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ANALISIS KESTABILAN CERUN BERBANTU KOMPUTER 

MENGGUNAKAN TEKNIK PENGOPTIMUMAN DAN 

PENGKOMPUTERAN SELARI 

ABSTRAK 

Kaedah keseimbangan had (LEM) merupakan kaedah yang digunakan secara meluas 

untuk meramal kestabilan cerun. LEM membolehkan pengiraan faktor keselamatan 

(FS) untuk beberapa percubaan kegelinciran permukaan di mana FS minimum 

dilaporkan untuk kegelinciran permukaan kritikal. Teknik pengoptimuman global 

heuristik telah digunakan kerana masalah dalam pencarian kegelinciran permukaan 

adalah dikenalpasti sebagai NP-hard (non-deterministic polynomial-time). Walaupun 

teknik-teknik tersebut secara umumnya menghasilkan keputusan yang baik, masalah 

berkaitan theorem “No Free Lunch” (NFL) dalam pencarian kegelinciran permukaan 

kritikal adalah tidak berkesudahan. Menurut theorem NFL, tiada teknik optimum 

heuristik dapat menyelesaikan semua masalah dengan baik. Walau bagaimanapun, 

kegelirinciran permukaan lain berkemungkinan besar memainkan peranan yang 

penting seperti kegelinciran permukaan kritikal dalam analisis praktikal. 

Kegelinciran permukaan memainkan peranan yang penting sekiranya ia menjauhi 

gelinciran permukaan kritikal; namun, sekiranya FS menghampiri FS minima atau 

kesan serius dari kegagalan sepanjang gelinciran permukaan. Hal ini memerlukan 

implementasi yang berterusan dan teknik pengoptimuman yang berlainan. Namun 

yang demikian, implementasi dalam teknik pengoptimuman untuk meramal 

kestabilan cerun tidak selalunya lancar kerana memerlukan pautan luaran ke LEM. 

Kajian telah dijalankan untuk merungkai isu ini dengan membangunkan algoritma 

“decoupled” yang membolehkan teknik pengoptimuman dilaksanakan dengan 

mudah. Kajian ini seterusnya menunjukkan keringkasan algoritma yang dibangunkan 
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dan mempromosikan kajian terkini dalam kestabilan cerun di mana tiga teknik 

pengoptimuman terkini telah diimplemetasi dan kecekapan serta keberkesanan dalam 

mengesan minima sejagat dan minima tunggal/berbilang telah dikaji dalam siri 

kajian masalah. Teknik pengoptimuman yang telah digunakan adalah composite 

differential evolution (CoDE), neighborhood based crowding differential evolution 

(NCDE), dan neighborhood based speciation differential evolution (NSDE). CoDE 

telah digunakan untuk mengesan kegelinciran permukaan kritikal tunggal (single-

modal) manakala NCDE dan NSDE telah digunakan untuk mengesan kegelinciran 

permukaan kritikal berbilang (multi-modal). Tambahan lagi, satu versi multithreaded 

untuk algoritma decoupled telah dibangunkan untuk meminimumkan masa untuk 

menganalisis menggunakan teknik perkomputeran selari. Analisis daripada single-

modal menunjukkan bahawa CoDE boleh mengesan kegelinciran permukaan kritikal 

dengan baik. Ia juga mempunyai kecekapan dan memerlukan kurang percubaan jika 

dibandingkan dengan kajian yang telah dijalankan sebelum ini. Analisis daripada 

multi-modal menunjukkan bahawa prestasi NCDE adalah lebih baik berbanding 

NSDE dalam mengesan pelbagai kegelinciran permukaan penting. Selain itu, 

perkomputeran selari mampu mempercepatkan pengiraan. Namun yang demikian, 

jurang di antara kelajuan ideal dengan kelajuan sebenar meningkat dengan 

peningkatan CPU utama. 
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COMPUTER AIDED SLOPE STABILITY ANALYSIS USING 

OPTIMIZATION AND PARALLEL COMPUTING TECHNIQUES 

ABSTRACT 

Slope stability analysis is commonly performed using limit equilibrium methods 

(LEM). In LEM, factor of safety (FS) is calculated for different trial slip surfaces and 

the one with the minimum FS is reported as the critical slip surface. Since locating 

the critical slip surface is believed to be an NP-hard (non-deterministic polynomial-

time) problem, heuristic global optimization techniques are employed. Although 

these techniques have usually produced good results, “No Free Lunch” (NFL) 

theorems seem to have made the problem of locating the critical slip surface an 

endless research. According to the NFL theorems, no heuristic optimization 

technique can perform well for all problems. On the other hand, there may exist other 

slip surfaces that are as important as the critical slip surface in practical analyses. A 

slip surface is important, if it is located far away from the critical slip surface, but 

gives FS close to the minimum FS or the consequences of failure along the slip 

surface is serious. Therefore, there is a need to constantly implement and test 

different optimization techniques. However, implementation of optimization 

techniques in slope stability analysis is often not straightforward because it requires 

internal links to LEM. Firstly, the present study resolves this issue by developing a 

decoupled algorithm that allows for easy implementation of optimization techniques. 

