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KETEGAPAN BIOLOGI, PENCIRIAN KERINTANGAN, PENILAIAN 

RISIKO KERINTANGAN DAN PENGUJIAN UMPAN TERPILIH 

PADA STRAIN LIPAS JERMAN, Blattella germanica (LINNAEUS) 

(DICTYOPTERA: BLATTELLIDAE) YANG DIPILIH OLEH UMPAN 

FIPRONIL DAN INDOXACARB 

ABSTRAK 

Kajian ini berfokus pada kerintangan insektisid pada lipas Jerman.Beberapa 

aspek yang telah disiasat termasuk ketegapan biologi, ketoksikan insektisid, potensi 

kerintangan silang, peningkatan kerintangan dan penilaian risiko, mekanisme 

kerintangan yang terlibat serta ujian keberkesanan umpan. 

 Ketegapan biologi yang terpilih telah dibandingkan antara lipas Jerman yang 

rintang insektisid dan yang rentan insektisid. Kebanyakan strains rintang 

menunjukkan tiada perbezaan yang signifikan dalam tempoh perkembangan nimfa, 

tempoh praoviposisi, tempoh pengeraman, penghasilan nimfa dan ooteka, ukuran 

ooteka, ketahanan hidup nimfa dan tempoh hayat berbanding dengan strain rentan. 

Keputusan ini menunjukkan bahawa allele kerintangan adalah tidak memudaratkan 

dalam aspek ketegapan. 

 Sepuluh insektisid dari kelas yang berbeza digunakan dalam bioassay topikal 

untuk menentukan tahap kerintangan insektisid. Semua strain lapangan lipas Jerman 

menunjukkan kerintangan yang rendah atau tiada kerintangan terhadap acetamiprid 

(0.7‒1.9x), imidacloprid (1.6‒2.5x), chlorantraniliprole (2.3‒4.0x), bendiocarb 

(2.1‒2.7x) dan fipronil (1.6‒2.8x), tahap kerintangan yang sederhana terhadap 

indoxacarb (2.5‒9.9x) dan chlorpyrifos (2.6‒8.7x), tahap kerintangan yang tinggi 

terhadap DDT (>2.6x) dan deltamethrin (5.8‒55.6x). Korelasi positif yang signifikan 
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telah dikesan antara ketoksikan dieldrin dengan fipronil, mencadangkan bahawa 

kerintangan silang antara dua insektisid ini. Strain terpilih fipronil didapati 

berkembang kerintangan kepada fipronil dan dieldrin selepas pemilihan lima 

generasi, manakala strain terpilih indoxacarb dikesan berkembang kerintangan 

terhadap indoxacarb sahaja. Keputusan ini menunjukkan bahawa proses pemilihan 

telah didapati telah dialih kepada mekanisme kerintangan itu yang indoxacarb 

spesifik. Kedua-dua kerintangan insektisid telah dibuktikan bebas daripada laluan 

metabolik melalui kajian sinergisme dan biokimia. Kerintangan fipronil dalam strain 

lipas kami disahkan disebabkan oleh mutasi A302S Rdl pada reseptor GABA.  

Tiga strain lipas digunakan untuk menilai risiko kerintangan terhadap dua 

insektisid, fipronil dan indoxacarb. Pewarisan yang sebenar (h2) terhadap kerintangan 

fipronil dalam strain lipas kami berjulat dari 0.336–0.600, manakala kerintangan 

indoxacarb h2 berjulat dari 0.197–0.475. Kami meramalkan bahawa 3–21 dan 2–17 

generasi adalah diperlukan untuk berkembang kepada 10 kali ganda kerintangan 

terhadap fipronil dan indoxacarb masing-masingnya, berdasarkan kepada semua 

kombinasi yangberkemungkinan antara anggaran cerun dan h2 di bawah tekanan 

pemilihan 50–90% mortaliti. 

Berdasarkan asei topikal, strain lipas terpilih fipronil mempamerkan 

kerintangan yang tinggi dan sangat tinggi terhadap fipronil (51.7x), indoxacarb 

(170.4x) dan dieldrin (3257.1x), manakala strain terpilih indoxacarb hanya 

menunjukkan kerintangan yang tinggi terhadap indoxacarb (387.3x). Secara 

umumnya, kedua-dua strain terpilih kekal rentan terhadap semua formulasi umpan. 

Walau bagaimanapun, kami memerhatikan tahap peningkatan kerintangan silang 

yang rendah terhadap insektisid lain, mengesyorkan bahawa kedua-dua populasi 

rintang berkemungkinan kerintangan terhadap formulasi umpan pada masa depan. 
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BIOLOGICAL FITNESS, RESISTANCE CHARACTERIZATION, 

RESISTANCE RISK ASSESSMENT AND EVALUATION OF 

SELECTED BAITS ON FIPRONIL- AND INDOXACARB BAIT-

SELECTED STRAINS OF THE GERMAN COCKROACH, Blattella 

germanica (LINNAEUS) (DICTYOPTERA: BLATTELLIDAE) 

ABSTRACT 

 This study focuses on insecticide resistance in the German cockroach. Several 

aspects were investigated, including biological fitness, insecticide toxicity, cross-

resistance potential, resistance development and risk assessment, resistance 

mechanisms involved as well as bait performance evaluation.  

 Selected biological fitness were compared between insecticide-resistant and 

insecticide-susceptible German cockroaches. Most resistant strains showed no 

significant difference in nymphal development period, preoviposition period, 

incubation period, nymphal and oothecal production, ootheca measurements, 

nymphal survivorship, and adult longevity compared to those of the susceptible 

strain. These results indicate that the resistant allele is not deleterious in aspect of 

fitness.  

 Ten insecticides from different classes were used in topical bioassay to 

determine insecticide resistance level. All field-collected strains of the German 

cockroach showed low or no resistance towards acetamiprid (0.7–1.9x), imidacloprid 

(1.6–2.5x), chlorantraniliprole (2.3–4.0x), bendiocarb (2.1–2.7x) and fipronil (1.6–

2.8x), moderate levels of resistance to indoxacarb (2.5–9.9x) and chlorpyrifos (2.6–

8.7x), high levels of resistance to DDT (>2.6x) and deltamethrin (5.8–55.6x). 

