4, 5, and 6. Chapter 4 discusses the results related to the photonic 

applications of the PS using a combinational etching method. Chapter 5 discusses the 

experimental results of the UV-assisted pulsed electrochemical etching of SiC and 

their optoelectronic applications. Chapter 6 discusses the results related to a novel 

technique for fabrication of porous-shaped SiC on PS substrate using RF-sputtering 

method. In this chapter, a high-photoconductive UV photodetector based on SiC/PS 

substrate is introduced. Chapter 7 presents the conclusions of our work and 

suggestions to future studies. 
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CHAPTER 2  

LITERATURE REVIEW 

2  

2.1 Introduction 

The principle that applies to photodetectors is the photoelectric effect, which 

is the effect on a circuit caused by light. In 1900, Max Planck discovered that energy 

is radiated in small discrete units called quanta. The photoelectric effect is the effect 

of light on a surface in a vacuum; the result is electrons being ejected from the 

surface. This phenomenon explains the principle theory of light energy that allows 

photodetectors to operate. 

In this chapter, general principles and theories of all subjects involved in this 

work are presented. It starts with a brief explanation of photoelectrochemical (PEC) 

etching of semiconductors. The advantages and properties of PEC etching are 

reviewed, and the extension of this processing method to silicon and silicon carbide 

is addressed. The fundamentals of PVD of SiC and the mechanism of SiC growth are 

discussed. Moreover, the fundamentals of metal–semiconductor contacts and the 

basic principles of visible and UV photodetectors are briefly described in this 

chapter. 

2.2 Principles of Photoelectrochemical Etching   

The electrochemistry of semiconductor materials has played an outstanding 

role in the development of electronic devices such as integrated circuit (IC) 

technology. Many of the processes applied in IC fabrication are based on 
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electrochemical principles. Furthermore, electrochemistry is the foundation for 

understanding the basic mechanisms of deposition, etching, and corrosion. 

The PEC etching of semiconductors is an area of particular interest. PEC is a 

research field that includes photo-assisted electrochemical reactions of 

semiconductors in contact with liquids, which are called electrolytes. When a 

semiconductor is immersed in an electrolyte, the electrons are exchanged between 

semiconductor surface and electrolyte because the Fermi level in the semiconductor 

is different from that of the electrolyte. In PEC etching, the potential of the 

semiconductor substrate is monitored using a power supply. At the same time, a 

source of light whose photon energy is higher than the bandgap energy of the 

semiconductor illuminates the semiconductor surface, resulting in formation of 

photogenerated electrons–holes pairs. The electrons and holes produced in the space-

charge region near the surface are transported by two mechanisms: drift under the 

influence of the electric field and diffusion, which is caused by the carrier 

concentration gradient. These mechanisms facilitate the electrochemical etching of 

semiconductors. 

2.2.1 Photoelectrochemical Etching Mechanism of Silicon 

Since the first research of Canham [19], PS layers have mainly been obtained 

by PEC etching in aqueous or ethanoic HF. In this technique, pores are formed over a 

large area of Si surface using a complicated mix of electronic and chemical factors. 

Parameters like electrolyte composition, dopant type and concentration, applied 

current density, temperature, as well as light intensity with different wavelength all 

play roles, and many competing mechanisms are involved. However, the formation 

of PS can proceed through the following general steps: (1) pores uniformly nucleate 
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and with no particular order on the silicon surface; (2) current preferentially flows 

near the pore bottoms; (3) the pore walls become passivated, leading to the 

dissolution of silicon primarily at the PS/crystalline silicon substrate interface; (4) the 

pores do not redistribute or reconstruct; and (5) all samples contain a distribution of 

pore diameters rather than a single pore size. Figure 2.1 indicates a typical current 

density–voltage (J–V) curve for a diluted HF aqueous solution. The formation of 

pores occurs in the initial increasing part of the curve for 0 < V < Vep, where Vep is 

the potential of the small sharp peak [63]. This peak, which is called the 

electropolishing peak, has a critical current that depends on the chemical 

composition in the solution and substrate. By increasing the potential for V > Vep, the 

electropolishing of silicon occurs because of the formation of oxide layer on Si 

substrate. Therefore, if the current density remains less than Jep, the pore formation is 

self-limited by the availability of holes within silicon walls. In this case, PS is 

formed [64].  