Then, to demonstrate the simplicity of this algorithm and to promote the latest 

research on slope stability, three state-of-the-art optimization techniques are 

implemented, and their effectiveness and efficiency in detecting single/multiple 

global and local minima is investigated on a series of test problems. The employed 

optimization techniques are composite differential evolution (CoDE), neighborhood 
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based crowding differential evolution (NCDE), and neighborhood based speciation 

differential evolution (NSDE). CoDE is used for locating single critical slip surface 

(single-modal), while NCDE and NSDE are used for locating multiple critical slip 

surfaces (multi-modal). Moreover, a multithreaded version of the decoupled 

algorithm is developed to reduce the analysis time using parallel computing 

technique. The results of single-modal analyses show that CoDE can effectively 

locate the critical slip surface of the investigated test problems. It is also very 

efficient and requires less trials compared to the previous works. The results of 

multi-modal analyses show that NCDE performs better than NSDE in locating 

multiple important slip surfaces. It is also shown that parallel computing can speed 

up the calculations. However, the gap between the ideal speedup and the actual 

speedup increases with increasing the number of CPU cores. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The first article on the use of computers in slope stability analysis appeared in 1958 

(Little & Price, 1958), which described the implementation of the Bishop method 

(Bishop, 1955) on the English Electric DEUCE computer. This program was able to 

analyze 200 circles in less than ½ hour and successfully used in the design of many 

projects, most notably Mangla dam (the world’s 5th largest earth dam), which is said 

that about 20,000 circular slip surfaces were analyzed (Vaughan et al., 2004). Over 

the years, the number of computer programs for performing slope stability analysis 

increased. Whitman and Bailey (1967) estimated that from 25 to 50 programs had 

been written until 1967 in the United States. In their famous paper, they also talked 

about the role of man-machine communication and how an engineer “might wish to 

perform slope stability analyses using a computer”. Although what they had 

described was like a “science fiction” story (Duncan, 1996) in 1967, the advent of 

personal computers in 1980s turned it into a reality for most of the engineers. 

Computers have also helped to develop more accurate methods for non-

circular slip surfaces (e.g., Morgenstern & Price, 1965; Spencer, 1967; Janbu, 1973). 

This can in part be traced to the development of high-level programming languages 

that enable researchers to concentrate on the solution strategy and program design 

without having to deal directly with the internal details of a specific hardware. 

Moreover, the cost of computing and storage are falling steadily. For example, at the 

time of writing this thesis (2013), tablet computers with the price of 500 USD and 

weight of 650 g, can analyze thousands circular slip surface using Bishop method 
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within 12 sec (Rickard & Sitar, 2012). This is a tremendous achievement when 

compared with the DEUCE computer in 1958, which with the price of 50,000 GBP 

(~78,600 USD) and weight of 1193 kg could analyze about 200 circular slip surface 

using Bishop method within 30 min (Barrett, 2004). 

 

1.2 Problem Statement 

Although slope stability analysis has become more elaborate and successful with 

improvements in computer technology, the issue of locating the slip surface with the 

minimum FS is still believed to be an NP-hard (non-deterministic polynomial-time) 

problem (Cheng et al., 2012). It means that there does not exist any algorithm that 

can find this critical slip surface among many trial slip surfaces in a polynomial time. 

In other words, the CPU time increases rapidly as the dimension of the search spaces 

increases, and it becomes impossible to explore all trial slip surfaces. For this reason, 

heuristic global optimization algorithms are employed to find, with no guarantee, the 

critical slip surface in an acceptable time (e.g., Kahatadeniya et al., 2009; Dong et al., 

2010; Khajehzadeh et al., 2011b; Cheng et al., 2012). These algorithms have usually 

produced good results that are believed to be near to the actual critical slip surface. 

However, the lack of guarantee in the quality of results and the “No Free 

Lunch” (NFL) theorems (Wolpert & Macready, 1997) seem to have made the 

problem of locating the critical slip surface an endless research. According to the 

NFL theorems, no optimization algorithm can perform well for all types of problems. 