Significant positive correlation was detected between toxicity of fipronil and dieldrin, 
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suggesting that cross-resistance between these two insecticides. Fipronil-selected 

strains were found to develop resistance to fipronil and dieldrin after five generations 

of selection, whereas indoxacarb-selected strains were detected to increase resistance 

to indoxacarb only. This result shows that selection process appeared to have shifted 

the resistance mechanism to one that is indoxacarb specific. Both insecticide 

resistances were proven to be independent from metabolic pathway through 

synergism and biochemical assays. Fipronil resistance in our cockroach strains was 

confirmed conferred by A302S Rdl mutation in GABA receptor.  

 Three cockroach strains were used to assess resistance risk to two insecticides, 

fipronil and indoxacarb. The realized heritability (h2) of fipronil resistance in our 

cockroach strains ranged from 0.336–0.600, whereas h2 of indoxacarb resistance 

ranged of 0.197–0.475. We predicted that 3–21 and 2–17 generations are required to 

develop 10-fold resistance to fipronil and indoxacarb, respectively, based on all 

possible combinations of these estimated slopes and h2, under selection pressure of 

50–90% mortality. 

 Based on topical assay, fipronil-selected cockroach strain exhibited high to 

very high resistance to fipronil (51.7x), indoxacarb (170.4x) and dieldrin (3257.1x) 

whereas indoxacarb-selected strain only showed high resistance to indoxacarb 

(387.3x). Generally, both selected strains remains susceptible to all bait formulations 

studied. However, we observed low level of cross-resistance to other insecticides, 

recommending that both resistant populations might potentially develop resistance to 

other bait formulations in future. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

The German cockroach, Blattella germanica (L.), is one of the prominent 

pest insect in the urban environment. It has become a very successful insect pest in 

many parts of the world due to their rapid reproduction and high adaptability. In 

addition, world globalization has connected all countries together through a global 

transportation network and resulted in spreading the German cockroach throughout 

the world. The swift increase of cockroach populations in human environment has 

brought many serious economic and medical problems to the public, thereby giving a 

significant challenge to the field of entomology research and the pest management 

industry. German cockroach is recorded to transmit various pathogenic organisms, 

including bacteria, helminthes, protozoans and viruses (Brenner 1995, Lee 1997a, 

2007, Lee and Ng 2009). Accidental ingestion or inhalation of cockroach allergen, 

found in cockroach dead body, fecal materials, saliva and chitin skin, may trigger 

allergy and asthma, especially among children (Helm et al. 1996, Yu and Huang 

2000, Chapman and Pomes 2008). German cockroaches remain a domiciliary pest 

cockroach species in most of the countries whereas in South East Asian countries, 

such as Malaysia and Singapore, they are more predominant in hotel kitchens and 

food preparation outlets (Lee and Ng 2009). 

Nowadays, chemical control remains a major method in German cockroach 

management, but the efficiency of this method has declined due to the development 

of resistance to various insecticides. Currently, German cockroach has been reported 

to be resistant or cross-resistant to almost all insecticide classes. This resistance issue 

is an important aspect to be observed and understood. Indeed, every resistance case is 

important in developing a better management programance and thus, improving 
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human existence and the environment. Moreover, knowledge is always obtained 

from looking back and using previous experience to create an effective control 

strategy. Besides, cross-resistance is also another important issue to be discussed and 

investigated. It potentially limits the lifetime of a newly-introduced insecticide. By 

understanding the potential cross-resistance, mechanism and development of 

resistance, the efficiency of control method can be improved and the probability of 

control failure using new insecticides can also be minimized. The cross-resistance 

reports together with the survey of the resistance status of the populations are 

important final steps of the testing procedure for a newly-launched pest control 

material. 

In order to achieve the aims that were previously mentioned, this study was 

carried out with several objectives: 

1) To measure the life-history variables, including developmental period, 

fecundity as well as adult longevity of both sex, between field-collected 

and laboratory insecticide susceptible strains of B. germanica. 

2) To inspect the insecticide resistance level of field-collected strains of B. 

germanica from Singapore through topical and bait assays, examine the 

resistance mechanism through synergism and biochemical studies after 

laboratory selection process. 

3) To investigate the fipronil and dieldrin resistance in field-collected strains 

of B. germanica, determine potential cross-resistance between fipronil 

and dieldrin and elucidate the fipronil resistance mechanism through 

synergism, biochemical and molecular detection of target site mutation 

after selection process. 
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4) To assess the resistance risk in three strains of B. germanica to fipronil 

and indoxacarb based on laboratory bait selection. 

5) To determine the susceptibility of several insecticides of fipronil- and 

indoxacarb-selected strains of B. germanica and evaluate the bait efficacy 

in controlling the two selected strains of B. germanica under laboratory 

condition.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Cockroach (General) 

Cockroach is one of the most primitive insects that exist in this world since 

350 millions year ago. The fact has been confirmed by the discovery of the oldest 

cockroach fossil from the Silurian sandstone (Wootton 1981).Its morphology nearly 

remains unchanged since the Carboniferious era until the present (Appel 1995). 

There is very limited difference between the discovered fossil and the present 

cockroaches based on the insect body plan. Cockroaches have a generalized internal 

and external anatomy pattern. The cockroaches are grouped under the order 

Blattodea and their characteristics are closely related to the order Mantodea (praying 

mantis), because they share some similar morphological and biological 

characteristics. Both of these insect orders are able to produce hard shell covered 

eggs, ootheca. In addition, there are some shared biological features between 

cockroaches (Blattodea) and termites (Isoptera) such as the presence of digesting 

flagellate protozoa in the gut found in several wood-feeding cockroach species (such 

as Cryptocercus punctulatus) and termites (Carpenter et al. 2009). The characteristic 

of oothecae production by the primitive termite Mastotermes darwiniensis (Frogg) 

provides further evidence for the close relationship between cockroaches and 

termites and it was believed that termites were actually evolved from a wood-feeding 

cockroach ancestor. In 2007, Inward et al. (2007) proposed that termites are actually 

social cockroaches through phylogenetic analysis and should be classified in the 

same order with cockroach (Blattodea).  