 

Figure 2.1. Typical J–V spectra of silicon in dilute aqueous HF solution. The porous 

layer is obtainable for J < Jep. Adopted and redrawn from [65] 
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The chemical mechanism of electrochemical etching of silicon is shown in 

Figure 2.2. Generally, in the absence of an electron–hole pair, a hydrogen-saturated 

Si surface is free from attack of fluoride ions in the HF-based electrolyte. The Si-H 

structure is shown in Figure 2.2(A). In the next stage (B), a hole reaches the surface 

and attacks a Si-H bond. Therefore, a fluoride ion is replaced with a hydrogen atom, 

forming a Si-F bond. Next, the Si-F bond causes a polarization effect that allows a 

second fluorine ion to attack and replace the remaining hydrogen bond. Two 

hydrogen atoms can then combine and inject an electron into the substrate. 

Therefore, hydrogen gas is one of the products of the electrochemical etching of 

silicon. Figure 2.2(C) shows that in this reaction, two holes are required to remove 

one silicon atom from the crystal structure and to dissolve it in electrolyte. In stage 

(D), the polarization induced by the Si-F bonds reduces the electron density of the 

remaining Si-Si bonds, making them susceptible to attack by HF such that the 

remaining Si surface atoms are bonded with the hydrogen atoms. Finally, in stage 

(E), the Si tetrafluoride molecule reacts with HF to form the highly stable SiF6 

structure. The surface returns to its ―neutral‖ state until another hole is made 

available [66]. The chemical reaction for etching of silicon can be summarized as 

follows [67]:  

Si + 6HF → H2SiF6 + H2 + 2H
+
 + 2e

−    
                                                                  (2.1)  

Therefore, a power supply is always needed to dissolve Si in this method. The 

final product is H2SiF6, which is relatively stable and can be easily dissolved in 

solution. In addition, the PEC etching current gradually decreases because of the 

increased density of hydrogen molecules near silicon walls, which does not allow 

fresh HF to react with the silicon surface. Therefore, electrochemical etching is a 
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self-controlled process. In the PEC process, photons absorbed from incident light 

create holes in Si. The criterion for photon absorption is that the photon energy of the 

incident light must be greater than or equal to the band gap of Si (1.12 eV). 

Therefore, light with a wavelength less than 1100 nm is suitable for creating minority 

charge carriers (holes) in silicon. Porous Si thin films are produced by irradiation 

with UV, visible, or infrared light on Si using HF solution. The wavelength of 

incident light and its power has a direct effect on the PEC etching of silicon. 

 

Figure 2.2. Schematic of the chemical dissolution mechanism of Si in HF solution. 

Adopted and redrawn from [66] 

The photon absorption depth in Si is a function of the incident photon energy. 

Long-wavelength light is absorbed deeper in Si than short-wavelength light. When 

light with long wavelengths is used, the penetration depth in Si becomes higher or of 

the same magnitude as that of the thickness of the wafer. Thus, minority charge 

carriers (holes) can be created within the depletion region of Si and beyond the 

depletion region width.  
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2.2.2 Combinational Pulsed-Current Etching of Silicon 

The photo-electrochemical etching method is an attractive technique for 

fabricating PS and producing optical waveguides. With this method, layers can be 

easily and uniformly fabricated over a large area of silicon substrate [68]. Pore 

morphology can also be controlled by optimizing several parameters, such as current 

density, etching time, light assistance, and ratio of chemicals in solution. PS is 

mostly formed by the constant current electrochemical anodization of Si in an HF-

based electrolyte [69]. A typical etching process is very sensitive to the ratio of 

chemicals inside the cell. For example, acid is consumed during the chemical 

interactions in the pores, and its concentration near to PS walls thereby decreases, 

which negatively affects the etching process. Hydrogen bubbles generated in the 

pores also decrease the speed of etching, resulting in shallow pores [70]. The solution 

to this problem is the application of a discontinuous current combined with a cycle 

time (T) and a pause time (Toff). This method leads to the ejection of the H2 bubbles 

and allows fresh HF molecules to react with Si substrate [71], where the HF 

concentration near the PS walls remains constant. 