A quick literature review shows that this statement holds in slope stability analysis. 

Zolfaghari et al. (2005) used genetic algorithm (GA) to find the critical slip surface 

of a slope with complex soil layering, and found the minimum FS=1.24. Later on, 

Cheng et al. (2007) employed particle swarm optimization (PSO) for the same slope 
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and reported a more critical slip surface with FS=1.11. While the performance of 

PSO for this slope was promising, Cheng et al. (2008) encountered a cross section of 

an important dam project for which the PSO produced poor result (min. FS=3.37). 

They adopted the artificial fish swarms algorithm (AFSA), and minimum FS=2.67. 

Recently, Cheng et al. (2012) have presented another cross section of this dam 

project for which neither the AFSA nor the PSO can produce satisfactory results. 

They have shown that a coupled PSO and harmony search (HS), called HS/PSO, is 

robust for this problem. The minimum FS reported by PSO, AFSA, and HS/PSO are 

2.18, 1.83, and 1.65, respectively. 

While research on locating the critical slip surface should remain active, there 

may exist other slip surfaces that are as important as the critical slip surface in 

practical analyses. A slip surface is important, if it is located far away from the 

critical slip surface, but gives FS close to the minimum FS or the consequences of 

failure along the slip surface is serious. Since the input parameters in slope stability 

analysis (e.g., shear strengths and unit weights) are often defined with limited 

accuracy, such slip surfaces may have the same likelihood of failure as the critical 

slip surface. Therefore, practical designers must consider them, in addition to the 

critical one, for possible slope stabilization works. Currently, these slip surfaces are 

detected by running the optimization algorithm several times, each time restricted to 

a different search space. This approach requires a strong engineering experience to 

divide the search space so that there exist only one important slip surface in each run 

of the algorithm, otherwise some of them will be missed. Therefore, in addition to 

the regular heuristic algorithms, which aim to find a single global optimum, this 

thesis will also study the usefulness of multi-modal heuristic algorithms in capturing 

several global and local optima in a single run. 
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Two previous paragraphs suggest that there is a need to constantly implement 

and test different optimization algorithms, and employ the suitable one for the target 

slope. However, implementation of optimization algorithms in slope stability 

analysis is often not straightforward because it requires internal links to the LEM. 

For example, upper and lower bounds for parameters that define a trial slip surface in 

LEM must be known to the optimization algorithm, and more importantly, these 

bounds may change in each iteration step. Therefore, it is desirable to develop a 

decoupled algorithm composed of LEM and optimization sub-algorithms so that they 

communicate through an interface and the internal details of sub-algorithms are 

encapsulated and hidden from each other. This decoupling strategy allows for easy 

implementation of optimization algorithms in slope stability analysis. 

In addition to the decoupling strategy, utilizing parallel computing can also 

be of great interest in computer aided slope stability analysis. This is particularly 

important for very complicated slopes where optimization algorithms require many 

trials. The need for parallelization became more evident around 2005 when CPU 

manufacturers began to produce processors with frequencies higher than 4 GHz, and 

encountered some physical limits such as heat, power consumption, and leakage 

current. These problems led to a radical change in CPU technology from single-core 

architectures to multi/many-core architectures, which marked the end of “free ride” 

era for computer programs. Prior to this, there was no need to redesign the structure 

of programs and they automatically ran faster with each new generation of CPUs. 

However, it is no longer possible to rely on this “free ride” and redesigning is 

necessary to exploit the full performance of multi-core CPUs. 
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1.3 Objectives of the Study 

Considering the issues discussed in the previous section, three objectives are defined 

for this thesis: 

i. To develop a decoupled algorithm for slope stability analysis composed of 

LEM and optimization sub-algorithms so that they communicate through an 

interface. 

ii. To implement three state-of-the-art optimization techniques in this decoupled 

algorithm and study their effectiveness and efficiency in detecting 

single/multiple global and local minima. 

iii. To develop a multithreaded version of this decoupled algorithm and study the 

performance benefits of using parallel computing technique. 

 

1.4 Scope of the Research 

Although slope failure mechanisms are three-dimensional in nature, this research 

adopts two-dimensional modeling for slope stability analysis. As shown by other 

studies, this simplification is usually on the safe side, i.e., the minimum FS 

calculated in two-dimensional is lower than the minimum FS calculated in three-

dimensional. Moreover, the LEM sub-algorithm of this research considers only 

weight of soil and piezometric condition as the driving forces that contribute to slope 

instability, and on the other hand, considers only soil shear strengths (frictional and 

cohesive forces) as the resisting forces that help to maintain a slope stable. It, 

however, should be noted that extending the LEM sub-algorithm to consider more 

parameters such as surcharge loads, seismic forces, and soil nails does not require re-

designing the decoupled algorithm developed in this research. Finally, this study 
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performs parallel computing only on multi-core CPUs, and does not utilize the 

parallel structure of GPGPU (general-purpose computing on graphics processing 

units). 