Morphological, ecological and behavioral characteristics of cockroaches 

enable them to survive in varying habitats, from desserts, aquatic environments, 
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todark caves. Cockroach diversity appears to be more concentrated in humid and 

warm tropical rainforest regions and less diverse in the temperate regions (Guthrie 

and Tindall 1968). There are several interesting and significant features in cockroach 

evolutionary trends. One of the characteristics in their biology is their reproduction 

patterns. Cockroaches may be oviparous (extrude their oothecae at the posterior of 

the abdomen and deposit them on a surface or carry them for the whole incubation 

period), ovoviviparous (extrude and rotate their oothecae, then retract into female’s 

abdomen and life nymphs may emerge from the female) or viviparous (similar 

process with ovoviviparous, except nutrients and water are provided by the female 

during incubation period) (Roth 1970). Besides, very few cockroach species live 

completely solitary. In fact, most of the cockroaches show aggregation behavior 

during part of their life. Previous studies found that this aggregation behavior can 

shorten nymphal development period at least in the German (Izutsu et al. 1970) and 

American cockroaches (Wharton et al. 1967). This social interaction behavior 

potentially enable the transfer of protozoa from adult to immatures (Appel 1995), 

acceleration of female reproduction by stimulating juvenile hormone (Uzsak and 

Schal 2012), information transfer and collective decisions on shelter (Jeanson and 

Deneubourg 2007, Canonge et al. 2011) and feeding sites selection (Lihoreau and 

Rivault 2011) and kin recognition to avoid inbreeding (Lihoreau and Rivault 2010). 

Today, there are over 4500 species of roaches described, but only a limited number 

of species are associated with human environments and are classified as pests. Some 

of them are omnivores (cave cockroaches), scavengers, and also general feeders who 

feed on almost everything they encounter. One of the survival characteristic of pest 

cockroaches is they can eat almost everything in human habitations, including man-

made materials such as plastic and rubber (Bell et al. 2007). Besides, their high 



6 

 

adaptive ability has always brought problems to human living environments. The 

ease of accessing water in humid habitats and lesser fluctuations in temperature 

enable cockroach species to be widely distributed in the tropical and subtropical 

regions (Appel 1995).  

In Singapore and Malaysia, there are eight common cockroach species, five 

large-size species and three small-size species, recorded by Yap et al. (1991), Lee et 

al. (1993), Lee and Lee (2000a) and Lee and Ng (2009). The large-size cockroach 

species are namely the American cockroach (Periplaneta americana) (Linnaeus 

1758), Australian cockroach (Periplaneta australasiae) (Fabricius 1775), Brown 

cockroach (Periplaneta brunnea) (Burmeister 1838), Harlequin cockroach 

(Neostylopyga rhombifolia) (Stoll 1813) and Lobster cockroach (Nauphoeta cinerea) 

(Olivier 1789), whereas the small-size cockroach species are the Brown-banded 

cockroach (Supella longipalpa) (Fabricius 1798), German cockroach (Blattella 

germanica) (Linnaeus 1767) and Smooth cockroach (Symploce pallens) (Stephens 

1835). In the South-east Asia regions, the American cockroach is the most common 

species found in residential areas especially in sewer properties, whereas German 

cockroach prefer to inhabit food preparation outlets such as kitchens, hawker stalls, 

restaurants, etc.  

 

2.2 Biology of the German cockroach 

Scientific Classification 

Phylum: Arthropoda 

Class: Insecta 

Order: Blattodea 

Family: Blattellidae 
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Binomial name: Blattella germanica (Linnaeus) 1767 (Plate 2.1) 

The German cockroach, Blattella germanica (L.) is one of the most 

prominent household pests in the world. In Singapore and Malaysia, it is 

predominant in hotels and food preparation outlets and can be rarely found in 

residential premises. In contrast, in western countries such as the United States, it is a 

domiciliary pest cockroach species. The main reason is their preference to stay in 

warm and humid environment.  

Basically, they are general feeders and able to feed on organic materials, but 

with fondness for starchy food. They undergo incomplete metamorphosis and have 

three life stages: egg, nymph and adult. The eggs are covered by a brown and purse-

shaped capsule called, the egg case. The female will carry the egg case at the end of 

her abdomen until ready to hatch (Barson and Renn 1983). The ootheca is usually 7–

9 mm in length, average 3mm in width and contains approximately 30–48 eggs. An 

adult female normally produces 4–8 oothecae during her lifetime. The egg stage 

takes about 3–4 weeks to hatch depending on the environmental conditions. The 

nymphs of German cockroach resemble the adult with undeveloped wings and 

reproductive organs. They are black in colour with a pale yellow to brown stripe in 

the middle of the dorsum. Nymphs undergo 5–7 molting processes in a period of 6–7 

weeks in order to achieve maturity. Generally, female nymphs will take a longer time 

to reach adult stage than male nymphs. The adult body is about 10–15 mm in length, 

light brown in colour, and has two dark stripes separated by a pale band running 

down the pronotum. Both adult males and females are winged but they rarely fly and 

instead glide. On the average, adult cockroaches can live 4–6 months (Ross and 

Mullins 1995, Lee and Ng 2009). 
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Plate 2.1 Adult male of the German cockroach, Blattella germanica (L.) 
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According to previous studies, differences regarding biological parameter 

exist between resistant and non-resistant individuals of cockroach because these 

resistant genes have a deleterious effect on the different aspects of biological fitness 

in resistant individuals. Several studies reported that the resistant phenotypes 

potentially reduced the biological fitness resulting in smaller ootheca, fewer nymphs 

produced (Grayson 1953, 1954), lower body weight, longer incubation period, 

preoviposition period and nymphal development period (Ross 1991, Lee et al. 1996a) 

and shorter longevity (Perkins and Grayson 1961). 