In the current research, a pulse-current technique by an innovative 

combination of electroless and electrochemical anodization of silicon substrate is 

studied. The electroless chemical etching is optimized by varying the delay time (Td) 

prior to the electrochemical process to control the uniformity of the pores. The most 

acceptable reason for the evolution in the physical characterization of PS due to the 

application of delay time is the competition between the electroless chemical etching 

and anodic etching. The anodic etching of Si occurs when the holes reach the surface 

and initiate an electrochemical reaction. Chemical etching occurs when oxide forms 
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on the surface as a result of HOOH dissociation, which is followed by the chemical 

etching of the silicon oxide by HF. The latter process occurs throughout the reaction 

process, whereas the anodic etching only occurs when the current flows. When the 

oxide layer becomes uniform and covers the entire surface, electropolishing occurs. 

When only patches of oxide formed, the pores continue to grow. The additional Td 

increased the relative portion of the chemical etching. During the delay, the 

crystalline silicon surface was affected by exposure to oxidant and etchant chemicals 

in the solution in the absence of a current. The electroless etching of silicon in 

fluoride solution occurred through the local coupling of redox reactions as follows 

[72]: 

Oxidation:  OHeHOH 222 222  

   (2.2) 

Reduction:   
  eHSiFHFSi 444 4    (2.3) 

624 2 SiFHHFSiF 
    (2.4) 

Overall:   
 262222 26 HSiFHOHHFOHSi

 (2.5) 

The evolution of hydrogen bubbles during chemical etching proved the 

overall redox equation. During chemical etching, the entire silicon surface has equal 

etching parameters, e.g., concentration of acid and oxidant. This situation leads to 

homogeneous pore fabrication by the random localization of oxide islands. During 

electrochemical etching, electron flow is not uniform throughout the surface, 

resulting in non-uniform, sub-micrometer pore fabrication. Therefore, electroless 

etching can be assumed as a chemical method for fabricating shallow but uniform 

holes on silicon surfaces to be used as templates for fabricating deep and 

homogeneous pores. This depth and homogeneity are achieved by extending the 



24 

pores through the electrochemical etching process. However, increased Td can lead to 

the growth of a uniform oxide layer, which causes the electropolishing of silicon 

surfaces, and results in shallow pores. Therefore, the optimum duration of Td should 

be chosen to be applied prior to electrochemical etching in order to fabricate a 

uniform PS layer. 

2.2.3 Principles of Photoelectrochemical Etching of SiC 

None of the known etchants for silicon are found to chemically etch SiC at 

room temperature. Faust et al. [73] studied the reagents that attack SiC at 

temperatures near 1000 °C. He also summarized the electrolytic dissolution of SiC 

carried out at room temperature. Systematic researches on electrochemical etching of 

SiC were initiated decades later, in the 1990s [74]. Shor et al. [74] then showed that 

PSC can be formed by anodizing single crystalline 6H-SiC wafers in HF under UV 

light. UV is the only suitable radiation for producing the minority of carriers for the 

electrochemical etching of SiC, which has a high band gap of ~ 3 eV [75]. The role 

of UV radiation in enhancing the etch rate is partial because of the relatively shallow 

absorption depth of UV light [76]. This phenomenon allows more carriers to be 

photogenerated in the space charge layer. The UV light with the photon energy 

higher than the band gap energy of semiconductor produces electron–hole pairs. The 

electrons are swept away by the electric field into the bulk of the semiconductor, 

whereas the holes move to the surface where they take part in the electrochemical 

reaction. The UV-assisted PEC etching of SiC is an attractive technique for the 

fabrication of PSC and the production of optical waveguides because of the ease with 

which layers can be fabricated over a large area of the substrate, as well as the 

uniformity of the porous layers [36]. The anodic etching of SiC can proceed through 