 

1.5 Structure of the Thesis 

This thesis consists of five chapters. A necessary background of the study, followed 

by the problem statement and objectives are given in chapter 1 (current chapter). 

Chapter 2 discusses previous research studies related to limit equilibrium methods 

and global optimization algorithms. A brief background on parallel computing is also 

presented. The research methodology that have been employed to approach the thesis 

objectives are described in Chapter 3. Chapter 4 presents the results and discussions 

obtained from analyzing a number of test problems. Finally, conclusions of this study 

and some suggestions for future research are given in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Evaluating stability of the slopes is a big challenge for geotechnical engineers, even 

after decades of experience, which unfortunately often has been gained from slope 

failures. The most common methods for slope stability analyses are limit equilibrium 

methods (LEM) and finite element methods (FEM). This study focuses on the LEM 

and its associated part, which is optimization. An optimization run is successful if 

minimum FS is reached with the given precision within defined number of iterations. 

To reduce the time of computations, parallel computing is introduced in the last 

section of present chapter and implementation of it is brought in the next chapter. 

 

2.2 Limit Equilibrium Method 

 For evaluating stability of slopes by LEM, failure modes are approximated by slip 

surfaces and factor of safety (FS) of them is calculated. Slip surface in any shape 

including circular (Figure 2.1) or non-circular (Figure 2.2) that produces the 

minimum factor of safety is called critical slip surface and its corresponding factor of 

safety is taken for design purposes. 

Only three control variables are needed to represent a circular slip surface: 

horizontal position of entrance, horizontal position of exist of slip surface on the 

ground and radius of the circle. 
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Figure 2.1: Circular slip surface with radius R. 

 For the non-circular slip surfaces, a set of connected lines with n vertices 

whose coordinates {(x1,y1),(x2,y2),…,(xn,yn)} are the unknowns of the slope stability 

problem, approximate the slip surface. First and last vertices stay on the ground 

surface of the slope while the others are below it. The vertices are well distanced, so 

that mutual interferences are avoided (Greco, 1996).  

 

Figure 2.2: Non-circular slip surface 

Beside more number of vertices represents the critical slip surface better, by 

increasing the number of vertices, the degree of approximation of a slip surface 

increases and optimization algorithms require more trials to find the global 

minimum. Li and White (1987) proposed a method to generate slip surface with 

enough large number of vertices without the problem of interferences among 

vertices. In their method, first search is performed with a few vertices. Then, at the 

midpoint of each line that joins adjacent vertices, a new vertex is introduced. As the 

second step, the slip surface of the previous search with added vertices is assumed as 

the trial slip surface. For combining the speed and robustness of using large number 
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of vertices by the purposed method by Li and White (1987), Greco (1996) used three 

different numbers of vertices. In the first step, Greco (1996) used four vertices, and 

then he extended it to 7 and 13 vertices at the third search. He found no improvement 

in his results after using 13 vertices and commented on sufficiency of 13 or even 7 

number of vertices for most practical purposes. 

There are other constraints for trial slip surfaces that suggest generating 

concave upward slip surfaces (Basudhar et al., 1988), however, in the layered soils, 

due to stratigraphic conditions, part of the slope could be convex and upward 

concavity constraint can lead to error (Greco, 1996). 

To compute the factor of safety, soil mass bounded beneath by the assumed 

slip surface and above by the ground surface is divided into a finite number of slices , 

which can be vertical, horizontal, or oblique; however, the vertical slip surfaces are 

more common (Figure 2.3). Duncan and Wright (2005) discussed the required 

number of slices for best approximation of FS. 

 

Figure 2.3: Slicing the slip surface vertically in LEM. 

An important aspect of slicing is to ensure that only one soil type exists at the 

bottom of each slice. It can be achieved by using so many slices, which of course is 

inefficient. Commercial software of SLOPE/W (Krahn, 2004), has simple rules for 

slicing that are described in some steps here. According to Figure 2.4, the first 
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section starts on where the slip surface enters the ground surface and last section 

ends where the slip surface exits the ground surface. Other sections occur where: 

1) The slip surface crosses the piezometric line, 

(2) The slip surface crosses a stratigraphic boundary, 

(3) Wherever there is a region point, and 

(4) Where the piezometric line crosses a soil boundary. 