 

2.3 Medical and Economic Importance of Cockroaches 

The German cockroach has a high reproductive ability and they can rapidly 

colonize a newly infested environment. High infestation of cockroach will produce a 

significant unpleasant odor in the surrounding region. The excretion from 

cockroaches potentially contaminates food and kitchen implements especially in 

kitchen or food preparation areas. Food poisoning, dysentery and diarrhea are 

common diseases transferred through cockroach droppings. Their regurgitation and 

defaecation while feeding makesthe cockroach a potential mechanical vector of 

various pathogens causing health hazards in humans. Different species of bacteria, 

helminths, protozoans and virus that are pathogenic to humans in cockroach body are 

summarized by Brenner (1995), Lee (1997a, 2007) and Lee and Ng (2009). Besides, 

cockroachesare considered as important cause of asthma in many parts of the world, 

including Singapore (Eggleston and Arruda 2001). Accidental ingestion or inhalation 

of cockroach allergens may trigger allergy and asthma (Helm et al. 1996, Yu and 

Huang 2000, Chapman and Pomes 2008, Lee and Ng 2009). Their fecal materials, 

saliva, chitin skin and dead cockroach body contain allergen proteins which are 
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known to stimulate allergic symptoms and increase the severity of asthma attacks, 

especially in children. A very high percentage of urban residents with asthma are 

sensitive to cockroach allergens. The appearance of total cockroach numbers in 

infested housing areas is positively correlated to the degree of cockroach sensitivity, 

suggesting that cockroach control can significantly reduce asthma simulation 

(National Research Council 2007). 

There is limited or no detailed and published information about the accurate 

amount of money spent annually on German cockroach control. However, the 

economic losses caused by the German cockroach can be estimated through direct 

and indirect comparisons of total damage attributed to cockroaches. According to 

1988 data (Douce and McPherson 1989), 40% (US49.66 million) of household and 

structural damages was accounted by cockroaches. Besides, the pesticide use survey 

report from the Environmental Protection Agency (EPA) showed that at least US 

20.7 million was used to treat cockroachess in the USA in 1990 although 

cockroaches were not considered to be a major problem (Whitmore et al. 1992). In a 

separate survey conducted by professional pest control companies, the National Pest 

Control Association (NPCA) found that cockroaches were the most important 

household pest in the USA and that German cockroachesare the predominant species. 

Estimates showed that 14,250 professional pest control industries have hired 66,600 

workers in servicing 12 millions dwellings, which covered most of the 288,000 food 

outlets, 480,000 restaurants and commercial kitchens, and 66,000 hotels as well as 

motels (Brenner 1995).  

German cockroaches affect our economics not only in terms of money spent 

for controlling, but also in other less obvious ways. Due to their general feeding 

behaviour (omnivorous), most of our food is vulnerable at every stage of production, 
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including during transition and storage. The food can be easily infested by the 

cockroaches prior to consumption. German cockroaches are also widespread in the 

food preparation industries and there must be some amount of federal tax revenues 

accounted to protect the food supply. In addition, German cockroach has a high 

reproductive ability and they can easily spread and expand their distribution among 

the building structures, non-food available areas. However, no published data is 

available to estimate the physical damage caused by cockroaches to electronic 

equipment or kitchen appliances. Obviously, there is a significant cost in repairing 

damage attributed by this insect accounted by the homeowner when this insect 

dominantly infested the house (Brenner 1995).  

 

2.4 Conventional Control Methods 

Chemical control is the major method in German cockroach management 

nowadays. Many conventional insecticides, targeting the insect nervous system after 

entering the body, were used in the control. The chemicals normally enter the 

insect’s body through oral ingestion or penetrate through cuticular absorption by 

direct contact or vapor exposure and subsequently affecting the nervous system as 

well as physiological metabolisms. Since the early of 1950s when organochlorine 

insecticides were first introduced, chemical insecticides have become an important 

aspect in pest management (Dent 2000). Among the organochlorine compounds, 

lindane, DDT, dieldrin and chlordane are considered most suitable for German 

cockroach management. They were slow-acting but long-lasting when applied as 

residual. From mid 1950 to 1970, insecticides classes targeted on blocking action of 

acetylcholinesterase, such as carbamates and organophosphates, were mainly used 

for pest management. Carbaryl, propoxur and bendiocarb were cabamates formulated 
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for the control of German cockroaches. There were several compounds in the 

organophosphorous group of major significance in German cockroach control, such 

as acephate, chlorpyrifos, diazinon, dichlorvos, fenitrothion, iodofenphos, malathion, 

pirimiphos-methyl, propetmphos and trichlorphon (Wickham 1996). Pyrethroid is 

actively being used in controlling cockroach after the mid 1960 due to its rapid 

action (knockdown and flushing effects) and low toxicity against mammals 

(Wickham 1996, Lee and Ng 2009). Pyrethroid compounds are group of synthetic 

insecticides that been derived from natural pyrethrins which can be obtained through 

the extraction of the dried flower heads of the plant Chrysanthemum 

cinerariaefolium. Pyrethroids are generally esters, formed from acid and alcohol 

components, and have greater stability in light than natural pyrethrins. Pyrethroids 

can be divided into two groups, type 1 and type 2 (Gammon et al. 1981, Yu 2008), 

based on their effects on sensory neurons in American cockroaches. A lot of 

commercial pyrethroid-based products are available in the market, such as Baygon, 

Raid, etc. Pyrethroids have often been used in residual formulations (spray or dust). 