 

Figure 2.4: Sections in the slice discretization process (After Krahn, 2004) 

 

In the next step, SLOPE/W finds the horizontal distance from slip surface 

entrance to exit and divides this distance by the number of desired slices specified by 

the user (the default is 30). In this way, an average slice width is determined. The last 

step is to compute how many slices of equal width can fit into each section. If very 

thin slices are generated in the slope, this may introduce some numerical problems in 

the code and very thin slices must be deleted (Krahn, 2004). 

 After slicing the assumed slip surfaces, depending on the LEM method that 

is used, one or both of below static equilibrium equations are written and solved for 

slices: 

1) Equilibrium of forces in the vertical and horizontal direction, 

2) Equilibrium of moments about any point. 
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Duncan and Wright (2005) explained different procedures of LEM and 

determined the type of the equilibrium equations that are satisfied and assumptions 

that are made in each method. Some of these LEM methods are listed in Table 2.1. 

Duncan and Wright (2005) presented a table in which conditions of practical 

usefulness for each LEM procedure is mentioned. 

Table 2.1: LEM methods and equations of statics that are satisfied for each method 

Method 
Force Equilibrium Moment 

Equilibrium X direction Y direction 

Ordinary method of slices (Fellenius, 
1936) 

No No Yes 

Bishop (Bishop, 1955) No Yes Yes 

Janbu’s simplified (Janbu et al., 1956) Yes Yes No 

Spencer (Spencer, 1967) Yes Yes Yes 

Morgenstern-Price (Morgenstern & 
Price, 1965) 

Yes Yes Yes 

 

 

2.2.1 General limit equilibrium method (GLE) 

A general limit equilibrium method by Fredlund and Krahn (1977) and 

Fredlund et al. (1981) encompasses all the method in Table 2.1 and works for a range 

of inter slice forces assumptions. In the GLE, relation between inter-slice forces, 

which are depicted in Figure 2.5 as E and X, are handled with an equation proposed 

by Morgenstern and Price (1965) as Equation 2.1 that can be rewritten separately for 

the right and left forces in Equation 2.2. 

X = E λ f(x)                                                                              (2.1) 

(XR-XL) = (ER-EL) λ f(x)                                                          (2.2) 



 

where:  

f(x) = inte
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where:  

c' = effective cohesion 

β = the base length of each slice. 

R = the radius for a circular slip surface or the moment arm associated with the 

mobilized shear force for any shape of slip surface. 

φ′  = effective angle of friction 

u = pore-water pressure 

W = slice weight 

x = the horizontal distance from the centerline of each slice to the center of rotation 

or to the center of moments. 

f = the perpendicular offset of the normal force from the center of rotation or from 

the center of moments. It is assumed that f distances on the right side of the 

center of rotation of a negative slope (i.e., a right-facing slope) are negative 

and those on the left side of the center of rotation are positive. For positive 

slopes, the sign convention is reversed. 

α = inclination of base slice 

N = normal force at the base slice that is calculated by: 

( sin sin tan )( )

sin tancos

R L
c uW X X FSN

FS

β α β α ϕ

α ϕα

+′ ′− − −
=

′+
 

                             (2.5) 
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FS in Equation 2.5 is FSm or FSf, depending on N is going to be used in 

Equation 2.3 or Equation 2.4, respectively. ER-EL that is appeared in Equation 2.2 is 

calculated as follows: 

( tan )cos tan cos( ) ( sin )R L
c uE E NFS FS

β β ϕ α ϕ α α−′ ′ ′− =− + − +        (2.6) 

In the first step of GLE, Lambda (λ) is set to zero for simplicity, so the inter 

slice shear forces and obviously (XR-XL) are zero. Hence, “N = W cosα” and 

Equation 2.3 will be reduced to Equation 2.6. 

( ( cos ) tan )
sinm

c R W u RFS W R
β α β ϕ

α
+ −′ ′=
      

                            (2.7) 

FSm in Equation 2.7 is calculated directly without any iteration and is 

equivalent to the Ordinary Method of Slices (OMS). In case of circular slip surfaces, 

R is constant and it will be removed from Equation 2.7. Since the only unknown 

parameter in N (Equation 2.5) is FS, FS=1, or FS=OMS, or FS=OMS×1.2, etc are 

used as guessed FS and FSm is obtained from Equation 2.3. Then, If |ܵܨ௠ െ݃ܵܨ ݀݁ݏݏ݁ݑ| ൏ tolerance , the solution is converged. Otherwise, obtained FSm is 

used as a new guess for FS in Equation 2.5 and the procedure will be repeated until 

convergence is achieved or failure to converge happens. The same procedure should 

be done for FSf using Equations (2.3) and (2.4). In this stage, the obtained FSm 

corresponds to Bishop’s simplified method and the obtained FSf corresponds to 

Janbu’s simplified method without any empirical correction. The last stage is to find 

a λ for which FSm and FSf are equal within a defined tolerance. 
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2.3 Location of the critical slip surface 

The process of locating the critical slip surface, which has the lowest FS, can be 

viewed as the problem of finding the global minimum of a function, called “objective 

function” in mathematical optimization terminology. Result of optimization 

algorithms are global and local optima (if there existed any local optima), whether 

minimum or maximum. Absolute or global minimum is the smallest value that a 

function takes at a point within entirely function domain (Point G in the Figure 2.6). 

Local minimums refer to points, which have minimum values of objective function 

within some neighborhood (Points A, B, C and D in Figure 2.6).  

 

Figure 2.6: Illustration for global and local minimums 

 Input of global optimization methods for the slope stability problems are trial 

slip surfaces that try to converge to minimum FS. Inputs of non-circular cases are 

[x,y] coordinates of a slip surface and for circular slip surfaces are [R,(Ox,Oy)], 

where R is radius of the circle, and (Ox,Oy) is the center of circle. The optimization 

process predict a new set of input based on the output of each step, until a set of [x,y] 

or [R,(Ox,Oy)] is found for which FS is minimized. For circular slip surfaces a wide 

range of [R, (Ox,Oy)] can be tried, however it is not a good practice to give any [x,y] 

coordinates as slip surface to the objective function in slope stability, because they 
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may form ill-shaped slip surface (Figure 2.7). Hence, some approaches are proposed 

by researchers (Cheng, 2003) to generate smooth and concave-upward slip surfaces. 

 

Figure 2.7: A fluctuation slip surface (after Zolfaghari et al. 2005) 

 

In practice, it is usually difficult to have a good initial trial failure surface that 

is valid for general conditions. Even for the acceptable trial slip surfaces, failure to 

converge may happen, hence the objective function may not be continuous over the 

whole solution domain (Cheng et al., 2008). Cheng et al. (2008) developed five 

procedures for generating slip surfaces and commented on the applicability of each 

method for a case study with a thin soft layer of soil. Slopes that have irregular shape 

or soft layers are referred as complex problems are also called “slopes with weak 

seams”. Cheng et al. (2008) noted that factor of safety of such case is very sensitive 

to the precise location of the critical solution and the differences between the results 

of the optimization methods for them are large. Figure 2.8 illustrates a slope 

containing an inclined thin layer which Ching et al. (2009) used to highlight the 

difficulties of LEM in slopes with weak seams. 
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Figure 2.8: Slope with inclined thin clay layer (After Ching et al., 2009) 

In different fields of study, so many comparisons between optimization 

algorithms are made that are varying in their operators and working principles but 

they are confusing and limited to the test problems used in their study. Some 

algorithms are complementary to each other and an algorithm, which works 

satisfactory for one study, may not work in other problems. However, improvement 

in an optimization method may improve other methods such as the termination 

criterion that is an important factor in efficiency of optimization algorithms. For 

optimization algorithms, a suitable number of trials must be defined. While there are 

no guidelines, researchers have to find optimum number of trials by a trial and error 

process. If a large number of trials are tried out, a minimum may be found at early 

stages and the rest of trial and error process does not improve the result (Cheng et al., 

2008). The process cannot terminate at early stages because optimization algorithms 

proceed until a specified number of slip surfaces have been explored. Cheng et al. 

(2008) introduced a termination criterion for an optimization method called original 

harmony search (HM) algorithm and modified HM to Modified harmony search 

algorithm (MHS). In Cheng’s et al. (2008) termination criterion, the algorithm is said 

to have reached quasi- convergence if the difference between the found FS value of 

the best and the worst is lower than a pre-specified convergence criterion. Modified 

harmony search by Cheng’s et al. (2008) termination criterion is found to be very 
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efficient compared with other global optimization techniques (Cheng et al. 2008). 

However, when there are more than 25 variables, both original and modified 

harmony search algorithms require a large number of trials to find a good solution 

To begin the literature review from simple algorithms, a good example is 

application of the Monte Carlo technique for locating the critical slip surface by 

means of iterative procedures, purposed by Greco (1996) as an easily programmable 

technique. The benefit of these techniques toward the previous works is its 

simplicity, as it does not require derivatives of FS. Generation of slip surfaces in 

Monte Carlo method is based on random numbers and moving to the next step or 

substitution the coordinates of the vertices toward less FS is random (random walk). 