Spraying and dusting methods fully take advantages of cockroach crawling behavior 

and also their preference to be “touched” on the ventral side of the body (Berthold 

and Wilson 1967). Cockroaches are killed by absorbing the toxin from the residual 

deposit along the treated area. This application must be repeated with different doses 

at suitable intervals in order to achieve good and effective control. It was 

recommended that treatment should be initiated with higher level of insecticide 

dosage to “wipe out” an infestation and followed by a maintenance phase with lower 

dosage at selected intervals. 
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2.5 Insecticide Resistance 

Insecticide resistance has become a major threat in pest management industry, 

whether in agricultural or household insects. The Insecticide Resistance Action 

Committee (IRAC) defines resistance as the “heritable change in susceptibility of a 

pest population that is exhibited in the repeated failure of a compound to obtain the 

expected level of field control”. Insecticide resistance is different from insecticide 

tolerance. Tolerance is a natural ability of an insect population to withstand certain 

level of toxic effect and it can be developed in one generation as a result of 

physiological changes. The ability will disappear once the selection pressure has 

been removed (Yu 2008). Insect always develop resistance approximately a decade 

post-introduction of a new insecticide (Jorgen 2004). The invention of a new 

insecticide is not an easy and fast process and most of the chemicals that were 

commonly used shared some similarity in target sites (nervous system) (Emden and 

Service 2004). Indeed, resistance problem is a significant challenge facing 

agricultural production, health protection and the industrial pest management. 

During the early 1950s, resistance case was very rare and most of the wild 

insect populations were fully susceptible to any kind of insecticide. But the situation 

changed after the first insecticide resistance problem was questioned by Melander 

(1914), who observed the high survival rate of the San Jose scale, Quadraspidiotus 

perniciosus (Comstock) after being treated with sulphur lime in Clarkston Valley of 

Washington, US. Published insecticide resistance cases increased dramatically after 

that and subsequently reaching a highest peak in the late 1970s and early 1980s 

(Whalon et al. 2008). Before 1989, various chemical selected-resistance cases have 

widely documented including modern synthetic organic chemicals (organochlorine, 

organophosphate, carbamate and pyrethroid) and also some inorganic chemicals such 
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as sulphur and arsenicals (Onstad 2008). At present, more than 500 species of insects 

and mites show resistance toward about 410 types of various chemicals (Bellinger 

1996, Whalon et al. 2008). An updated and more detailed arthropod resistance cases, 

systematized by species, geographical areas and resistant compounds, can be found 

in the Arthropod Pesticide Resistance Database (APRD) website 

(http://www.pesticideresistance.com). Among the resistance pests, some of them 

were reported to be multiple resistant towards a series of insecticide classes, which 

included the German cockroach Blattella germanica (Wen and Scott 1997, Wei et al. 

2001, Kristensen et al. 2005), housefly Musca domestica (Linnaeus) (Wen and Scott 

1999, Liu and Yue 2000, Kristensen et al. 2004), diamondback moth Plutella 

xylostella (Linnaeus) (Sayyed et al. 2005, Cao and Han 2006, Nehare et al. 2010, Pu 

et al. 2010), etc.  

The intensity of pesticide use has repeatedly resulted in insecticide resistance 

and followed by control failures across most of the commonly use pesticides globally. 

In the early 1990s, Pimentel et al. (1991) and Pimentel et al. (1993) estimated the 

pesticide resistance impact on crop protection in the US as approximately 1.4‒4 

billion annually. Furthermore, mosquito resistance towards insecticides has also 

increased malaria cases in many developing countries and kills 3 million people 

annually (Whalon et al. 2008). Thus, the effect of pesticide resistance problem has 

very serious and important impact in human health protection and agricultural 

production.  

 There are several factors that contribute to the development of pesticide 

resistance in insects and mites, which include host biological and ecological 

characteristics, frequency and intensity of pesticide exposure, existence of resistance 

allele in a pretreated population, cross- and multiple-resistance possibility, dose and 
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toxicity relationship, etc (Whalon et al. 2008). Besides, the effectiveness of a pest 

management tactic may influence the possibility of the pest developing resistance 

towards that method (Onstad 2008). Recently, molecular genetic studies have 

revealed many detailed resistance mechanisms and unravelled certain novel 

insecticide mode of actions. This helps a lot in understanding the genetic and the 

metabolic of the resistance mechanism. 

 

2.6 Insecticide Resistance in German cockroach 

2.6.1 History 

Regular insecticide selection pressures have also induced the development of 

insecticides resistance in German cockroach populations (Lee et al. 1996b, Chai and 

Lee 2010). The first insecticide resistance case in German cockroach was reported by 

Heal et al. (1953) in Corpus Christi, Texas, U.S. The author found difficulty in 

controlling a field German cockroach using chlordane and revealed that the 

cockroach population possessed an extreme resistance degree towards chlordane 

(>100x). In the 1950s and 1960s, resistance cases towards DDT, chlordane and 

lindane were widely documented (Cochran 1995). After the loss of organochlorine 

insecticides, the organophosphate insecticides became dominant in cockroach 

management. However, in the mid 1960s, several authors reported that some field 

cockroach populations started to exhibit resistance towards diazinon and malathion. 

Subsequently, resistance toward various insecticides such as carbamate and 

pyrethroid were slowly published in the 1970s and 1980s. At present, the German 

cockroach has developed resistance approximately up to 47 different chemicals. A 

selected insecticide resistance study is summarized in Table 2.1.  
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Table 2.1 Selected insecticide resistance studies in German cockroach from 1953-2013. 
 
Insecticide Methoda RRb Mechanismc Location Reference 
Organochlorine      
DDT T(SC) 5–6 – Texas, U.S. (Heal et al. 1953) 
 D 1.4–1.9 – U.S. (Fish and Isert 1953) 
 T(SC) 4–12 – Germany & 

France 
(Webb 1961) 