Then calculated FS are compared with the best solution of previous step for 

improvement. Monte Carlo based optimization methods may be divided into two 

classes: random walk and random jump (Malkawi et al., 2001). The difference 

between random jump and random walk is that every trial solution in random walk is 

constructive and it use information of previous trials, but trial slip surfaces in random 

jump are generated without considering previous achievements. 

The drawback of using Monte Carlo techniques in locating critical slip 

surface is discussed by Greco (1996). In his viewpoint, the method must be used only 

for finding local minimums especially in layered slopes. For the global minimum, 

this method must be used iteratively to evaluate all possible local minima and take 

the lowest as global minima.  

More recently, Taha et al. (2010) presented a survey of the literatures on 

various optimization methods and grouped the optimization methods into two 

categories: heuristic and second methods that are based on gradient information of 
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objective function and constraints. Following the works of Taha et al. (2010), a list of 

conventional and modern methods applied to slope stability analyses in the literatures 

are reviewed in Table 2.2 with a short description of each method. In the following, 

some of the algorithms that have been demonstrated to be computationally superior 

to the other optimization algorithms are described in detail. 

Table 2.2: Traditional and modern optimization methods to locate the critical 
slip surface in slope stability 

Methods Authors Descriptions 
Calculus of 
variations 

Baker & Gaber (1978) 
Too complicated for complex problems, which do not 

have regular geometry. 
Dynamic 

programming 
Yamagami & Jiang 

(1997) & Baker (1980) 
 

Calculus of 
variations 

Celestino & Duncan 
(1981) 

Alternating variable methods to locate the critical non-
circular slip surface. 

Combination 
method 

Chen and Shao (1983) 
Steepest descent, and the Davidson–Fletcher–Powell 

method in conjunction with a grid search solution 
Simplex method Nguyen (1985) It has been successful for relatively simple problems 

Genetic algorithm Kirkpatrick et al. (1983)  
Downhill simplex Bardet& Kapuskar(1989) Downhill simplex algorithm 
RST-2 algorithm Jade& Shanker (1995) This optimization is used for Janbu method  

Monte Carlo Greco (1996) 
Monte Carlo technique to search for the critical slip 

surface 

Monte Carlo Malkawi et al. (2001) 
They adopted the Monte Carlo technique to search 

for the critical slip surface 
Simple Genetic 

algorithm 
McCombie& Wilkinson 

(2002) 
For the circular Bishop method 

Simulated 
annealing 
algorithm 

Cheng (2003) 

Transformed the various constraints & the 
requirement for kinematically acceptable 

mechanisms on the slip surface to the evaluation of 
upper and lower bounds of the control variables 

leap-frog Bolton et al. (2003) For the simplified Janbu and Spencer methods 
Combination 

methods 
Zolfaghari et al. (2005) 

They combined the simple genetic algorithm with the 
Morgenstern–Price method 

Improved genetic 
angorithm 

Wan et al.(2005) 
Higher efficiency & shorter time than simple genetic 

anlorithm 
Particle Swarm 
Optimization 

(PSO) 

Kennedy & Eberhart, 
(1995), Cheng et al. 

(2007a) 
 

Harmony search Cheng et al. (2008) 
An improved harmony search more efficient than 

original harmony search (Geen et al. 2001) 
Artificial fish 

swarm 
Cheng et al. (2008) 

Artificial fish swarm coupled with the slip surface 
generation method by Cheng et al. (2007a) 

Ant colony 
algorithm 

Kahatadeniya et al. 
(2009) 

By using Morgenstern–Price method 

 

Heuristic global optimization methods, by speeding up the process of finding 

a satisfactory solution, have attracted the attention of many geotechnical researchers 
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in the recent years. Although heuristic algorithms do not guarantee that the best 

answer will be found, they are used in slope stability for dealing with optimization of 

difficult non-continuous, non-convex functions. Heuristic methods imitate natural 

phenomena like genetics in genetic algorithm by Holland (1975), simulated 

annealing method by human memory in the Tabu search (Glover, 1989), musical 

process of searching for a perfect state of harmony in the harmony search algorithm 

(Geem et al. 2001) and Particle Swarm Optimization (PSO) algorithm that imitates 

birds’ searching food principle.  