 D 4–7 – Hawaii, U.S. (Ishii and Sherman 1965) 
 D 10 – Australia (Hooper 1969) 
 D >40 (Reduced penetration) Virginia, U.S. (Collins 1973) 
 T(GS) 3.8 – Bulgaria (Gecheva 1991) 
 D >6.1 (kdr) Malaysia (Lee et al. 1996b) 
 T (GJ) (7% ) (kdr) Malaysia (Lee and Lee 1998) 
 T (GJ) 1.3–40.7 (kdr) Malaysia (Lee et al. 1999) 
 D >100 ‒ Florida, U.S. (Gondhalekar et al. 2011) 
Endosulfan T(GJ) 1.1–2.5 – Malaysia (Lee et al. 1999) 
Lindane T(SC) 10–12 – Texas, U.S. (Heal et al. 1953) 
 D(LC) 3.8–5.7 – Texas, U.S. (Grayson 1954) 
 D 28–39 – Hawaii, U.S. (Ishii and Sherman 1965) 
Chlordane T(SC) >100 – Texas, U.S. (Heal et al. 1953) 
 D 1.8–108.6 – U.S. (Fish and Isert 1953) 
 D(LC) 111.7–275.7 – Texas, U.S. (Grayson 1954) 
 T(SC) >25 – California, U.S. (Micks 1960) 
 T(SC) 1.2–14.4 – Germany & 

France 
(Webb 1961) 

 D 452 – Louisiana, U.S. (Bennett and Spink 1968) 
 T(GJ) 8.2 – Maryland, U.S. (Nelson and Wood 1982) 
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Dieldrin D 1.2–68 – U.S. (Fish and Isert 1953) 
 T (GJ) 1.2–4.4 – Malaysia (Lee et al. 1999) 
 D 13–2030/ 

15‒1270 
Rdl Denmark (Hansen et al. 2005, Kristensen 

et al. 2005) 
 D >100 ‒ Florida, U.S. (Gondhalekar et al. 2011) 
      
Organophosphate      
Chlorpyrifos T(SC) 1.3 – New Jersey, U.S. (Schal 1988) 
 T (GJ) ~1–10 – U.S. (Cochran 1989) 
 D ~20 Monooxygenase, Hydrolase U.S. (Siegfried et al. 1990) 
 D ~3–10 Monooxygenase U.S. (Scott et al. 1990) 
 D 1.4–29.7 – U.S. (Rust and Reierson 1991) 
 D(GT) 7.1 – Florida, U.S. (Moss et al. 1992) 
 D 5.4 – Florida, U.S. (Moss et al. 1992) 
 D ~6–9 Esterase  U.S. (Prabhakaran and Kamble 

1993) 
 D 3.2–17.3 – U.S. (Rust et al. 1993) 
 T(GJ) 1.2–2.2 – U.S. (Rust et al. 1993) 
 D(LC) 8–462 Monooxygenase (6 of 14strains), 

altered acetylcholinesterase (1 of 
14strains) 

U.S. (Hemingway et al. 1993a) 

 D(LC) 6–9 – U.S. (Hostetler and Brenner 1994) 
 D (thoracic) 5–56.3 – U.S. (Scharf et al. 1995) 
 T(GJ) 1.3–5.9 – U.S. (Scharf et al. 1995) 
 D(tarsal) 7.6–37.5 – U.S. (Scharf et al. 1995) 
 D 2.4–7.6 – Malaysia (Lee et al. 1996b) 
 D 7 – Georgia, U.S. (Valles and Yu 1996) 
 T(GJ) 1.4–>50 – U.S. (Scott and Wen 1997) 
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 T(GJ) 1.1–4.3 Monooxygenase, Esterase Malaysia (Lee 1998) 
 D 5.6 (Esterase) U.S. (Park and Kamble 1998) 
 T(GJ) 1.1–4.3 Esterase Malaysia (Lee et al. 1999) 
 D(LC) 5.8–11.8 ‒ Cuba (Diaz Pantoja et al. 2000) 
 T(GJ) 1.2–7.5 Monooxygenase, Esterase Peninsular 

Malaysia 
(Lee and Lee 2004) 

 D 1.9–28.8 – Taiwan (Pai et al. 2005) 
 D 12.6 – Korea (Chang et al. 2009) 
 D 2–13 – Korea (Chang et al. 2010) 
 D 1.5–22.8 Monooxygenase, Esterase Singapore (Chai and Lee 2010) 
 D 25.6 (Metabolic) Florida, U.S. (Gondhalekar et al. 2011) 
Chlorpyrifos-methyl T(GJ) 1–2.9 – Malaysia (Lee et al. 1999) 
 D 2–8 – Korea (Chang et al. 2010) 
Diazinon D 1.2–2.4 – U.S. (Fish and Isert 1953) 
 D(SC) 2.5–6.3 – Texas, U.S. (Grayson 1965) 
 D 13 – Louisiana, U.S. (Bennett and Spink 1968) 
 D 26 (Reduced penetration) Virginia, U.S. (Collins 1973) 
 T(GJ) 3.7 – Maryland, U.S. (Nelson and Wood 1982) 
 T(SC) 1.8 – New Jersey, U.S. (Schal 1988) 
 T(GJ) ~1–10 – U.S. (Cochran 1989) 
 T(GJ) 1.7–5.3 – U.S. (Rust et al. 1993) 
 T(GJ) 1–3.7 – Malaysia (Lee et al. 1999) 
Dichlorvos T (GJ) 5.3-31.1 – Bulgaria (Gecheva and Ranchov 1994) 
Fenitrothion T(GJ) 1.1–4.1 Esterase  Malaysia (Lee et al. 1999) 
 D 17.7 – Korea (Chang et al. 2009) 
Fenthion D(SC) 2.7–5 – Texas, U.S. (Grayson 1965) 
 D 11 – Louisiana, U.S. (Bennett and Spink 1968) 
 D 8–17 – Korea (Chang et al. 2010) 
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Malathion T(SC) 1.5–3 – Germany & 
France 

(Webb 1961) 

 D(SC) 2.2–12.8 – Texas, U.S. (Grayson 1965) 
 D 6.8–8.5 – Hawaii, U.S. (Ishii and Sherman 1965) 
 D 110 – Louisiana, U.S. (Bennett and Spink 1968) 
 D 27 (Reduced penetration) Virginia, U.S. (Collins 1973) 
 T(GJ) 6.5 ‒ Maryland, U.S. (Nelson and Wood 1982) 
 D ~33 (Metabolic detoxification) U.S. (Bull et al. 1989) 
 T(GS) ~1–>60 ‒ U.S. (Cochran 1989) 
 D/T ~3–10/ >60 Monooxygenase U.S. (Scott et al. 1990) 
 T(GJ) 1.9–41.1 ‒ Malaysia (Lee 1997b) 
 T(GJ) 2–>275 Carboxylesterase (3 of 11 strains) Malaysia (Lee et al. 1999) 
 D(LC) 5.5–>25 – Cuba (Diaz Pantoja et al. 2000) 
Acephate T(GS) ~1–2 – U.S. (Cochran 1989) 
 T(GJ) 1.3 – U.S. (Rust et al. 1993) 
Profenofos D 4.1 – Korea (Chang et al. 2009) 
Pyridafenthion D 75.6 – Korea (Chang et al. 2009) 
Pirimiphos-methyl T(GJ) 1.3–7.1 Esterase Malaysia (Lee et al. 1999) 
 D(LC) 3.4–24.8 – Cuba (Diaz Pantoja et al. 2000) 
Propetamphos T(GJ) 1.3 – U.S. (Rust et al. 1993) 
      
Carbamate      
Carbaryl D ~5 (Metabolic detoxification) U.S. (Bull et al. 1989) 
 T(GJ) 2.5–9.8 – Malaysia (Lee et al. 1999) 
Bendiocarb D(LC) 5.6–6.2 – England (Barson and McCheyne 1978) 
 T(GJ) >80 Oxidase U.S. (Cochran 1987a) 
 T(SC) >100 – New Jersey, U.S. (Schal 1988) 
 T(GC) ~1–>60 – U.S. (Cochran 1989) 
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 D/T >10 (2 of 3 
strains)/ >60 

Monooxygenase, Hydrolase U.S. (Scott et al. 1990) 

 D 6.7 – Florida, U.S. (Moss et al. 1992) 
 D(LC) 6.8 – Florida, U.S. (Moss et al. 1992) 
 T(GJ) >21 – U.S. (Rust et al. 1993) 
 D 46 Monooxygenase, Esterase Georgia, U.S. (Valles and Yu 1996) 
 D 3.7–>62 ‒ Malaysia (Lee et al. 1996b) 
 T(GJ) 1.7–4.8 Acetylcholinesterase insensitivity 

(2 of 4 strains) 
Malaysia (Lee et al. 1997) 

 T(GJ) 3–3.3 Monooxygenase, Esterase Malaysia (Lee and Lee 1998) 
 T(GJ) 3.1–65.2 Monooxygenase, Esterase, 

Altered acetylcholinesterase (5 of 
23 strains) 

Malaysia (Lee et al. 1999) 

Propoxur D 18 (Reduced penetration) Virginia, U.S. (Collins 1973) 
 T(GJ) 13.3 – Maryland, U.S. (Nelson and Wood 1982) 
 T(SC) >100 – New Jersey, U.S. (Schal 1988) 
 T(GS) ~1–>60 – U.S. (Cochran 1989) 
 D ~3–10 – U.S. (Scott et al. 1990) 
 D ~2–4 Esterase U.S. (Prabhakaran and Kamble 

1993) 
 T(GJ) 1.4–2.3 ‒ U.S. (Rust et al. 1993) 
 D(LC) 4–46 Monooxygenase (7 of 14 strains), 

Altered acetylcholinesterase (1 of 
14 strains) 

U.S. (Hemingway et al. 1993a) 

 D 2.8–91.6 Monooxygenase, Esterase, (kdr) Malaysia (Lee et al. 1996b) 
 D 17 Monooxygenase Georgia, U.S. (Valles and Yu 1996) 
 T(GJ) 1.7–9.8 Monooxygenase, Esterase Malaysia (Lee 1998) 
 T(GJ) 1.2–1.4 (Esterase) Malaysia (Lee and Lee 1998) 
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 D 15.6 (Esterase) U.S. (Park and Kamble 1998) 
 D 4–55 Esterase U.S. (Valles 1998) 
 T(GJ) 1.3–11.5 Monooxygenase, Esterase, 

Altered acetylcholinesterase (5 of 
23 strains) 

Malaysia (Lee et al. 1999) 

 D(LC) 2.1–4 ‒ Cuba (Diaz Pantoja et al. 2000) 
 T(GJ) 1.5–>280 Monooxygenase, Esterase (a few 

strains), (Altered 
acetylcholinesterase) 

Peninsular 
Malaysia 

(Lee and Lee 2004) 

 D 2.9–62.5 ‒ Taiwan (Pai et al. 2005) 
 D 3.9–21.5 Oxidase, Hydrolase, (Altered 

acetylcholinesterease) 
Singapore (Chai and Lee 2010) 

 D 13.9 (Metabolic) Florida, U.S. (Gondhalekar et al. 2011) 
 D 2.1–16.9 – Indonesia (Rahayu et al. 2012) 
Dioxacarb T(GJ) 1.5–25.4 – Bulgaria (Gecheva 1993) 
      
Pyrethroid      
Bifenthrin T(GJ) 1–2.2 – Malaysia (Lee et al. 1999) 
 D 27.1 – Korea (Chang et al. 2009) 
 D 46–159 – Korea (Chang et al. 2010) 
Cyfluthrin T(GS) ~1–6 – U.S. (Cochran 1989) 
 D 87.5 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
 - >2 Monooxygenase, Esterase, GST, 

kdr 
Three Continents (Hemingway et al. 1993b) 

 T(GJ) >40 Metabolic U.S. (Cochran 1994d) 
 T(GJ) 2.4–11.4 ‒ Iran (Limoee et al. 2006) 
β-cyfluthrin D 3–468 Monooxygenase, Esterase, kdr Singapore (Chai and Lee 2010) 
Cyhalothrin D 40.6 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
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λ-cyhalothrin - >2 Monooxygenase, Esterase, GST, 
kdr 

Three continents (Hemingway et al. 1993b) 