In May 2005, a technical report for the 2005 IEEE Congress on Evolutionary 

Computation (CEC 2005) released by Nanyang Technological University of 

Singapore contained 25 benchmark functions under thoroughly defined experimental 

and recording conditions. Some optimization algorithms in CEC 2005 by specifying 

a common termination criterion, initialization scheme, size of the problems, etc were 

evaluated systematically and the results were published in 13 papers. Scalability 

studies of CEC 2005 contests demonstrate how the running time/evaluations increase 

with an increase in the problem size. Some real world problems were also included in 

their standard test that suite with codes. These benchmark functions were categories 

in Pseudo-Real Problems and basic, Expanded, unimodal, Multimodal and hybrid 

Composition functions.  

After Cheng et al. (2007a) have carried out detailed comparisons between six 

major types of heuristic global optimization methods and the sensitivity of these 

methods under different optimization parameters, they commented that there is no 

particular optimization method which is superior under all cases. 
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 2.3.1 Composite Differential Evolution (CoDE)  

Recently, Wang et al. (2011) have proposed composite differential evolution, CoDE. 

This algorithm has been tested on all CEC2005 contest instances, and experimental 

results show that it is very competitive optimization algorithm. Figure 2.9 presents 

the pseudocode of CoDE algorithm. The inputs of this algorithm are population size 

(NP), maximum number of iterations (Max_FES), three different strategy candidate 

pools, and three different parameter candidate pools. At first, CoDE randomly 

generates NP individuals as a population, and evaluates their objective function. 

Then, for each individual, three trial vectors are generated by combining three 

strategies with three control parameters settings in a random way. The best trial is 

chosen for the next generation, and the process repeats until Max_FES is reached.  

 

Figure 2.9: Pseudocode of CoDE (After Wang et al., 2011) 
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2.4 Multimodal Optimization 

 Beside many researchers have adopted different methods to search for the global 

minimum, multiple local minimums exist and many solution methods can be trapped 

by the existence of a local minimum easily. Although it is often desirable to escape 

from local minima, sometimes the detection of all local minima becomes important. 

For example, there are cases that FS of local minima are close to global minimum 

while their corresponding locations are far from global minimum. In such cases, 

locations of local minima are important for stabilization purposes and optimization 

problems may not capture them (Duncan and Wright, 2005). Furthermore, there are 

some local minima (slip surface) that are so much deeper than global minima and if 

failure happens in their locations, damage is more vital than shallow slip surface 

which has lowest FS (Duncan and Wright, 2005). Optimization methods may not be 

intelligent enough to report such situations. For example, the shallow slip surface in 

the Figure 2.10 has the minimum factor of safety (1.15) and is global minimum; 

however, there is a deeper circle with higher FS (FS=1.21) as a local minimum. 

 

 

Figure 2.10: Slope with shallow global slip surface and deeper, locally critical circle 
(After Duncan and Wright, 2005) 
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In addition to the problem of local minima, in some slopes there are more 

than one slip surface with the same FS, which all are critical. Griffiths et al. (2012) 

presented an example slope, in which three failure modes with the same FS are found 

by FEM (Figure 2.11). They commented on inability of many LEM approaches to 

locate the multiple failure modes, as LEM require pre-assumption of failure 

mechanism.    

 

Figure 2.11: Multiple failure mechanisms of an undrained slope (after Griffiths et al., 
2012) 

 

In such cases, population-based approaches like evolutionary algorithms 

(EAs) can detect multi modes of failure in slopes within a single run (Das et al., 

2011). Optimization techniques that find multiple local and global optima 

simultaneously are referred to as multimodal optimization methods. Standard 

evolutionary optimization algorithms can be promoted to incorporate niching 

techniques for locating multiple good solutions rather than only the best solution. A 

state of art review of such techniques is available in Das et al. (2011) with detailed 

explanations on how these techniques can be implemented form basics to more 
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professional clustering techniques. Another comprehensive study is done by Singh 

and Deb (2006). They implemented seven multi-modal optimizations and compared 

the results for three problems. 

2.6 Parallel Computing 

Parallel computing is dividing a problem into discrete parts and application of 

multiple computer resources simultaneously (for example multiple CPUs) to solve 

each part of the problem. The aim of parallel processing in computer science is to 

reduce the computation time and increase the efficiency of complex algorithms 

toward a single computer resource. A schematic view of parallel computing is 

presented in Figure 2.12 for illustration. 

 

Figure 2.12: Parallel computing  

Although by development of the computers, parallel processing is achievable 

more easily than past decades; some algorithms inherently cannot be parallelized or 

only some parts of the code can be modified for parallel computing. Therefore, it is 

necessary to identify independent set of instructions that can be run in parallel.  

Using shared-memory parallel computers or multiprocessor computers in 

geotechnical engineering to speed up the programs is not very common. There are 
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