 D 2–88 Esterase U.S. (Valles 1998) 
 D 21–67 ‒ U.S. (Valles 1999) 
 D(LC) 2.5–97 – Cuba (Diaz Pantoja et al. 2000) 
 D 30.1 – Korea (Chang et al. 2009) 
Cypermethrin T(SC) 4.5 – New Jersey, U.S. (Schal 1988) 
 D 4.8–19.4 kdr U.S. (Scott et al. 1990) 
 D 103.6 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
 D/ T 122.6/ 2.9 – Virginia, U.S. (Zhai and Robinson 1992) 
 D/ (GT) 66.7/ 30.1 – Florida, U.S. (Moss et al. 1992) 
 D ~2-5 Esterase U.S. (Prabhakaran and Kamble 

1993) 
 T(GJ) 4.3–20 ‒ U.S. (Rust et al. 1993) 
 - >2 Monooxygenase, Esterase, GST, 

kdr 
Three continents (Hemingway et al. 1993b) 

 D(LC) 23 (male) 21 
(female) 

‒ U.S. (Hostetler and Brenner 1994) 

 T(GJ) >50 Metabolic U.S. (Cochran 1994d) 
 D (tarsal) 3.8–46.2 – U.S. (Scharf et al. 1995) 
 D (thoracic) 3.4–7.8 – U.S. (Scharf et al. 1995) 
 T(GJ) 1.2–5.5 – U.S. (Scharf et al. 1995) 
 D 28 – Georgia, U.S. (Valles and Yu 1996) 
 D 1.3–22.5 (kdr) Malaysia (Lee et al. 1996b) 
 T(SC) High/ 

moderate 
– Poland Gliniewicz et al. 1996 

 T(GJ) 1–>100 – U.S. (Cochran 1997) 
 T(GJ) 1.2–1.7 ‒ Malaysia (Lee 1998) 
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 D 17.3 (Esterase) U.S. (Park and Kamble 1998) 
 D 3–159 Monooxygenase  (5 of 12 strains), 

Esterase (10 of 12 strains) 
U.S. (Valles 1998) 

 T(GJ) 1.2–3.5 – Malaysia  (Lee et al. 1999) 
 D(LC) 5.5–>360 – Cuba (Diaz Pantoja et al. 2000) 
 D 93 Monooxygenase, Hydrolase Florida, U.S. (Valles et al. 2000) 
 D 2.9 Microsomal esterase U.S. (Valles and Strong 2001) 
 D 2–27.4 – Taiwan (Pai et al. 2005) 
 T(GJ) 2.9–20.7 – Iran (Limoee et al. 2006) 
 T(J) 2.2–2.3 Oxidase, Esterase Iran (Enayati and Haghi 2007) 
 D 47.6 ‒ Korea (Chang et al. 2009) 
 T(GJ) 1.6–3.6 Monooxygenase Indonesia (Ahmad et al. 2009) 
 D 16–29 ‒ Korea (Chang et al. 2010) 
 D 11.5–26.5 Monooxygenase Kermanshah, Iran (Limoee et al. 2011) 
 D 86.5 ‒ Florida, U.S. (Gondhalekar et al. 2011) 
Deltamethrin D 27.5 (1 of 3 

strains) 
‒ U.S. (Scott et al. 1990) 

 D 6.4–23.6 (kdr) Malaysia (Lee et al. 1996b) 
 T(GJ) 2–2.3 (kdr) Malaysia (Lee and Lee 1998) 
 T(GJ) 1.1–2.9 (kdr) Malaysia (Lee et al. 1999) 
 D(LC) 12–>250 – Cuba (Diaz Pantoja et al. 2000) 
 D/ T 17.7–4235/ 

2.2–22 
– Singapore (Choo et al. 2000) 

 D 480 Monooxygenase, Hydrolase Alabama, U.S. (Wei et al. 2001) 
 D 47–480 kdr (1 of 4 strains) Alabama, U.S. (Pridgeon et al. 2002) 
 T(GJ)/ D 1.2–35.7/  

<20% (7 of 
27 strains) 

Monooxygenase, Esterase, (kdr) Peninsular 
Malaysia 

(Lee and Lee 2004) 
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 T(J) 2–2.2 Oxidase, Esterase Iran (Enayati and Haghi 2007) 
 D 20.6 – Korea (Chang et al. 2009) 
 D 61–160 – Korea (Chang et al. 2010) 
 D 3–468 Monooxygenase, Esterase, kdr Singapore (Chai and Lee 2010) 
Esfenvalerate D 29.4 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
 T(GJ) >40 Metabolic U.S. (Cochran 1994d) 
 D 20.7 – Korea (Chang et al. 2009) 
 D 70–270 – Korea (Chang et al. 2010) 
Fenvalerate T(GJ) ~1–>60 ‒ U.S. (Cochran 1989) 
 D 97.7 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
 - >2 Monooxygenase, Esterase, GST, 

kdr 
Three continents (Hemingway et al. 1993b) 

 T(GJ) >40 Metabolic U.S. (Cochran 1994d) 
 D 825 Monooxygenase, Esterase, GST, 

(kdr) 
Indana, U.S. (Wu et al. 1998) 

Permethrin T(GS) ~1–>100 ‒ U.S. (Cochran 1989) 
 D 45.1 Metabolic, (kdr) Florida, U.S. (Atkinson et al. 1991b) 
 D 20 (Monooxygenase, Esterase, GST) U.S. (Anspaugh et al. 1994) 
 T(GJ) >90 Metabolic U.S. (Cochran 1994d) 
 D 12 ‒ Georgia, U.S. (Valles and Yu 1996) 
 D 1.2–14.6 (kdr) Malaysia (Lee et al. 1996b) 
 D 13.5 (Esterase) U.S. (Park and Kamble 1998) 
 T(GJ) 1.3–17.6 (kdr), Monooxygenase (3 of 8 

strains) 
Malaysia (Lee et al. 1999) 

 T(SC) 
(KT)/ (M)/ 
D 

17–27/ 4.2–
6.5/ 4.1–4.7 

Oxidase Iran (Ladonni 2000) 

 D 97 Monooxygenase, Hydrolase Alabama, U.S. (Wei et al. 2001) 


